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Abstract - Despite improvements in access to birth 
facilities, neonatal mortality remains a critical health issue 
in many developing countries and causes are not fully 
understood. The Global Network Maternal Newborn Health 
Registry provides a rich source of data of neonatal 
mortality risk factors and outcomes to identify direct causes 
and higher-level determinants, however performing causal 
inference using observational data is difficult and remains 
an open problem in epidemiology. In this paper we sought 
to determine whether Bayesian networks can be used to 
identify the complex causal pathways leading to neonatal 
mortality outcomes and to quantify the effect of each cause 
on mortality. Our analysis identified a complex network of 
causes that contribute to neonatal mortality, including 
maternal death, pre-term birth, movement and breathing at 
birth. For variables identified as direct causes we estimated 
the average causal effect using logistic regression models 
that controlled for known confounders.  

Keywords: Causal inference, Bayesian network, neonatal 
mortality.

1 Introduction 
  While there has been a significant reduction in neonatal 
deaths from 5.6 million per year in 1990 to 4.0 million per 
year in 2000, neonatal mortality remains a major global 
public health issue [1]. Of the 130 million children born 
annually, approximately 4 million will die in the first month 
of life, 75% within the first 7 days and 25% in the first 24 
hours [2]. According to the UN, the 3.6 million neonatal 
deaths that occurred in 2008 comprised 41% of all deaths 
under age 5.  This underscores the importance of reducing 
neonatal mortality, and has been formalized as the fourth UN 
Millennium Development Goal [3]. To meet this goal of a
two-thirds reduction in mortality of children under age 5 by 
2015, the current rate of improvement must be increased 6-
fold.  

In India, while the overall neonatal mortality is 31 deaths 
per 1000 live births, the rate varies widely by region and 
birth facility [4]-[5]. And, despite improvements in access to 
birth facilities, neonatal mortality remains high, suggesting 
that the causes of neonatal death may be more complex than 
previously thought [6]. The Global Network Maternal and 

Child Health Registry provides a unique source of data 
relating to maternal and neonatal risk factors that can 
potentially explain these complex causal relationships. More 
than 70 variables were collected from pregnant women 
enrolled at 20 geographic clusters in Belgaum, India,
including demographics, antenatal care, maternal and 
neonatal health conditions, delivery characteristics, and 
medical treatments. Although this data set is comprehensive, 
identifying the complex causal pathways between risk factors 
and outcomes is challenging due to it being observational in 
nature [5].
Observational studies are particularly susceptible to selection 
bias and confounding, which can result in biased estimates of 
effect [7]. Under certain assumptions, Bayesian networks 
(BNs) have shown promise in performing causal inference 
using observational data. So-called causal BNs can be used 
to model relationships between random variables, where the 
direction of the edges in the graph signifies a direct causal 
relationship [8]. Algorithms exist to identify the graph 
structure directly from data in the presence of confounding 
and selection bias [9]-[10]. Once the causal structure has 
been identified, the BN can be used to estimate the effect of 
manipulating key variables on a specified outcome variable, 
such as neonatal mortality [11]. Thus the BN approach 
promises to be a useful technique for identifying the causes 
of neonatal mortality given a rich observational data set.  

The goal of this work is to extend and enhance existing 
Bayesian network methods to perform causal inference and 
to estimate causal effects of neonatal mortality using 
observational data from the Global Network Maternal and 
Child Health Registry. The remainder of this article is 
organized as follows. In section 2 we discuss the challenges 
of causal inference and approaches to overcome some of 
these challenges to obtain valid inferences based on analyses 
of observational data. In section 3 we describe our Bayesian 
network-based methods of identifying causal factors and 
estimating effects. Our results are presented and discussed in 
sections 4 and 5. In section 6, we present our conclusions 
and ideas for future work. 

2 Background and Related Work 
2.1 Causal Inference 

 The fundamental problem of causal inference is that it is 
not possible to measure the difference in outcome for an 
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individual for different levels of a variable of interest [12].
As a result, estimating a causal effect can only be 
accomplished by comparing groups of similar individuals at 
different levels of a given variable. To ensure that the true 
causal effect is estimated, this comparison requires both the 
manipulation of a variable and measurement of the change in 
the outcome variable while accounting for clinical and 
environmental variables that could confound the 
conclusions about the variable of interest. Valid causal 
inference is often achieved in randomized controlled trials 
through the use of an intervention, with the randomized 
assignment to this intervention, which theoretically balances 
known and unknown confounders across treatment groups.  

