RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
A generative deep learning approach to de novo antibiotic design
Krishnan, A., Anahtar, M. N., Valeri, J. A., Jin, W., Donghia, N. M., Sieben, L., Luttens, A., Zhang, Y., Modaresi, S. M., Hennes, A., Fromer, J., Bandyopadhyay, P., Chen, J. C., Rehman, D., Desai, R., Edwards, P., Lach, R. S., Aschtgen, M.-S., Gaborieau, M., ... Collins, J. J. (2025). A generative deep learning approach to de novo antibiotic design. Cell. Advance online publication. https://doi.org/10.1016/j.cell.2025.07.033
The antimicrobial resistance crisis necessitates structurally distinct antibiotics. While deep learning approaches can identify antibacterial compounds from existing libraries, structural novelty remains limited. Here, we developed a generative artificial intelligence framework for designing de novo antibiotics through two approaches: a fragment-based method to comprehensively screen >107 chemical fragments in silico against Neisseria gonorrhoeae or Staphylococcus aureus, subsequently expanding promising fragments, and an unconstrained de novo compound generation, each using genetic algorithms and variational autoencoders. Of 24 synthesized compounds, seven demonstrated selective antibacterial activity. Two lead compounds exhibited bactericidal efficacy against multidrug-resistant isolates with distinct mechanisms of action and reduced bacterial burden in vivo in mouse models of N. gonorrhoeae vaginal infection and methicillin-resistant S. aureus skin infection. We further validated structural analogs for both compound classes as antibacterial. Our approach enables the generative deep-learning-guided design of de novo antibiotics, providing a platform for mapping uncharted regions of chemical space.
RTI shares its evidence-based research - through peer-reviewed publications and media - to ensure that it is accessible for others to build on, in line with our mission and scientific standards.