RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Inferences from probability-sampling theory (more commonly called “design-based sampling theory”) often rely on the asymptotic normality of nearly unbiased estimators. When constructing a two-sided confidence interval for a mean, the ad hoc practice of determining the degrees of freedom of a probability-sampling variance estimator by subtracting the number of its variance strata from the number of variance primary sampling units (PSUs) can be justified by making usually untenable assumptions about the PSUs. We will investigate the effectiveness of this conventional and an alternative method for determining the effective degrees of freedom of a probability-sampling variance estimator under a stratified cluster sample.
RTI’s mission is to improve the human condition by turning knowledge into practice. As an independent, scientific research institute, we share our findings openly - through RTI Press, other peer-reviewed publications, and media – in line with scientific standards. Sharing our evidence-based results ensures the scientific community can build on the knowledge and that our findings benefit as many people as possible.