In comparison, observational studies are problematic 
because of non-random group assignment and the absence of 
manipulation [13]. As a result, measures of effect can easily 
biased due to confounding, and thus estimating the average 
causal effect of changes in one variable on an outcome of 
interest requires controlling for potential confounders, some 
of which may be unobserved [14]. Most analytical methods 
used with observational data focus on ensuring that 
comparison groups are as similar as possible with respect to 
measured and unmeasured confounders [13]-[16]. However, 
the absence of a true manipulation or intervention, at best, 
results in unbiased estimates of association and not causal 
inference. Bayesian networks, and in particular, causal 
Bayesian networks can potentially address this weakness. 
The reader is referred to the seminal work by Pearl for a 
more complete discussion of causal inference algorithms [8]. 
2.2 Bayesian Networks 

A Bayesian network (BN) is a probabilistic graphical 
model, in which the nodes in a directed acyclic graph 
represent random variables and the edges represent 
probabilistic associations between the variables. A BN 
models the joint distribution over all the variables in the 
graph, factored into a series of conditional probability 
distributions, resulting in a compact and efficient 
representation [17], [11].  

Spirtes’ PC-algorithm can be used to learn a causal BN 
[14]. The algorithm performs a series of conditional 
independence tests to determine directed relationships 
between the variables [18]. Kalisch and Bühlmann achieve a
true positive rate of over 80% and false positive rate of less 
than 1 percent [18]. Nguefack-Tsangue and Zucchini argue 
that in the absence of unmeasured confounders, causal BNs 
are able to identify all causal relationships up to sampling 
error [19]. Shrier and Platt confirmed that this approach does 
not introduce additional conditional associations or bias [20]. 
Li, Shi and Satz used the PC-algorithm to successfully 
estimate the causal relationship between risk factors and 
disease using case-control data [7]. Kalisch et al. provide an 
efficient implementation that supports both categorical and 
continuous variables in R [21].
2.3 Estimating Causal Effects 

Estimating causal effects from observational data can be 
achieved by simulating an intervention on a variable, a 

process known as manipulation. Pearl provides a theoretical 
background for estimating causal effects through the do()
operator, which performs a manipulation on the variable of 
interest while accounting for clinical and environmental 
variables not on the causal pathway that could confound 
conclusions about the variable of interest. [12]. With this 
approach, parent nodes of the manipulated variable are 
included as covariates, a process known as adjusting for the 
direct causes, which captures the prior state of the 
probability distribution. Applying a manipulation to a 
variable removes the influence of any other variables and 
sets the value of that variable for all members of the sample. 
Maathuis, Kalisch and Bülmann show that the average causal 
effect can be estimated using a linear regression model, and 
that this approach is equivalent to Pearl’s do() operator [22].
This method is implemented as the ida algorithm by Kalisch 
et al. in the pcalg R package [21]. One limitation of this 
implementation is its use of linear regression to estimate 
causal effects, which prevents it from being used to estimate 
the casual effect on a dichotomous variable. 

2.4 Bayesian Network Assumptions 
In standard BNs the directions of the edges do not imply 

any specific causal direction and probabilistic inference is 
agnostic to the directions of the edges. For a BN to be 
causal, additional assumptions are required, including the 
Causal Markov Assumption and the Causal Faithfulness 
Assumption. The Causal Markov Assumption attributes a 
direct causal relationship when two variables are connected 
by a directed edge, and states that each variable is 
independent of its non-effects given its causes [23]. The 
Causal Faithfulness Assumption states that the graph 
structure and the independence relationships in the data are 
isomorphic [10]. Additional assumptions include the absence 
of hidden common causes, causal feedback loops, and 
selection bias [24]. While methods exist to accommodate the 
existence of unmeasured confounders, causal effect estimates 
are undefined in these latent confounder models. As a 
consequence, most methods assume that all potential 
confounders are included in the graph. In this case, un-
confounded estimates of causal effects can be determined 
[22].  

