RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Chen, T. X., Meyer, M. D., Ganapathi, N., Liu, S., & Cirella, J. M. (2011). Improving data quality in relational databases: Overcoming functional entanglements. RTI Press. RTI Press Occasional Paper No. OP-0004-1105 https://doi.org/10.3768/rtipress.2011.op.0004.1105
The traditional vertical decomposition methods in relational database normalization fail to prevent common data anomalies. Although a database may be highly normalized, the quality of the data stored in this database may still deteriorate because of potential data anomalies. In this paper, we first discuss why practitioners need to further improve their databases after they apply the traditional normalization methods, because of the existence of functional entanglement, a phenomenon we defined. We outline two methods for identifying functional entanglements in a normalized database as the first step toward data quality improvement. We then analyze several practical methods for preventing common data anomalies by eliminating and restricting the effects of functional entanglements. The goal of this paper is to reveal shortcomings of the traditional database normalization methods with respect to the prevention of common data anomalies, and offer practitioners useful techniques for improving data quality.