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PracTools: Computations for Design of
Finite Population Samples
by Richard Valliant, Jill A. Dever, and Frauke Kreuter

Abstract PracTools is an R package with functions that compute sample sizes for various types of
finite population sampling designs when totals or means are estimated. One-, two-, and three-stage
designs are covered as well as allocations for stratified sampling and probability proportional to size
sampling. Sample allocations can be computed that minimize the variance of an estimator subject to a
budget constraint or that minimize cost subject to a precision constraint. The package also contains
some specialized functions for estimating variance components and design effects. Several finite
populations are included that are useful for classroom instruction.

Introduction

Samples from finite populations are one of the mainstays of research in demographics, economics,
and public health. In the U.S., for example, the Consumer Price Index is based on samples of business
establishments and households (Bureau of Labor Statistics, 2013, chap. 17); the unemployment rate
is estimated from the Current Population Survey, which is a sample of households (Bureau of Labor
Statistics, 2013, chap. 1); and various health characteristics of the population are estimated from the
National Health Interview Survey (Center for Disease Control and Prevention, 2013b) and the National
Health and Nutrition Examination Survey (Center for Disease Control and Prevention, 2013a) both
of which are household surveys. Smaller scale academic and marketing research surveys are also
typically done using finite population samples.

Standard techniques used in sample design are stratification, clustering, and selection with varying
probabilities. Depending on the units to be surveyed (e.g., persons, schools, businesses, institutions)
and the method of data collection (e.g., telephone, personal interview, mail survey), the samples may
be selected in one or several stages. There are several packages in R that can select samples and analyze
survey data. Among the packages for sample selection are pps (Gambino, 2012), sampling (Tillé and
Matei, 2013), samplingbook (Manitz, 2013), and simFrame (Alfons et al., 2010). The survey package
(Lumley, 2010, 2014) has an extensive set of features for creating weights, generating descriptive
statistics, and fitting models to survey data.

A basic issue in sample design is how many units should be selected at each stage in order to
efficiently estimate population values. If strata are used, the number of units to allocate to each stratum
must be determined. In this article, we review some basic techniques for sample size determination in
complex samples and the package PracTools (Valliant et al., 2015) that contains specialized routines
to facilitate the calculations, most of which are not found in the packages noted above. We briefly
summarize some of selection methods and associated formulas used in designing samples and describe
the capabilities of PracTools. The penultimate section presents a few examples using the PracTools
functions and the final section is a conclusion.

Designing survey samples

Complex samples can involve any or all of stratification, clustering, multistage sampling, and sampling
with varying probabilities. This section discusses these techniques, why they are used, and formulas
that are needed for determining sample allocations. Many texts cover these topics, including Cochran
(1977), Lohr (1999), Särndal et al. (1992), and Valliant et al. (2013).

Simple random sampling

Simple random sampling without replacement (srswor) is a method of probability sampling in which
all samples of a given size n have the same probability of selection. The function sample in the base
package in R can be used to select simple random samples either with or without replacement. One
way of determining an srswor sample size is to specify that a population value θ be estimated with a
certain coefficient of variation (CV) which is defined as the ratio of the standard error of the estimator, θ̂,

to the value of the parameter: CV(θ̂) =
√

Var(θ̂)/θ. For example, suppose that yk is a value associated
with element k, U denotes the set of all elements in the universe, N is the number of elements in the
population, and the population parameter to be estimated is the mean, ȳU = ∑k∈U yk/N. With a
simple random sample, this can be estimated by the sample mean, ȳs = ∑k∈s yk/n, where s is the set
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of sample elements and n is the sample size. Setting the required CV of ȳs to some desired value CV0
in an srswor leads to a sample size of

n =

S2
U

ȳ2
U

CV2
0 +

S2
U

Nȳ2
U

, (1)

where S2
U is the population variance of the yk’s. The term S2

U/ȳ2
U is referred to as the unit relvariance .

If yk is a 0/1 variable identifying whether an element has a characteristic or not, then S2
U = N(N −

1)−1 pU(1− pU) where pU is the proportion in the population with the characteristic. The function
nCont in PracTools will make the computation in (1). In a real application, the population values in (1)
must be estimated from a sample or guessed based on prior knowledge.

Another way of determining a sample size is to set a tolerance for how close the estimate should
be to the population value. If the tolerance (sometimes called the margin of error) is e0 and the
goal is to be within e0 of the population mean with probability 1− α, this translates to requiring
Pr (|ȳs − ȳU | ≤ e0) = 1− α. This is equivalent to setting the half-width of a 100(1− α)% normal
approximation, two-sided confidence interval (CI) to e0 = z1−α/2

√
V (ȳs). The notation zε denotes

the 100ε percentile of the standard normal distribution. The sample size required to accomplish this is

n =
z2

1−α/2 S2
U

e2
0 + z2

1−α/2 S2
U /N

. (2)

One could also require that the relative absolute error, |(ȳs − ȳU)/ȳU |, be less than e0 with a speci-
fied probability. In that case, (2) is modified by replacing S2

U with the unit relvariance, S2
U/ȳ2

U . Both
calculations can be made using the function nContMoe in PracTools. When estimating a proportion,
there are options other than a normal approximation confidence interval on pU for setting a margin of
error. Two are to work with the log-odds, pU/(1− pU), or to use the method due to Wilson (1927),
which are both available in PracTools.

