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Abstract
The scheduling of individual surgical patients has received 

extensive treatment in the literature, but this paper is the first to 

propose a model that simultaneously captures the roles of block 

schedules, block release dates, and request queue policies in the 

dynamic evolution of the schedule for a single day in an 

operating room suite. The model is formulated as a stochastic 

dynamic program and theoretical results are obtained for a single 

room version. These results demonstrate that optimal request 

queue decisions for a single room follow a threshold policy that 

preserves a desired amount of operating room space for the 

remaining demand from the room’s allocated surgical specialty. 

An algorithm for determining the optimal thresholds is presented, 

followed by computational results. 
 

 

I. Introduction 
 
The health care system has been the focus of 

increasing attention from operations researchers and 

management scientists in recent years. The growth in this 

research area is motivated by increasing costs and the 

rising demand for health care services and is facilitated by 

the improved quality and availability of data generated by 

the system. Scheduling problems have long captured the 

interest of researchers in other industries, so it comes as no 

surprise that the problem of scheduling surgical patients 

into operating rooms benefits from a robust literature. This 

interest in surgery scheduling is intensified by the key role 

that operating room (OR) scheduling plays in determining 

hospital occupancy levels and because the OR is the most 

resource-intensive and profitable unit of a hospital 

(Macario, Vitez, Dunn, & McDonald, 1995; McManus et 

al., 2003). At its core, the surgery scheduling problem, in 

all its variations, involves the allocation of a fixed amount 

of resources (ORs, hospital staff) under uncertain demand 

(see Cardoen, Demuelemeester, & Beliën (2010) for a 

thorough review). Like other scheduling problems, surgery 

scheduling approaches hope to make more efficient use of 

existing resources, but improved efficiency in the context 

of the health care system comes with the added societal 

benefit of increasing access to health care. 

 

Literature Review 
The majority of hospitals schedule their OR suites 

using cyclic master, or block, surgery schedules, in which 

available OR space is assigned to specific surgical 

specialties, or service lines. For hospitals using block 

schedules, the literature on surgery scheduling describes 

the problem as consisting of three stages: (1) determining 

the amount of OR time to allocate to various surgical 

specialties, (2) creating a block schedule implementing the 

desired allocations, and (3) scheduling individual patients 

into available time (Blake & Donald, 2002; Santibañez, 

Begen, & Atkins, 2007; Testi, Tanfani, & Torre, 2007). 

First stage decisions typically reflect the long-term 

strategic goals of hospital management, such as meeting 

the demand for surgical specialties’ services, achieving 

desired levels of patient throughput, or maximizing 

revenue (Blake & Carter, 2002; Gupta, 2007; Santibañez et 

al., 2007; Testi et al.,2007). The second and third stages 

represent medium- and short-term operational decisions, 

respectively, but differ markedly in their objectives. In 

recent years, block scheduling models have transitioned 

from simply implementing desired allocation levels to 

leveling hospital bed occupancy and minimizing 

overcapacity (Beliën & Demeulemeester, 2007; Blake & 

Donald, 2002; van Oostrum et al., 2008). Research on 

individual patient scheduling, including patient selection, 

room placement, and sequencing, aims to minimize patient 

delays and maximize OR utilization (Denton, Viapiano, & 

Vogl, 2007; Guinet & Chaabane, 2003). 

A fundamental, but understudied, element of the day-

to-day job of surgery scheduling is the transition from the 

rigidity of the block schedule determined in the second 

stage to the flexibility required in the third stage to execute 

the schedule on a given day with a particular realization of 

the stochastic demand for surgery. To place the importance 

of this transition into the proper context, it is necessary to 

understand the dynamic way in which the schedule for a 

single day evolves.  