3 Methods 
Our methods consist of three steps: data processing, 

learning the optimal causal Bayesian network, and estimating 
the causal effects for direct causes of neonatal mortality.  

3.1 Data Processing 
 Data were collected on all mothers and nenonates at 

three time points. At enrollment, basic demographic 
information was collected for all eligible and consented 
women. Maternal and neonatal outcomes were collected at 
the time of delivery and subjects were followed up at 42 days 
after birth to collect the 28-day neonatal mortality outcome. 

Data from these time points were combined into a single 
analysis dataset using SAS 9.3, with one observation for 
each birth outcome. Data that were missing due to skip 
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patterns in the data collection forms were coded as “not 
collected.” All variables were categorical except for 
hemoglobin level and BMI.  These continuous variables 
were discretized using standard categories  

Missing data analysis was performed for all variables 
included in the model. We assumed data were missing at 
random. Where the amount of missing data was significant 
and could potentially introduce bias, multiple imputation was 
performed prior to the estimation of causal effects. 
Imputation was performed in R using the MICE package, 
using polytomous regression with 20 imputed datasets [25]. 
To test our missing at random assumption and to ensure that 
the imputation did not introduce bias into the causal effect 
estimates, we built models based on the original un-imputed 
data and performed a sensitivity analysis. 
 The final analysis dataset contained 70 variables and 
60,985 observations. 

3.2 Learning the Causal Bayesian Network 
The causal Bayesian network was learned using the PC-

Algorithm, which was initially developed by Spirtes et al. 
and implemented in the R package, pcalg, by Maathuis, 
Kalisch and Bülmann [26], [22]. Stacked output from 
multiple imputation was used as the training dataset. 

The PC-Algorithm is a constraint-based algorithm that 
estimates the conditional probability distribution over all 
variables using a series of conditional independence tests. 
One problem with this approach is the use of multiple 
comparisons, which can result in false positives. In the 
context of a causal Bayesian network, a false positive implies 
that two nodes are not independent given a set of 
conditioning nodes. Residual dependence after conditioning 
results in a graph that less sparse, where spurious causal 
relationships are uncovered. To address this issue, we treated 
the P-value used in the conditional independence tests as a 
tuning parameter and built a series of models using different 
P-values. We optimized the P-value using the Bayesian 
Information Criterion (BIC), and selected the model with the 
lowest BIC. A P-value of 0.0005 was used to learn the final 
model. 

3.3 Estimating Causal Effects 
One limitation of the PC-Algorithm, and constraint-based 

methods in general, is an inability to learn a unique Bayesian 
network. This problem arises from a failure to uniquely 
identify a network’s structure using only conditional 
independence tests, as multiple graphs can encode the same 
conditional independencies. We addressed this issue through 
the development of an enhanced method for estimating 
causal effects, which we have named ida+. Our method is an 
extension of the ida method developed by Maathuis, Kalisch 
and Bülmann [22]. 

The ida algorithm uses the Markov blanket of a specific 
variable to build a multiple linear regression model and 
estimate the causal effect of predictor variable on an 
outcome using the direct parents of the predictor as 
covariates in the model. Because the PC-Algorithm is often 
unable to identify a single causal Bayesian network, the ida

algorithm returns a multi-set of possible causal effects. An 
additional limitation of this method is that the estimation of 
causal effect may not be valid when the outcome is 
dichotomous or multinomial. Thus, our ida+ algorithm 
incorporates several key enhancements: 

Logistic regression is used to estimate causal effects 
for dichotomous outcomes;

Polytomous regression is used to estimate causal 
effects for categorical variables with more than two 
outcomes;

The Cox goodness of fit test for non-nested models is
used to determine which of the multiset of possible 
causal effect estimates is most likely correct; 

Confidence intervals, standard errors, and p-values are 
returned to quantify the precision of the estimates.

Logistic and polytomous regression models enable the 
estimation of odds ratios for categorical outcomes. The Cox 
goodness of fit test for non-nested models determines the 
best set of covariates for a model on the principle that if a 
given model contains the correct covariates then fitting a 
second model to these covariates should add no explanatory 
value [27]. Because calculated odds ratios are estimates 
subject to sampling error, quantifying their precision is 
essential.  