Another estimand in a survey might be the difference in means or proportions. The difference
could be between two disjoint groups or between the estimates for the same group at two different
time periods. The standard approach in such a case would be to find a sample size that will yield
a specified power for detecting a particular size of the difference. The functions power.t.test and
power.prop.test in the R package stats will do this for independent simple random samples.

The case of partially overlapping samples can also be handled (e.g., see Woodward 1992). For
example, persons may be surveyed at some baseline date and then followed-up at a later time. An
estimate of the difference in population means may be desired, but the samples do not overlap
completely because of dropouts, planned sample rotation, or nonresponse. Such non-overlap would
be common in panel surveys. Suppose that s1 and s2 are the sets of sample units with data collected
only at times 1 and 2, and that s12 denotes the overlap. Thus, the full samples at times 1 and 2 are
s1 ∪ s12 and s2 ∪ s12. Also, suppose that the samples at the two time periods are simple random
samples. Assume that the samples at times 1 and 2 are not necessarily the same size, so that n1 = rn2
for some positive number r. The samples might be of different sizes because of other survey goals
or because the budget for data collection is different for the two times. A case that is covered by the
analysis below is one where an initial sample of size n1 is selected, a portion of these respond at time
2, and additional units are selected to obtain a total sample of size n2 for time 2. Taking the case of
simple random sampling, the difference in means at the first and second time points can be written as

ˆ̄d = ˆ̄x− ˆ̄y =
1

n1
∑
s1

xi −
1

n2
∑
s2

yi + ∑
s12

(
xi
n1
− yi

n2

)
.

The variance can be expressed as

Var
(

ˆ̄d
)
=

σ2
x

n1
+

σ2
y

n2
− 2σxy

n12
n1n2

, (3)

where σ2
x and σ2

y are the population variances at the two time periods, σxy is the element-level
covariance, and n12 is the number of units in s12. Writing n12 = γn1 and r = n1/n2, the variance

becomes Var
(

ˆ̄d
)
= 1

n1

[
σ2

x + rσ2
y − 2γrσxy

]
. For a one-sided test of H0 : µD = 0 versus HA : µD = δ

to be done with power β, the required sample size n1 is

n1 =
1
δ2

[
σ2

x + rσ2
y − 2γrρσxσy

] (
z1−α − zβ

)2
. (4)

The value of n2 is then determined from r = n1/n2. The function nDep2sam in PracTools will perform
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this calculation. nProp2sam will do a similar calculation for testing the difference in proportions with
overlapping samples.

Probability proportional to size sampling

Probability proportional to size (pps) sampling can be very efficient if the measure of size (mos) used
for sampling is correlated with the quantities measured in a survey. For example, enrollment in
an elementary school may be related to the number of children receiving a government assistance
program. In an establishment survey, the total number of employees is often correlated with other
employment counts in the establishment, like the number who participate in a retirement plan. In a
hospital survey, the number of inpatient beds is usually related to numbers of patients discharged
in a month’s time. Household samples are often selected using several stages, the first of which is a
sample of geographic areas. An effective mos is typically the number of persons or housing units in
each geographic area.

If a variable follows a certain regression structure in the population, then an optimal measure of
size can be estimated. The key finding is due to Godambe and Joshi (1965). Isaki and Fuller (1982)
extended this to a linear model M where EM (yi) = xT

i β and VarM (yi) = vi with xi defined as a vector
of x’s (auxiliary variables), and β is a vector of regression slopes of the same dimension as xi. Assume
that a population total is estimated and a regression estimator is used that is approximately unbiased
when averaging over the model and a probability sampling design. In that case,

√
vi is the best mos for

pps sampling.

A model that may fit some establishment or institutional populations reasonably well has a
variance with the form, VarM (yi) = σ2xγ

i , where xi is a mos and γ is a power. Typical values of γ are
in the interval [0, 2]. The function gammaFit in PracTools returns an estimate of γ using an iterative
algorithm. The algorithm is based on initially running an ordinary least squares (OLS) regression of yi
on xi. The OLS residuals, ei, are then used to regress log

(
e2

i
)

on log (xi) with an intercept. The slope
in this regression is an estimate of γ. This procedure iterates by using the latest estimate of γ in a
weighted least squares regression of yi on xi. The parameter γ is then re-estimated in the logarithmic
regression. The algorithm proceeds until some user-controllable convergence criteria are met.

The variance formulas for pps without replacement sampling are difficult or impossible to use for
sample size determination because they involve joint selection probabilities of units and the sample
size is not readily accessible. One practical approach is to use a variance formula appropriate for pps
with replacement (ppswr) sampling. The simplest estimator of the mean that is usually studied with
ppswr sampling is called “p-expanded with replacement” (pwr) (Särndal et al., 1992, chap. 2) and is
defined as

ˆ̄ypwr =
1

Nn ∑
s

yi
pi

, (5)

where pi is the probability that element i would be selected in a sample of size 1. A unit is included in
the sum as many times as it is sampled. The variance of ˆ̄ypwr in ppswr sampling is

Var
(

ˆ̄ypwr
)
=

1
N2n ∑

U
pi

(
yi
pi
− tU

)2
≡ V1

N2n
, (6)

where tU is the population total of y. If the desired coefficient of variation is CV0, Equation (6) can be
solved to give the sample size as

n =
V1
N2

1
ȳ2

UCV2
0

. (7)

We later give an example of how (7) may be evaluated using PracTools.