 

Dynamics of Surgery Scheduling 
For a given day, the OR time that has been allocated 

to specific surgical specialties is initially controlled 

exclusively by the service lines. That is, the specialties are 

free to choose and sequence patients within their allocated 

blocks as they see fit. In the meantime, specialties or 

surgeons that do not have allocated time submit their cases 

to the surgical request queue (RQ). In the period leading 

up to the day of surgery, OR managers try to accommodate 

these RQ cases by looking for unused space in rooms 

originally allocated to other specialties. In practice, there is 

a set day before surgery, referred to as the block release 
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date, after which OR managers regain control of an 

allocated block. Before the block release date, RQ cases 

may not be placed into open space. After the block release 

date, the request queue policy determines how and when 

RQ cases will be placed into unused space. Together, the 

block release dates and request queue policies control the 

interaction between the block schedule and individual 

patient scheduling stages of surgery scheduling.
1
 

The dynamic aspect of scheduling individual patients 

emphasizes the importance of considering the joint impact 

of block schedules, block release dates, and request queue 

policies when studying single-day surgery scheduling. 

However, no existing work in the surgery scheduling 

literature to date addresses all three of these components 

simultaneously. Some recent papers incorporate block 

schedules as constraints in individual patient scheduling 

models, but in each case the schedules are determined all 

at once, rather than evolved dynamically over time (Hans, 

Wullink, van Houdenhoven, & Kazemier, 2008; Pham & 

Klinkert, 2008; Testi et al., 2007),. A pair of papers 

analyze different block release dates and conclude that the 

timing of the block release has little impact on OR 

efficiency (Dexter, Traub, & Macario, 2003; Dexter & 

Macario, 2004). However, their work, which adds single 

RQ cases to existing schedules at different points in the 

evolution of the schedules, fails to capture the potential 

effect of the block release on scheduling decisions made 

after the RQ case has been added. Other related papers 

consider methods for placing RQ, or add-on, cases into 

existing schedules, but the decisions are limited to the day 

before and the day of surgery, thus eliminating the role of 

the block release date (Dexter, Macario, & Traub, 1999; 

Dexter & Traub, 2002; Gerchak, Gupta, & Henig, 1996). 

The remainder of this paper seeks to develop, analyze, 

and test a model for the dynamic single-day surgery 

scheduling problem that takes into account all three of the 

elements referenced above. Section II offers a formal 

statement of the problem and a stochastic dynamic 

programming (SDP) formulation. Section III proposes a 

set of analytical results about the structure of solutions to a 

single operating room instance of the SDP. The proof of 

these results suggests an algorithm for determining optimal 

decisions without fully evaluating the SDP. Section IV 

presents computational results on the sensitivity of the 

optimal decisions to the input data as well as a simulation 

study of different block release date and request queue 

policy combinations. Finally, Section V offers some 

                                                      
1 This description of a surgery scheduling system is based on a 

case study of the scheduling system at the University of 

Maryland Medical Center in Baltimore performed by the author 

in spring 2009. The existing work on block release policies in the 

literature (Dexter, Traub, & Macario, 2003; Dexter & Macario, 

2004) suggests that this system can be generalized to other 

hospitals that use block scheduling. 

concluding remarks and indicates directions for future 

research. 

II. Problem Statement and Formulation 

 

Problem Statement 
Before formally stating the dynamic single-day 

surgery scheduling problem, it is important to understand 

the costs associated with the evolution of a schedule for a 

suite of operating rooms. These costs come in two forms: 

utilization costs related to under- and over-utilization of 

available OR space and customer satisfaction costs related 

to (1) leaving cases on the request queue for long periods 

of time and (2) blocking surgical specialties’ access to 

their allocated OR space. The utilization costs are common 

in the literature, but the customer satisfaction costs are 

unique to this formulation and warrant further explanation. 

Consider an OR schedule that several days before the 

day of surgery has space for one additional case and a RQ 

containing a single case that fits in the available space. The 

OR with open space has been allocated to a surgical 

specialty, referred to here as the primary service line. On 

this day, the OR manager is faced with the choice between 

placing the RQ case in the open space or deferring the 

decision to the following day. Deferring the decision has 

no immediate impact on utilization, yet is still undesirable 

because it forces the patient on the RQ and the surgeon 

associated with the case to wait another day for a decision. 

