RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Privacy considerations for LLMs and other AI models
An input and output privacy approach
Nie, Z., Dave, L. R., & Lewis, R. M. (2025). Privacy considerations for LLMs and other AI models: An input and output privacy approach. Frontiers in Communications and Networks, 6. https://doi.org/10.3389/frcmn.2025.1600750
The framework of Input and Output Privacy aids in conceptualization of data privacy protections, providing considerations for situations where multiple parties are collaborating in a compute system (Input Privacy) as well as considerations when releasing data from a compute process (Output Privacy). Similar frameworks for conceptualization of privacy protections at a systems design level are lacking within the Artificial Intelligence space, which can lead to mischaracterizations and incorrect implementations of privacy protections. In this paper, we apply the Input and Output Privacy framework to Artificial Intelligence (AI) systems, establishing parallels between traditional data systems and newer AI systems to help privacy professionals and AI developers and deployers conceptualize and determine the places in those systems where privacy protections have the greatest effect. We discuss why the Input and Output Privacy framework is useful when evaluating privacy protections for AI systems, examine the similarities and differences of Input and Output privacy between traditional data systems and AI systems, and provide considerations on how to protect Input and Output Privacy for systems utilizing AI models. This framework offers developers and deployers of AI systems common ground for conceptualizing where and how privacy protections can be applied in their systems and for minimizing risk of misaligned implementations of privacy protection.
RTI shares its evidence-based research - through peer-reviewed publications and media - to ensure that it is accessible for others to build on, in line with our mission and scientific standards.