Stratified sampling

Stratified sampling is a useful way of restricting the dispersion of a sample across groups in a
population. It can also lead to improvements in precision of overall estimates if an efficient allocation
to the strata is used. For example, establishments can be stratified by type of business (retail, wholesale,
manufacturing, etc.). Other methods of creating strata are provided by the R package stratification
(Baillargeon and Rivest, 2014). Given that strata have been created, there are various ways of efficiently
allocating a sample to strata: (i) minimize the variance of an estimator given a fixed total sample size
(Neyman allocation), (ii) minimize the variance of an estimator for a fixed total budget, (iii) minimize
the total cost for a target CV or variance of an estimator, or (iv) allocate the sample subject to several
CV or cost criteria subject to a set of constraints on stratum sample sizes or other desiderata. The last
is referred to as multicriteria optimization .
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The standard texts noted earlier give closed form solutions for (i) and (ii). For example, suppose a
mean is estimated, an srswor is to be selected within each stratum (h = 1, ..., H), and that the total cost
can be written as C = C0 + ∑H

h=1 chnh where C0 denotes fixed costs that do not vary with the sample
size, ch is the cost per-element in stratum h, and nh is the number of elements sampled from stratum
h. The allocation to strata that minimizes the variance of the estimated mean subject to a fixed total
budget C is

nh = (C− C0)
WhSh

/√
ch

∑H
h=1

(
WhSh

√
ch
) , (8)

where Wh is the proportion in the population in stratum h and Sh is the population standard deviation
in stratum h of the variable whose mean is estimated. This and the allocations for (i) and (iii) above
can be found using strAlloc in PracTools.

Multicriteria optimization and allocations with constraints are more realistic for multipurpose
surveys. In some cases, solutions to particular allocation problems are available as in Gabler et al. (2012).
More generally, the alabama (Varadhan, 2015) and Rsolnp (Ghalanos and Theussl, 2014) packages
will solve nonlinear optimization problems with constraints and can be very useful for complicated
sample allocations. Among the constraints that are used in practical work are ones on minimum and
maximum stratum sample sizes and relvariances of overall and individual stratum estimates. Theussl
and Borchers (2015) present a CRAN Task View on optimization and mathematical programming in
R. An R package that will form strata for multipurpose samples is SamplingStrata (Barcaroli, 2014).
Also, the Solver add-on to Microsoft Excelr (Fylstra et al., 1998) will handle allocation problems that
are quite complex and is easy to use. Use of these tools for sample allocation is covered in some detail
in Valliant et al. (2013, chap. 5).

Two- and three-stage sampling

Two- and three-stage sampling is commonplace in household surveys but can be also used in other
situations. For example, the U.S. National Compensation Survey selects a three-stage sample—
geographic areas, establishments, and occupations—to collect compensation data (Bureau of Labor
Statistics, 2013, chap. 8). Allocating the sample efficiently requires estimates of the contribution to the
variance of an estimate by each stage of sampling.

As an example, consider a two-stage design in which the primary sampling units (PSUs) are
selected with varying probabilities and with replacement and elements are selected at the second-stage
by srswor. As noted earlier, determining sample sizes as if the PSUs are selected with-replacement is a
standard workaround in applied sampling to deal with the fact that without-replacement variance
formulas for pps samples are too complex to use for finding allocations. (Other selection methods
along with three-stage designs are reviewed in Valliant et al. (2013, chap.9).) Let m be the number of
sample PSUs, Ni be the number of elements in the population for PSU i, and suppose that the same
number of elements, n̄, is selected from each PSU. The pwr-estimator of a total is

t̂pwr =
1
m ∑

i∈s

t̂i
pi

,

where t̂i =
Ni
n̄ ∑k∈si

yik is the estimated total for PSU i from a simple random sample and pi is the
1-draw selection probability of PSU i, i.e., the probability in a sample of size one. The variance of t̂pwr
is

V
(
t̂pwr

)
=

S2
U1(pwr)

m
+

1
mn̄ ∑

i∈U

(
1− n̄

Ni

)
N2

i S2
U2i

pi
,

where U is the universe of PSUs, S2
U1(pwr) = ∑i∈U pi

(
ti
pi
− tU

)2
, ti is the total of y for PSU i, and

S2
U2i is the population variance of y within PSU i. Dividing this by t2

U and assuming that the within-
PSU sampling fraction, n̄/Ni, is negligible, we obtain the relative variance (relvariance) of t̂pwr as,
approximately,

V
(
t̂pwr

)
t2
U

.
=

B2

m
+

W2

mn̄
=

Ṽ
mn̄

k [1 + δ (n̄− 1)] , (9)

with Ṽ = S2
U/ȳ2

U , ȳU is the population mean per element, k = (B2 + W2)/Ṽ, B2 = S2
U1(pwr)/t2

U ,

W2 = t−2
U ∑i∈U N2

i S2
U2i/pi, and δ = B2/(B2 + W2).

A simple cost function for two-stage sampling assumes that there is a cost per sample PSU and a
cost per sample element of collecting and processing data. We model the total cost as

C = C0 + C1m + C2mn̄,
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where

C0 = costs that do not depend on the number of sample PSUs and elements;

C1 = cost per sample PSU; and

C2 = cost per element within PSU.