The ida+ algorithm is shown in Fig. 1. 

Input: Set of Causal BNs (G),   Predictor (x),  
  Outcome (y), Outcome type {linear | logistic                 
                   | polytomous} 
Output: Causal Effect of Predictor on Outcome with 
95% confidence intervals and p-value 
 
for each graph in G { 
  if y in parents(x)  
     model  null  
  else  
  { 
      if length(parents(x)) > 0  
      { 
         model <- glm(y ~ 
           x + parents(x))  
      } 
      else  
      { 
         model  glm(y ~ x)  
      } 
   } 
   model_array  model 
} 
 
lowest_p_val 1 
correct_model  null 
 
for each model in model_array { 
  if p_value(model) < lowest_p_val 
  { 
     lowest_p_val <-                
             p_value(model) 
     correct_model  model 
   } 

return correct_model  

Fig. 1. The ida+ algorithm. 
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4 Results 
Fig. 2 provides a simplified view of the Bayesian network 

generated by the PC-Algorithm with P=0.0005 and neonatal 
(28-day) mortality as the outcome. The summarized view is 
presented for clarity and includes only the outcome variable, 
its direct causes, and the parents of the direct causes. The 
algorithm identified 9 direct causal factors of neonatal 
mortality: maternal mortality, gender, pre-term birth, 
multiple birth, whether the baby moved upon birth, whether 
the baby was breathing when born, the presence of one or 
more neonatal conditions, whether transport was available if 
a hospital referral was needed, and whether the neonate was 
seen at a facility. For each of these causal factors, direct 
upstream causes were also identified and the relationship 
between all variables in the model can be seen.  

For each of the direct causes, the ida+ algorithm estimated 
the average causal effect using a logistic regression model 
with neonatal mortality as the dependent variable, the direct 
causes as the primary independent variable, and the parents 
of the direct causes as covariates in the model. The overall 
causal effect of the 9 direct causes is displayed in Table 1 
along with 95% confidence intervals and P-values. The 
effect estimate is an odds ratio calculated as the exponent of 
the beta coefficient of the primary dependent variable in each 
model. Included covariates for each model are summarized 
in Table 2. The addition of some covariates introduced 
multicollinearity into the models. Multicollinearity generally 
occurred as a result of the structure of the questionnaires that 
generated the dataset. For example, the Bayesian network 
model shows Maternal Cause of Death as a direct cause of 
Maternal Mortality. Multicollinearity was likely introduced 
because cause of death was not collected for mothers that did 
not die. A similar phenomenon occurred with hospital 
referral and admission variables. As a result of 
multicollinearity, the estimates produced were not deemed 
reliable, and these covariates were dropped from the model. 

Maternal mortality (OR: 7.972), gender (OR: 1.264), pre-
term birth (OR: 1.247), neonatal conditions (OR: 21.704), 
breathing (OR: 9.974) and movement of the baby (OR: 
30.139) all exhibit a substantial and significant effect on 
neonatal mortality, with baby movement and neonatal 
conditions having the largest effects. Multiple births appears 
to have a protective effect with an odds ratio of 0.774. 
Nenonate Seen at Facility is uninformative, likely due to the 
multicollinearity issues described above.  

5 Discussion 
The main finding of our research is that constraint-based 

methods of learning Bayesian networks can be used to 
identify direct and in-direct causes of neonatal mortality 
from an observational data source, and that the effects of 
these causes can be estimated using logistic regression 
models that control for appropriate confounders. The 
constraint-based PC-Algorithm identified 9 direct causes of 
neonatal mortality: maternal mortality, gender, pre-term 
birth, movement at birth, breathing at birth, presence of 

neonatal conditions, transport to facility, and neonate seen at 
facility. The use of the Cox goodness of fit test for non-
nested models employed by our ida+ algorithm was able to 
disambiguate multiple possible Bayesian networks, identify 
the single most likely graph, and estimate the causal effect of 
the 9 component causes on the mortality outcome. In contrast 
to standard associational approaches, such as linear or 
logistic regression modeling, the Bayesian network was able 
to identify more complex relationships between variables. 