This customer satisfaction cost is defined as a deferral 

cost. However, the primary service line may still generate 

a case to fill the remaining space in its room. If the RQ 

case has been accepted, the OR manager runs the risk of 

blocking the primary service line’s access to its allocated 

room. This satisfaction cost is defined as a blocking cost, 

and it is the balance between deferral costs and potential 

blocking costs that informs the manager’s decision to 

accept or defer the RQ case. The stochastic decision tree in 

Figure 1 below illustrates the potential outcomes for this 

simple scenario. 

 

 
 

With the system costs defined as above, the dynamic 

single-day surgery scheduling problem can be stated as 

Satisfaction Costs? 

Blocking 

None 

Deferral 

Primary 

arrival 

No primary 

arrival 

Defer 

RQ case 

Accept 

RQ case 

Figure 1. Decision tree for a simple request queue scenario 
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follows. On a given day, a suite of operating rooms has 

been allocated to various surgical specialties, or primary 

service lines, according to a prescribed block schedule. 

These primary service lines generate demand for their 

blocks over several days before the day of surgery. 

Specialties that do not have an allocated block on this day 

may submit cases to the surgical request queue. The 

demand sources are assumed to be stochastic, both in 

quantity and in the timing of their arrival, and are 

independent of each other. Provided that its OR has open 

space, a primary service line may schedule its cases 

directly into the open space. Cases from the RQ can only 

be scheduled into open space by the OR manager, and if a 

block release date policy is in effect this may only be done 

after the block release date. If a primary service line 

generates a case that will not fit in its originally allocated 

space, this case is added to the RQ in hopes that it can be 

placed into another room with sufficient available space. 

The OR manager’s task is to choose on each day 

leading up to the day of surgery the number of RQ cases to 

add to each OR’s schedule with the objective of 

minimizing the total system costs incurred in the process. 

A given day’s decisions not only impact the costs 

encountered that day, but also impact the future state of the 

system and thus future costs. Block release dates serve as 

constraints restricting the days on which RQ cases can be 

added to the schedule, and may differ from room to room 

(or more likely, from specialty to specialty). Request 

queue policies dictate what decisions to make in what 

scenarios. The dynamic relationship between decisions and 

costs suggests a stochastic dynamic programming 

formulation. Because block release dates serve as 

constraints, it is clear that the optimal policy combination 

would use no block release dates and use the optimal 

values of the unconstrained SDP decision variables as the 

RQ policy. The formulation and analysis that follow 

consider an SDP unconstrained by block release dates. 

However, due to the practical arguments for using block 

release dates (protecting OR space allocated to primary 

service lines and reducing the number of future surgery 

days an OR manager must consider on any one day), the 

added cost of imposing block release dates will be 

explored in the computational results section. 

Before describing the input data, states, and costs 

needed for the SDP formulation, it is important to review a 

few assumptions made in this analysis. First, it is assumed 

that RQ decisions are made once a day in the morning, 

before that day’s demand for surgery has been generated. 

This is fairly realistic, because OR managers in practice 

are making decisions for several future surgery days at 

once and it is impractical to spend too much time on any 

one day. Also, demand for surgery is often communicated 

to the hospital late in the day after surgeons have 

completed time in a clinic or made their rounds. 

A few other assumptions are made in order to simplify 

the initial formulation. The capacity of the operating rooms 

is assumed to be the same for all rooms and is stated in 

terms of the number of cases rather than hours. By 

extension, then, the RQ decisions reflect the number of 

cases to place into available space. The rooms are also 

assumed to be identical, allowing RQ cases to be 

scheduled into any OR. Priority levels are not explicitly 

associated with cases on the RQ, although once the 

number of cases to place is chosen it is easy to imagine an 

OR manager using implicit priorities to choose which 

cases. Finally, the swapping of scheduled cases between 

rooms and case cancellations are not considered, and the 

arrival of demand from a surgical specialty is assumed to 

be independent from day to day. Because of the novelty of 

this approach to surgery scheduling, these somewhat 

strong assumptions have been made in order to gain some 

initial insight into the behavior of the model. After this 

initial insight has been gained, the impact of these 

assumptions will be considered and relaxed versions of the 

model will be more readily approachable. 

