RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Syntactic foams are materials including hollow microspheres distributed throughout a cured polymeric resin. Hollow microspheres within syntactic foams, including collapsible shells that enclose empty cavities, can serve as receptacles to capture environmental constituents upon applied temperature and pressure. An epoxy formulation including of EPON™ 828, HELOXY™ 61, and TETA was combined with hollow glass microspheres with isostatic crush strengths of 300, 3000, and 10,000 psi. Effects of pressure and temperature on the mechanical properties were evaluated via dynamic mechanical analysis. Storage modulus and glass transition temperature depended on formulation. Upon exposure to specific temperature and pressures, the hollow glass spheres embedded within the resin lose mechanical integrity and collapse, resulting in the generation of unencapsulated void spaces, primed to capture embedded liquid. Controllable loss of mechanical integrity enables syntactic foams to serve as on-demand receptacles to retain constituents in the surrounding environment, resulting from externally triggered pressures and temperatures.