The causal effects shown in the results tables represent the 
odds of a neonate dying within 28 days of birth when the 
given variable is manipulated with an intervention and all 
other variables are held constant. In contrast to standard 
observational approaches, these estimates give greater 
insight into the impact of these direct causes on the mortality 
outcome in a situation where direct, real intervention with a 
randomized controlled trial is infeasible, primarily for ethical 
reasons. The causes identified by the algorithm can be 
considered component causes that contribute to the overall 
cause of morality. The largest causal factors are maternal 
death (8 times increase in odds), movement at birth (24 times 
increase in odds), breathing at birth (10 times increase in 
odds), and the presence of one of a number of neonatal 
health conditions (baby stopped feeding, high fever, 
hypothermia, difficulty breathing, bleeding from umbilicus –
22 times increase in odds). While the correctness of the 
graph cannot be determined formally, in general, the 
algorithm was able to identify several major causes of 
neonatal mortality. Developing public health interventions 
aimed at prevention or treatment of these causes should
result in reduced mortality. 

Fig. 2. Simplified Bayesian network for identified causes of 
28-day mortality. 
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Table 1. Causal estimates for direct causes of 28-day mortality. 

Variable (Reference Value) Causal Effect Lower  95% CI Upper 95% CI P-Value
Maternal Mortality (No) 

Yes 7.972 3.736 17.010 0.000 
Gender (Female) 

Male 1.264 1.129 1.414 0.000 
Pre-term Birth (Term (≥ 37 wks)) 

Preterm (< 37 wks) 1.247 0.951 1.636 0.110 
Multiple Birth (No) 

Yes 0.774 0.585 1.025 0.074 
Movement at Birth (Yes) 

No 30.139 24.285 37.404 0.000
Breathing at Birth (Yes) 

No 9.974 7.995 12.443 0.000 

Neonatal Conditions Present (No) 
Yes 21.704 17.879 26.347 0.000 

Transport to Facility (Yes) 
No 0.984 0.259 3.738 0.981 

Neonate Seen at Facility (Baby dead at arrival) 
Did not reach facility 
No 
Yes

0.000 
0.000 
0.000 

0.000 
0.000 
0.000 

Inf 
Inf 
Inf 

0.972 
0.970 
0.966 

The validity of the estimates of causal effects relies on the 
ability of the PC-Algorithm to correctly identify the causal 
relationships in the data and to reflect these relationships in 
the structure of the Bayesian network. In the absence of test 
data, it is impossible to formally validate the correctness of the 
resultant network, although Maathuis, Kalisch and Bülmann 
argue that the PC-Algorithm is guaranteed to uncover the 
correct causal graph up to sampling error [22]. It is difficult to 
determine whether this statement is true and the degree to 
which it is necessary to adhere to the underlying assumptions 
of the model. Nevertheless, the fact that the model identified 
pre-term birth and neonatal health conditions is consistent with 
the literature, particularly Bassani et al. who argue that pre-
term birth, low-birth weight and neonatal health conditions 
account for 78% of all neonatal deaths in India. Although low 
birth weight is not identified in the Bayesian networks as a 
direct cause, it clearly defines several causal pathways that 
lead to neonatal mortality: it is shown to cause neonatal health 
conditions, which in turn causes neonatal mortality, and it also 
appears to be strongly associated with facility referral and pre-
term birth, although the directionality of the pathways in these 
cases is questionable [28]. Additional factors, such as 
antenatal care and the administration of cost-effective 
interventions discussed by Bhaumik are reflected in the 
Bayesian network as higher-level determinants [29]. In fact, 
lack of antenatal care is on the causal pathway for neonatal 
mortality and has a direct effect on the presence of neonatal 
health conditions, which in turn affects mortality. There are 
also a number of spurious causal relationships, such as the 
association of antenatal care with hemoglobin level. Although 
this relationship is present in the data from a probabilistic 

perspective, hemoglobin is likely only collected during 
antenatal visits, and as a result, this pathway introduces bias 
into the model. 