 

Stochastic Dynamic Programming Formulation 

Define the problem input data as follows: 

 

 𝑆 = number of rooms in the OR suite 

 𝑁 = number of days before the day of surgery  
         on which surgical demand is generated  
 𝐶𝑁 = capacity of a single OR 

 

The stochastic demand for surgery is given by the 

following random variables. Arrivals are associated with 

their service lines, and a one-to-one correspondence 

between rooms and service lines is assumed. From this 

point forward, all references to days represent the number 

of days before the day of surgery, with day 0 being the day 

of surgery. In the following definitions, 𝑠 = 1,… , 𝑆 and  

𝑗 = 0,… , 𝑁.  

 

 𝑇𝑠𝑗 = arrivals to operating room  𝑠 on day 𝑗  

                      generated by primary service line 

 𝑅𝑗 = arrivals to the RQ on day 𝑗  

 

The utilization and customer satisfaction costs are 

similarly defined by day and service line. 

 

 ℎ0  = penalty for unscheduled cases left on RQ  

              on the day of surgery 

 𝑟𝑠0 = penalty for unused space in room 𝑠 on  
               the day of surgery  
 

 ℎ𝑗  = deferral cost for day 𝑗  

 𝑟𝑠𝑗 = blocking cost for service line 𝑠 on day 𝑗  

 

In addition to the number of days remaining until 

surgery, there are three types of state variables needed for 

the dynamic program. 
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 𝑊𝑗  = number of cases on the RQ on day 𝑗  

 𝐵𝑠𝑗 = number of blocking eligible cases  

             in room 𝑠 on day 𝑗  
 𝐶𝑠𝑗 = available space in room 𝑠 on day 𝑗 

 

The number of blocking eligible cases in a room reflects 

the presence of RQ cases added to the room on previous 

days that have yet to incur a blocking penalty. This 

auxiliary state accounts for the fact that a primary service 

line’s case might be blocked by a RQ placed in the room 

several days earlier.  

Finally, the decision variables are defined by room 

and day. 

 

𝑥𝑠𝑗 = number of RQ cases to add to room 𝑠 on day 𝑗     

 

With the exception of the day of surgery, the costs 

incurred on day j are separated into deferral costs and 

blocking costs. Deferral penalties are only assessed up to 

the number of RQ placements that are feasible. In other 

words, if four cases are on the RQ but there are only two 

open spaces, then at most two deferrals are allowed 

because at most two cases can be taken off the RQ.  

 

 𝑁𝑗
𝑑 = number of deferrals on day 𝑗 

       = min 𝑊𝑗 ,  𝐶𝑠𝑗
S
𝑠=1  −  𝑥𝑠𝑗

S
𝑠=1  

 

At the time the RQ decisions are made, day 𝑗’s 

arrivals have not yet been realized, therefore the number of 

blocking penalties incurred in room 𝑠 on day 𝑗 is a random 

variable depending on the primary service line’s arrivals, 

𝑇𝑠𝑗 . Figure 2 illustrates how the number of blocking 

penalties relates to these arrivals, leading to an expression 

for the number blocked in room 𝑠 on day 𝑗.  
 

 
 

 𝑁𝑠𝑗
𝑏 = number blocked in room 𝑠 on day j 

       =  

0
𝐵𝑠𝑗 + 𝑥𝑠𝑗

𝑇𝑠𝑗 −  𝐶𝑠𝑗 − 𝑥𝑠𝑗  
     

 if   𝑇𝑠𝑗 ≤ 𝐶𝑠𝑗 − 𝑥𝑠𝑗
if   𝑇𝑠𝑗 ≥ 𝐶𝑠𝑗 + 𝐵𝑠𝑗

otherwise

 

              = max 0, min 𝐵𝑠𝑗 + 𝑥𝑠𝑗 , 𝑇𝑠𝑗 − 𝐶𝑠𝑗 + 𝑥𝑠𝑗    

This is now sufficient information to describe the 

transitions between states from one day to the next. In the 

transition equations below, it is important to remember that 

primary service line arrivals that exceed the available 

space in their allocated room are redirected to the RQ. 