The optimal number of units to select per PSU, i.e., the number that minimizes the approximate
relvariance, is

n̄opt =

√
C1
C2

1− δ

δ
. (10)

Only the ratio of the unit costs needs to be known in order to compute n̄opt. To find the optimal m for
a fixed total cost, we substitute n̄opt into the cost function to obtain

mopt =
C− C0

C1 + C2n̄opt
. (11)

Alternatively, to find the optimal m for a fixed relvariance, CV2
0 , n̄opt is substituted into the relvariance

formula (9). clusOpt2 in PracTools will do either of these calculations.

For three-stage sampling, suppose that m PSUs are selected with varying probabilities and with-
replacement, n̄ secondary sampling units (SSUs) are selected within each PSU by srswor, and ¯̄q elements
are sampled by srswor within each sample SSU. This design is referred to as ppswr/srs/srs below. The
relvariance of the pwr-estimator of a total in such a three-stage sample (with a negligible sampling
fraction in the second and third stages) can be written as, e.g., see Hansen et al. (1953) and Valliant
et al. (2013, chap.9):

V
(
t̂pwr

)
t2
U

.
=

B2

m
+

W2
2

mn̄
+

W2
3

mn̄ ¯̄q
(12)

=
Ṽ

mn̄ ¯̄q
{k1δ1n̄ ¯̄q + k2 [1 + δ2 ( ¯̄q− 1)]} ,

where B2 = M2S2
U1/t2

U , W2
2 = M∑i∈U N2

i S2
U2i/t2

U , and W2
3 = M∑i∈U Ni∑j∈Ui

Q2
ijS

2
U3ij/t2

U . The vari-
ance components and other terms in Equation (12) are defined as:

Ṽ = 1
Q−1 ∑i∈U ∑j∈Ui ∑k∈Uij

(yk − ȳU)2
/

ȳ2
U is the unit relvariance of y in the population with

Q being the total number of elements;

S2
U1 = ∑i∈U(ti−t̄U)

2

M−1 , the variance among the M PSU totals;

S2
U2i =

1
Ni−1 ∑j∈Ui

(
tij − t̄Ui

)2
is the unit variance of the Ni SSU totals in PSU i with tij =

∑k∈Uij
yk being the population total for PSU/SSU ij, t̄Ui = ∑j∈Ui

tij

/
Ni is the average total

per SSU in PSU i;

S2
U3ij =

1
Qij−1 ∑k∈Uij

(
yk − ȳUij

)2
is the unit variance among the Qij elements in PSU/SSU ij

with ȳUij = ∑k∈Uij
yk

/
Qij.

k1 =
(

B2 + W2) /Ṽ;

W2 = 1
t2
U

∑i∈U Q2
i S2

U3i/pi with Qi being the number of elements in PSU i,

S2
U3i =

1
Qi−1 ∑j∈Ui ∑k∈Uij

(yk − ȳUi)
2 and ȳUi = ∑j∈Ui ∑k∈Uij

yk/Qi; i.e., S2
U3i is the element-

level variance among all elements in PSU i; and

k2 =
(
W2

2 + W2
3
)

/Ṽ;

δ1 = B2/
(

B2 + W2);
δ2 = W2

2 /
(
W2

2 + W2
3
)
.

The terms δ1 and δ2 are referred to as measures of homogeneity, as is δ for two-stage sampling.
Equation (12) is useful for sample allocation because the measures of homogeneity are in [0, 1], k1 and
k2 are usually near 1, and Ṽ can usually be estimated.

To arrive at an optimal allocation, costs need to be considered. A cost function for three-stage
sampling, analogous to the one for two-stage sampling, is

C = C0 + C1m + C2mn̄ + C3mn̄ ¯̄q. (13)
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The term C0 is again costs that do not depend on the sample sizes at different stages; C1 is the cost
per PSU; C2 is the cost per SSU; and C3 is the cost per element within each SSU. Minimizing the
ppswr/srs/srs relvariance in Equation (12) subject to a fixed total cost gives the following optima:

¯̄qopt =

√
1− δ2

δ2

C2
C3

, (14)

n̄opt =
1
¯̄q

√
1− δ2

δ1

C1
C3

k2
k1

, (15)

mopt =
C− C0

C1 + C2n̄ + C3n̄ ¯̄q
. (16)

If a target relvariance is set at CV2
0 , then the equations for finding the optima ¯̄qopt and n̄opt are the

same. The optimum number of PSUs is found by substituting n̄opt and ¯̄qopt into the relvariance in
Equation (12). clusOpt3 will do these computations for three-stage samples.

Two-phase sampling

In finite population sampling, a distinction is drawn between multistage sampling and multiphase
sampling. In a multiphase sample, an initial sample is selected, some characteristics of the units are
observed, and a decision is made about how to select a subsample from the initial sample based on
what has been observed. In multistage sampling, the same design is used in later stages regardless of
what was found in the first-stage units. There is a more technical definition of the difference between
multistage and multiphase, but it is unimportant for this discussion. An example of two-phase
sampling is to select a subsample of nonrespondents to the initial phase to attempt to get them to
cooperate. This is known as a nonresponse follow-up study (NRFU).