There are a number of limitations to our research. While the 
direct causes of mortality identified are consistent with the 
literature, some of the indirect causes appear to be 
problematic. For example, Transport to Facility is identified as 
a cause of Pre-term Birth. While there is clearly an association 
between these two variables, it is more likely that Pre-term 
birth is a cause of Transport to Facility. Thus, the model was 
unable to correctly orient the edge between these variables. 
Another example is the identification of Bag and Mask 
Resuscitation as a cause of Neonatal Conditions, which is also 
likely to be reversed. 

These errors in identification could be attributed to a 
number of factors, including lower sample sizes of these 
higher-level causes resulting in a lack of power to detect the 
true relationships, an absence of temporal information (e.g., 
the fact that Neonatal Conditions must occur before Bag and 
Mask Resuscitation is used), and the inability of current 
methods to extract this information from the conditional 
probability distribution. In addition, the lack of formal 
evaluation of the Bayesian network or the causal effect 
estimates is a weakness. The best solution to this problem 
would be the use of an independent validation dataset; this 
approach would also assess the generalizability of the model. 
A more viable approach, however, would to use cross-
validation techniques to assess the fit of the model to held-out 
data using an objective metric, such as Bayesian Information 
Criterion. One additional limitation is the lack of validation of 
causal estimates, through traditional approaches, such as cross 
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validation. However, a comparison of causal effects and 
associations estimated using standard regression models 
provides some useful insight. For example, for neonatal 
mortality, an intervention on maternal mortality has an 
estimated effect of 7.972 (95% CI: 3.3736 – 17.010), which is 
substantially larger than the association odds ratio of 2.299 
(95% CI: 0.554 – 9.538). Therefore, an intervention on 
maternal mortality results in an 8-times increased risk of 
neonatal mortality, whereas the association when controlling 
for other factors, results in only a 2 times increase in risk. 
Similar differences in effect (including for protective factors) 
are noted for the other direct causes. One additional limitation 
of our methodology is the relatively strong assumption of no 
unmeasured confounders. In practice, unmeasured 
confounders very likely exist, and our inability to account for 
these may limit our ability to identify uncounfounded causes 
and higher level determinants of neonatal mortality. 

Table 2. Covariates included in each logistic regression 
model. 

Cause Covariates
Maternal mortality None
Gender Parity

Antenatal Location
Birth Location
Fetal Heartrate

Pre-term Birth Cluster Resident
Birth Weight
Transport to Facility

Multiple Birth Age of Mother
Antenatal Location
Maternal Conditions
Maternal Mortality
Birth Attendant
Birth Location
Birth Weight
Pre-term Birth

Baby Move Born in Cluster
Baby Breathe Baby Move

Baby has Heartbeat
Neonatal Conditions Age of Mother

Antenatal Location
Maternal Conditions
Birth Weight
Pre-term Birth
Multiple Birth
Baby Breathe
Bag and Mask Resuscitation

Transport to Facility Birth Weight
Multiple Birth
Neonatal Conditions
Oxygen Treatment

Neonate Seen at Facility Prenatal Vitamins
Multiple Birth

These limitations point to a number of paths for future 
research. Improved methods of learning and evaluating causal 

Bayesian networks are needed, along with methods to evaluate 
the accuracy of causal effect estimates. One possible approach 
is to compare results of these methods with results from a 
RCT where an actual intervention was performed. 
Theoretically, odds ratios obtained from an RCT should be 
equivalent to those generated by these methods. Further work 
with this dataset should include validation of the graph and 
estimates with cross-validation approaches. 

6 Conclusions 

Although formal validation of results is needed, this 
research has demonstrated the promise of Bayesian networks 
as a method for identifying causal factors from observational 
data. The methods described, and the specific application to 
neonatal mortality, are of strong public health relevance for 
several reasons. First, the ability to perform causal inference 
from observational data is a critical issue in epidemiology 
where a major emphasis in any study is the identification and 
control of confounding factors, particularly when conduct of a 
randomized controlled trial is not possible. Second, the 
inductive nature of the Bayesian network learning algorithms 
provides an opportunity to uncover previously unknown 
causal factors and pathways. Although these methods are 
imperfect, their use in exploratory data analysis can augment 
traditional research hypothesis generation. Application of 
these tools can thus inform future research studies, increasing 
our ability to the identify causes of, and develop effective 
interventions for, critical public health issues. 
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