 

𝑊𝑗−1 = 𝑊𝑗 −  𝑥𝑠𝑗
S
𝑠=1 + 𝑅𝑗   

                + max 0, 𝑇𝑠𝑗 − 𝑐𝑠𝑗 + 𝑥𝑠𝑗  
𝑆
𝑠=1   

𝐵𝑠,𝑗−1 = 𝐵𝑠𝑗 + 𝑥𝑠𝑗 − 𝑁𝑠𝑗
𝑏   

𝐶𝑠,𝑗−1 = 𝐶𝑠𝑗 − 𝑥𝑠𝑗 − min 𝑇𝑠𝑗 , 𝐶𝑠𝑗 − 𝑥𝑠𝑗    

 

Expressing the states and decision variables across all 

operating rooms as vectors Bj, Cj, and xj, the value 

function for the stochastic dynamic program for days 

𝑗 = 𝑁,… ,1 can be defined as 

 

𝑉𝑗  𝑊𝑗 , 𝑩𝒋, 𝑪𝒋 = minimum expected remaining cost   

                                      from state  𝑊𝑗 , 𝑩𝒋, 𝑪𝑗   on day 𝑗   

 = min𝒙𝒋 ℎ𝑗 ∙ 𝑁𝑗
𝑑 +  𝑟𝑠𝑗 ∙ 𝐸 𝑁𝑠𝑗

𝑏  𝑆
𝑠=1

  

                                                +𝐸 𝑉𝑗−1 𝑊𝑗−1, 𝑩𝒋−𝟏, 𝑪𝒋−𝟏    

     s. t.       𝑥𝑠𝑗
𝑆
𝑠=1 ≤ 𝑊𝑗                    

    0 ≤ 𝑥𝑠𝑗 ≤ 𝐶𝑠𝑗    𝑠 = 1,… , 𝑆 

 

where 𝑁𝑗
𝑑 , 𝑁𝑠𝑗

𝑏 , 𝑊𝑗−1, 𝐵𝑠,𝑗−1, and 𝐶𝑠,𝑗−1 are defined above.  

The two boundaries of the formulation occur on day 𝑁 

and on day 0. On day 𝑁 the system is initialized to empty 

(𝑊𝑁  =  0, 𝐵𝑠𝑁  =  0, and 𝐶𝑠𝑁  =  𝐶𝑁). The boundary 

conditions on day 0 arise from utilization costs incurred on 

the day of surgery. The schedule must be completed on the 

morning of day 0 and as a result, as many cases are taken 

off the RQ as possible on the morning of surgery. Deferral 

and blocking penalties are no longer an issue because 

demand for surgery is not generated on the day of surgery.
2
 

This leads to the following value function for the 

boundary: 

 

𝑉𝑜 𝑊0 , 𝑩𝟎, 𝑪𝟎 = min𝒙𝟎 ℎ0 𝑊0 −  𝑥𝑠0
𝑆
𝑠=1     

                               +  𝑟𝑠0(𝐶𝑠0 − 𝑥𝑠0)𝑆
𝑠=1    

                                     s. t.        𝑥𝑠0
𝑆
𝑠=1 ≤ 𝑊0   

      0 ≤ 𝑥𝑠0 ≤ 𝐶𝑠0 ,   𝑠 = 1,… , 𝑆 

                  

 Single Room Example 
In order to better understand how the optimal 

decisions generated by the SDP translate to system costs, it 

is helpful to look at a sample path for a small numerical 

example. Suppose a single OR has capacity for four cases, 

and that the daily demand arrivals for both the primary 

                                                      
2 Realistically, urgent/emergent cases are often generated on the 

day of surgery, but these can be handled outside the proposed 

framework. In practice, entire blocks are reserved for urgent 

cases or stated room capacities are lowered to preserve slack for 

these cases. In either scenario, it is still desirable to minimize the 

costs associated with building the original schedule. 