Another type of two-phase design is double sampling for stratification . In this design, information
is collected in the first phase which is then used to stratify elements for second phase sampling. For
example, researchers working to develop a case definition for undiagnosed medical symptoms in U.S.
personnel serving in the 1991 Persian Gulf War surveyed a stratified simple random sample of Gulf
War-era veterans (Iannacchione et al., 2011). Based on survey responses in the first phase, respondents
were classified as likely having or not having a certain type of illness. Blood specimens were requested
from randomly sampled phase-1 respondents within the illness strata and analyzed using expensive
tests.

As an illustration, take the case of double sampling for stratification. Cochran (1977) and Neyman
(1938) give the two-phase variance of an estimated mean or proportion when phase-1 is a simple
random sample of n(1) elements, phase-2 is a stratified simple random sample (stsrs) of n(2) elements,
and an optimal allocation to strata is used in the second phase. The sampling fractions at both stages
are assumed to be negligible. The optimal proportion of the phase-2 sample to assign to stratum h for
estimating the population mean is n(2)h/n(2) = WhSh/ ∑h WhSh. The formula for the variance of an
estimated stratified mean with this allocation is

Vopt =
∑h Wh (ȳUh − ȳU)2

n(1)
+

(∑h WhSh)
2

n(2)
≡

V(1)

n(1)
+

V(2)

n(2)
, (17)

where ȳUh is the stratum h population mean. The phase-2 subsampling rate from the phase-1 sample
units that minimizes Equation (17) is

n(2)

n(1)
=

√√√√V(2)

V(1)

/
c(2)
c(1)

,

where c(1) and c(2) are the per-unit costs in the first and second-phases, respectively. The formulas for
the phase-1 and phase-2 sample sizes that minimize Vopt subject to a fixed total cost C are

n(1) =
C

c(1) + c(2)
√

K
, n(2) = n(1)

√
K,

where
K =

(
V(2)/V(1)

)/(
c(2)/c(1)

)
.

The function dub in PracTools will calculate the optimal second-phase sampling fraction and the
phase-1 and phase-2 sample sizes that will minimize the variance in Equation (17). The function also
computes the size of an srs that would cost the same as the two-phase sample and the ratio of the
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two-phase stratified variance to the srs variance.

Extension to nonlinear estimators and limitations

PracTools will calculate sample sizes for estimators whose variance can be written in one of the forms
given in Section Designing survey samples. This directly covers linear estimators of means and totals.
A nonlinear estimator that is a differentiable function of a vector of estimated totals is also covered.
But, a user must do some work to linearize the estimator and determine the inputs that are required
for a PracTools function. Suppose that the estimator is θ̂ = f

(
t̂1, ..., t̂p

)
where f is a differentiable

function and t̂j is a linear estimator of a population total, tj (1, 2, ..., p). The linear approximation to
θ̂ − θ is

θ̂ − θ
.
= ∑p

j=1
∂ f
∂tj

(
t̂j − tj

)
, (18)

where θ = f
(
t1, ..., tp

)
, and the partials are evaluated at the population values. The repeated sampling

variance of this approximation is then the same as the variance of ∑
p
j=1

∂ f
∂tj

t̂j since θ and tj are treated
as constants. Taking the case of two-stage sampling, suppose that the estimator of the total for variable
j is t̂j = ∑i∈s ∑k∈si

wikyik(j) where wik is a weight for element k in PSU i, yik(j) is its data value, s is
the set of sample PSUs, and si is the sample of elements within SSU i. Substituting this into (18) and
reversing the order of summation between PSUs and variables leads to the expression

ẑ = ∑i∈s ∑p
j=1

∂ f
∂tj

t̂i (j)︸ ︷︷ ︸
ẑi

. (19)

where t̂i(j) = ∑k∈si
wikyik(j). One then computes the design-variance of ẑ based on the particular

sample design used and the form of the derivatives. This general approach is known as the linear
substitute method and is described in detail in Wolter (2007).

In a two-stage sample where m PSUs are selected with replacement and with varying probabilities,
and n̄ elements are selected by simple random sampling from each PSU, (9) applies. The weight
is defined as wik = (mpi)

−1 (Ni/n̄) where pi is the 1-draw selection probability, as before. If the
estimator is the mean computed as θ̂ = t̂y/M̂ with M̂ = ∑i∈s ∑k∈si

wik, then ẑi = (Mmpi)
−1 Niei

where ei = ȳi − ȳU with yi being the sample mean of y in PSU i and ȳU the population mean.
Expression (19) becomes

ẑ =
1

Mm ∑
i∈s

t̂zi
pi

,

with t̂zi =
(

Ni/n̄ ∑k∈si
eik
)

and eik = yik − ȳU . Expression (9) would then be evaluated with eik
replacing yik. With the linear substitute method, residuals typically appear in the linear approximation
and are the basis for a variance estimator. Population quantities, like M and ȳU , are replaced by
sample estimates in a variance estimator. The Section Examples gives an illustration of this method
using one of the datasets in PracTools.

Nonetheless, there are types of estimators that our package does not cover. Quantile estimators
require a special approximation and variance formula (Francisco and Fuller, 1991) that does not come
from the standard linearization approach. The Gini coefficient, used as a measure of income inequality
(e.g., Deaton, 1997), is another example of an estimator that is too complicated to linearize using the
methods above.

