RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
A comparison of measured airborne and self-reported secondhand smoke exposure in the MADRES pregnancy cohort study
O'Sharkey, K., Xu, Y., Cabison, J., Rosales, M., Chavez, T., Johnson, M., Yang, T., Cho, S.-H., Chartier, R., Lerner, D., Lurvey, N., Toledo Corral, C. M., Cockburn, M., Franklin, M., Farzan, S. F., Bastain, T. M., Breton, C. V., & Habre, R. (2024). A comparison of measured airborne and self-reported secondhand smoke exposure in the MADRES pregnancy cohort study. Nicotine and Tobacco Research, 26(6), 669-677. https://doi.org/10.1093/ntr/ntad202
INTRODUCTION: Secondhand smoke (SHS) exposure during pregnancy is linked to adverse birth outcomes, such as low birth weight and preterm birth. While questionnaires are commonly used to assess SHS exposure, their ability to capture true exposure can vary, making it difficult for researchers to harmonize SHS measures. This study aimed to compare self-reported SHS exposure with measurements of airborne SHS in personal samples of pregnant women.
METHODS: SHS was measured on 48-hour integrated personal PM2.5 Teflon filters collected from 204 pregnant women, and self-reported SHS exposure measures were obtained via questionnaires. Descriptive statistics were calculated for airborne SHS measures, and analysis of variance tests assessed group differences in airborne SHS concentrations by self-reported SHS exposure.
RESULTS: Participants were 81% Hispanic, with a mean (SD) age of 28.2 (6.0) years. Geometric mean (SD) personal airborne SHS concentrations were 0.14 (9.41) µg/m3. Participants reporting lower education have significantly higher airborne SHS exposure (p=0.015). Mean airborne SHS concentrations were greater in those reporting longer duration with windows open in the home. There was no association between airborne SHS and self-reported SHS exposure; however, asking about the number of smokers nearby in the 48-hour monitoring period was most correlated with measured airborne SHS (Two+ smokers: 0.30µg/m3 vs. One: 0.12µg/m3 and Zero: 0.15µg/m3; p=0.230).
CONCLUSIONS: Self-reported SHS exposure was not associated with measured airborne SHS in personal PM2.5 samples. This suggests exposure misclassification using SHS questionnaires and the need for harmonized and validated questions to characterize this exposure in health studies.
IMPLICATIONS: This study adds to the growing body of evidence that measurement error is a major concern in pregnancy research, particularly in studies that rely on self-report questionnaires to measure secondhand smoke (SHS) exposure. The study introduces an alternative method of SHS exposure assessment using objective optical measurements, which can help improve the accuracy of exposure assessment. The findings emphasize the importance of using harmonized and validated SHS questionnaires in pregnancy health research to avoid biased effect estimates. This study can inform future research, practice, and policy development to reduce SHS exposure and its adverse health effects.