The R package PracTools

PracTools is a collection of specialized functions written in R along with several example finite
populations that can be used for teaching. The package is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=PracTools. Because the function code is
visible, the routines can be modified (and improved) by any user. A brief description of the functions
is given in Table 1. The use of the functions, their input parameters, and the values they return are
described in the help files. The package also contains nine example populations of different types.
These are listed in Table 2.
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Function Purpose

BW2stagePPS, BW2stageSRS Variance components in two-stage samples from a population frame
BW2stagePPSe Estimated variance components in two-stage samples from a sample
BW3stagePPS Variance components in three-stage samples from a population frame
BW3stagePPSe Estimated variance components in three-stage samples from a sample
clusOpt2 Optimal allocation in a two-stage sample
clusOpt2fixedPSU Optimal second-stage sample size in a two-stage sample when the PSU

sample is fixed
clusOpt3 Optimal allocation in a three-stage sample
clusOpt3fixedPSU Optimal second and third-stage sample sizes in a three-stage sample when

the PSU sample is fixed
CVcalc2, CVcalc3 Compute the coefficient of variation of an estimated total in two- and

three-stage designs
deffH, deffK, deffS Henry, Kish, and Spencer design effects
dub Allocation of double sample for stratification
gammaFit Estimate variance power in a linear model
nCont, nContMoe Sample size to meet CV, variance, or margin of error targets (continuous

variable)
nDep2sam Sample sizes for two-sample comparison of means with overlapping sam-

ples (continuous variable)
nLogOdds Sample size calculation for a proportion using log-odds method
nProp Sample size calculation for a proportion using target CV or variance
nProp2sam Sample sizes for two-sample comparison of proportions with overlapping

samples (continuous variable)
nPropMOE Sample size calculation for a proportion using margin of error target
NRFUopt Sample sizes for two-phase nonresponse follow-up study
nWilson Sample size calculation for a proportion using Wilson method
pclass Form nonresponse adjustment classes based on propensity scores
strAlloc Sample allocation in stratified samples

Table 1: Functions in PracTools.

Population Description

HMT Generate population that follows the model in Hansen et al. (1983)
hospital Population of 393 short-stay hospitals with fewer than 1000 beds
labor Clustered population of 478 persons extracted from Sept. 1976 Current

Population Survey
MDarea.pop Artificial population of of 403,997 persons arrayed in census tracts and

block groups
nhis, nhispart Datasets of persons with demographic and socioeconomic variables
nhis.large 21,588 persons with 18 demographic and health-related variables
smho.N874 874 mental health organizations with 6 financial variables
smho98 875 mental health organizations with 8 financial and patient-count variables

Table 2: Finite populations in PracTools.

Examples

This section gives some examples for computing sample sizes for estimating proportions and differ-
ences of proportions, an allocation to strata, and the optimal numbers of PSUs, secondary units, and
elements in a three-stage sample.
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Proportions and differences in proportions

The function nProp will return the sample size required for estimating a proportion with a specified
CV or variance. For a CV target, Equation (1) is used; the formula for a variance target is similar. The
function takes the following parameters:

CV0 target value of coefficient of variation of the estimated proportion
V0 target value of variance of the estimated proportion
pU population proportion
N number of units in finite population; default is Inf

A single numeric value, the sample size, is returned. An advance guess is needed for the value of
the population proportion, pU . By default, the population is assumed to be very large (N = ∞), but
specifying a finite value of N results in a finite population correction being used in calculating the
sample size. To estimate a proportion anticipated to be pU = 0.1 with a CV0 of 0.05, the function call
and resulting output is:

> nProp(CV0 = 0.05, N = Inf, pU = 0.1)
[1] 3600

If the population has only 500 elements, then the necessary sample size is much smaller:

> nProp(CV0 = 0.05, N = 500, pU = 0.1)
[1] 439.1315

In this function and others in the package, sample sizes are not rounded in case the exact value is
of interest to a user. To obtain sample sizes for two overlapping groups, nDep2sam is the appropriate
function, which uses Equation (4). The function takes these inputs:

S2x unit variance of analysis variable x in sample 1
S2y unit variance of analysis variable y in sample 2
g proportion of sample 1 that is in the overlap with sample 2
r ratio of the size of sample 1 to that of sample 2
rho unit-level correlation between x and y
alt should the test be 1-sided or 2-sided; allowed values are "one.sided" or

"two.sided"
del size of the difference between the means to be detected
sig.level significance level of the hypothesis test
pow desired power of the test

Among other things, the user must specify the unit (or population) standard deviations in the
two populations from which the samples are selected, the proportion of the first sample that is in
the second (i.e., a measure of overlap), and the unit-level correlation between the variables being
measured in the two samples. If there is no overlap in the samples, it would be natural to set rho
= 0. The size of the difference in the means that is to be detected and the power of the test on the
difference in means must also be declared. The code below computes the sample size needed to detect
a difference of 5 in the means with a power of 0.8 when the unit variances in both groups are 200,
75 percent of the first sample is in the second, the samples from the two groups are to be the same
size, and the unit-level correlation is 0.9. This function and several others in the package use the class
‘power.htest’ as a convenient way of returning the output.

> nDep2sam(S2x = 200, S2y = 200, g = 0.75, r = 1, rho = 0.9,
+ alt = "one.sided", del = 5, sig.level = 0.05, pow = 0.80)

Two-sample comparison of means
Sample size calculation for overlapping samples

n1 = 33
n2 = 33

S2x.S2y = 200, 200
delta = 5
gamma = 0.75

r = 1
rho = 0.9
alt = one.sided

sig.level = 0.05
power = 0.8
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Figure 1: Sample size in each group for detecting a range of differences in means with several levels of
power.

nDep2sam will also accept a vector of differences as input, e.g., del <-seq(2,10,0.001). This makes
it easy to generate a plot like in Figure 1, where the sample size in each group is plotted against the
difference in means for several levels of power. This is a useful way to present options to users.

Probability proportional to size sampling

The function gammaFit will estimate the variance parameter in the model EM (yi) = xT
i β , VarM (yi) =

σ2xγ
i . The code below uses the hospital population bundled with PracTools to estimate the variance

power in the model, EM(y) = β1
√

x + β2x, VM(y) = σ2xγ, returning γ̂ = 1.612009. Using the function
UPrandomsystematic from the package sampling, a sample of size 30 is then selected with probability
proportional to

√
xγ̂, which is the optimal measure of size for estimating the population total of y.

> data("hospital")
> x <- hospital$x
> y <- hospital$y
> X <- cbind(sqrt(x), x)
> (res <- gammaFit(X = X, x = x, y = y, maxiter = 100, tol = 0.001))
Convergence attained in 47 steps.
g.hat = 1.612009
$g.hat

X
1.612009
> require(sampling)
> n <- 30
> pik <- n * sqrt(x^res$g.hat) / sum(sqrt(x^res$g.hat))
> sam <- UPrandomsystematic(pik)
> hosp.sam <- hospital[sam == 1, ]

To determine a sample size for ppswr sampling, the function nCont can be used. This function
is designed to evaluate Equation (1) for simple random samples. However, Equation (7) has the
same form if we equate V1/(N2ȳ2

U) in Equation (7) to S2/ȳ2
U in Equation (1) and set N = ∞. If

V1/(N2ȳ2
U) = 2 and the CV target is 0.05, the call to nCont is

> nCont(CV0 = 0.05, N = Inf, CVpop = sqrt(2))
[1] 800

Allocations to strata

A sample can be allocated to strata using strAlloc. The function takes a number of parameters which
are described in the help file. A standard problem in applied sampling is to find an allocation that will
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minimize the variance of an estimated mean subject to a fixed total budget. To solve this problem, the
stratum population sizes, standard deviations, stratum per-unit costs, total budget, and the type of
allocation (alloc = "totcost") are specified; partial output is:

> Nh <- c(215, 65, 252, 50, 149, 144)
> Sh <- c(267, 106, 69, 110, 98, 445)
> ch <- c(1400, 200, 300, 600, 450, 1000)
> strAlloc(Nh = Nh, Sh = Sh, cost = 100000, ch = ch, alloc = "totcost")

allocation = totcost
Nh = 215, 65, 252, 50, 149, 144
Sh = 267, 106, 69, 110, 98, 445
nh = 30.578027, 9.710196, 20.008418, 4.475183, 13.719233, 40.387433

nh/n = 0.25722085, 0.08168169, 0.16830983, 0.03764502, 0.11540551, 0.33973710

The function returns a list with the type of allocation, population stratum counts and standard
deviations, sample sizes for each stratum, the proportions of the sample allocated to each stratum, and
the anticipated standard error of the mean. Other options for the allocation types are proportional to
stratum population sizes ("prop"), Neyman ("neyman"), and minimization of the total cost subject to
a specified variance or CV target ("totvar"). The nh component of the list can then be used in, e.g.,
the strata function in sampling, to select the sample. Either the round or ceiling function could
be applied to nh to create integer sample sizes. (If non-integers are supplied to strata, they will be
truncated to the integer floor.)

Allocations in two- and three-stage samples

When designing multistage samples, decisions must be made about how many units to select at each
stage. To illustrate this, we consider a three-stage sample. A considerable amount of data is needed
to estimate realistic ingredients required for clusOpt3. The function, BW3stagePPSe, will estimate
B2, W2, W2

2 , W2
3 , δ1, and δ2 from a three-stage where the first-stage is selected ppswr and the last

two stages are selected by srswor. BW2stagePPSe does similar calculations for two-stage sampling.
Variance component estimation is, of course, a difficult area where a number of alternatives have been
developed in the model-based literature. The forms used in BW2stagePPSe and BW3stagePPSe are fairly
simple ANOVA-type estimates. These estimates have known defects, like occasionally being negative.

The following example computes a three-stage allocation that minimizes the variance of the pwr-
estimator assuming that the budget for variable cost is 100,000; the PSU, SSU, and per-element costs
are 500, 100, and 120, respectively; δ1 = 0.01, δ2 = 0.10; the unit relvariance is Ṽ = 1; and the ratios, k1
and k2, are both 1. cal.sw = 1 specifies that the optima be found for a fixed total budget. The full
description of the input parameters can be found in the help file for clusOpt3.

> clusOpt3(unit.cost = c(500, 100, 120), delta1 = 0.01, delta2 = 0.10, unit.rv = 1,
+ k1 = 1, k2 = 1, tot.cost = 100000, cal.sw = 1)

C1 = 500
C2 = 100
C3 = 120

delta1 = 0.01
delta2 = 0.1

unit relvar = 1
k1 = 1
k2 = 1

cost = 1e+05
m.opt = 28.3
n.opt = 7.1
q.opt = 2.7

CV = 0.0499

Along with the inputs, the output includes the optimal sample size for each stage and the CV that
is anticipated for the pwr-estimator given that design. The sample sizes above can be rounded and
then used in the sampling package to select units at each of the stages. For example, suppose that 28
PSUs and 7 SSUs will be selected with probabilities proportional to a mos. Within each sample SSU, a
sample of 3 elements will be selected via srswor. The PSUs can be selected using the function cluster
and the data extracted. Then, a cluster sample of 7 SSUs can be selected from each of those 28 units in
a loop, again using cluster and the data for those sample SSUs extracted. The sample of SSUs would
then be treated as strata and the strata function used to select 3 elements from each SSU using srswor.
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Double sampling for stratification

The function dub will compute the allocation to strata for a double sampling design in which phase-1
is used to assign units to strata. The function takes these input parameters:

c1 cost per unit in phase-1
c2 cost per unit in phase-2
Ctot total variable cost
Nh vector of stratum population counts or proportions
Sh vector of stratum population standard deviations
Yh.bar vector of stratum population means

The inputs, Nh, Sh, and Ȳh, will typically have to be estimated from the first-phase sample. The
example below computes the allocation to four strata assuming a total cost of 20,000 and unit costs of
c(1) = 10 and c(2) = 50. A proportion is being estimated.

> Wh <- rep(0.25, 4)
> Ph <- c(0.02, 0.12, 0.37, 0.54)
> Sh <- sqrt(Ph * (1 - Ph))
> c1 <- 10; c2 <- 50; Ctot <- 20000
> dub(c1, c2, Ctot, Nh = Wh, Sh, Yh.bar = Ph)

V1 = 0.04191875
V2 = 0.1307118
n1 = 404.1584
n2 = 319.1683

n2/n1 = 0.789711
ney.alloc = 30.89801, 71.71903, 106.55494, 109.99634

Vopt = 0.0005132573
nsrs = 400
Vsrs = 0.0004839844

Vratio = 1.06

The function also computes the size of an srs, nsrs, that would cost the same total amount,
assuming that the per-unit cost is c(2); the anticipated variances with the optimal two-phase allocation
and the srs of size nsrs; and the ratio of the two variances. Often, the two-phase design has very
little gain, and sometimes a loss as in this example, compared to simple random sampling. However,
double sampling for stratification is usually undertaken to control the sample sizes in the strata whose
members are not known in advance.

Sample size for a nonlinear estimator

To illustrate a calculation for a nonlinear estimator, consider the proportion of Hispanics with insurance
coverage in the MDarea.pop, which is part of the package. Define y2k to be 1 if a person is Hispanic and
0 if not; α1k = 1 if a person has insurance coverage. Then, y1k = α1ky2k is 1 if person k has insurance
and is Hispanic and is zero otherwise. The linear substitute is zk = y1k − θy2k where θ is the proportion
of Hispanics with insurance coverage. In this case, zk can take only three values: −θ, 0, and 1− θ. If a
simple random sample of clusters and persons within clusters is selected, BW2stageSRS can be used
to compute B2, W2, and δ using the linear substitutes as inputs. Assuming that the full population
is available, the R code is the following. We do the calculation for clusters defined as tracts (a small
geographic area with about 4000 persons defined for census-taking).

> # recode Hispanic to be 1 = Hispanic, 0 if not
> y2 <- abs(MDarea.pop$Hispanic - 2)
> y1 <- y2 * MDarea.pop$ins.cov
> # proportion of Hispanics with insurance
> p <- sum(y1) / sum(y2)
> # linear sub
> z <- y1 - p * y2
> BW2stageSRS(z, psuID = MDarea.pop$TRACT)

The result is δ = 0.00088. Thus, the effect of clustering on this estimated proportion is inconsequential—
a two-stage sample will estimate the proportion almost as precisely as an srs would. In contrast, if the
estimate is the total number of Hispanics with insurance, then we call BW2stageSRS this way:

> BW2stageSRS(y1, psuID = MDarea.pop$TRACT)

which returns δ = 0.02251.
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Summary

Finite population sampling is one of the more important areas in statistics since many key economic
and social measures are derived from surveys. R through its packages is gradually accumulating
capabilities for selecting and analyzing samples from finite populations. Pieces that have been missing
are sample size computations for the kinds of complex designs that are used in practice. PracTools
contributes to filling that gap by providing a suite of sample size calculation routines for one-, two-, and
three-stage samples. We also include features for stratified allocations, for probability proportional to
size sampling, and for incorporating costs into the computations. Several realistic example populations,
that should be useful for classroom instruction, are also part of the package.

The package is limited in the sense that it covers only some of the sample selection schemes that
we have found are most useful and prevalent in the practice of survey sampling. There are many
other selection algorithms that have their own, specialized variance formulas. Tillé (2006) covers
many of these. PracTools also does not select samples, but there are a number of other R packages,
mentioned in this paper that do. One of the great advantages of R is that users can readily access
different packages for specialized tasks like sample size calculation and sample selection.
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