Figure 2. Illustration of different blocking penalty scenarios 

Primary Service Line Arrivals  𝑇𝑠𝑗   

0 𝐶𝑠𝑗 − 𝑥𝑠𝑗  𝐶𝑠𝑗  𝐶𝑠𝑗 + 𝐵𝑠𝑗  

Arrival 

Scenarios: 

1. 

2. 

3. 

𝑁𝑠𝑗
𝑏 ∶  

0 

𝑇𝑠𝑗 −  𝐶𝑠𝑗 − 𝑥𝑠𝑗   

𝑥𝑠𝑗 + 𝐵𝑠𝑗  

Blocking 

Region 
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service line and RQ follow Poisson distributions. The daily 

arrival rates and system costs are specified below. 

 

Day 4 3 2 1 0 

Arrival Rates 

     
Primary Service 1 2 0.5 0.5 0 

Request Queue 1 1 1 1 0 

Costs 

     
Deferral 1 1 1 1 1 

Blocking 3 3 3 3 5 

Room Capacity = 4 

    
Table 1. Input data for simple SDP example 

 

 

The resulting SDP is solved to get the optimal 

decision for each feasible state on each day. Consider the 

sample path generated by single realizations of the arrival 

random variables, combined with the optimal decisions 

and transitions generated by the SDP.  

 

Day (j) 4 3 2 1 0 

Wj 0 2 2 2 3 

Bj 0 0 1 1 0 

Cj 4 4 2 0 0 

xj 0 1 1 0 0 

Tj 0 1 2 1 0 

Rj 2 1 0 0 0 

Nj
d 0 1 1 0 3 

Nj
b 0 0 1 1 0 

Daily Costs 0 1 4 3 3 

Table 2. Sample path for simple SDP example 

 

Of particular interest in this example are days 3 and 2, 

where the SDP solution says to take one case off the RQ 

for the given states. On day 3, the RQ consists of two cases 

but only one is taken, leading to a deferral penalty. 

Because there is still sufficient space in the room for the 

primary service line arrival  𝑇3 < 𝐶3 − 𝑥3 , no blocking 

penalty is incurred and one blocking eligible case is passed 

to the following day. On day 2, another deferral penalty is 

incurred, and because the primary service line’s arrivals 

exceed the remaining available space  𝑇2 > 𝐶2 − 𝑥2  a 

blocking penalty is also incurred. 

In the exploration of optimal policies for the single 

room SDP, a striking trend emerged. For all input data 

satisfying certain realistic assumptions, the optimal policy 

for each day followed a kind of threshold policy. That is, 

for each day before surgery there was a specific amount of 

space that was preserved for future primary service line 

arrivals, and the optimal decision took as many cases as 

necessary to reach the threshold. If this number of cases 

was not feasible, then the decision took the system as close 

to this threshold as possible. Furthermore, the threshold 

was independent of the RQ demand arrival process. For 

the example above, the observed thresholds were (2, 3, 1, 

1, 0) for days 4,…,0. Looking at these thresholds for the 

states observed in the sample path in Table 2 sheds light on 

why the corresponding decisions were made (i.e. on day 3, 

4 spaces were available and the threshold was 3, so 1 RQ 

case was selected). The next section presents an analytical 

proof that the optimal policies for the single room SDP 

always demonstrate this threshold behavior. The proof 

leads to a constructive algorithm for finding the desired 

thresholds, and thus all optimal decisions, for any set of 

input data without solving the full SDP.
 

 

III. Analytical Results 
 

Before formally stating the claim that the single room 

SDP always produces threshold policies, several quantities 

must be defined. In addition to the value function (which is 

defined in the formulation as a minimized quantity), it is 

necessary below to define the function (𝐹𝑗 ) that the value 

function minimizes. In these definitions, it is important to 

note that the costs, transitions, and expected values depend 

on the current state, the decision variable, and the demand 

arrival random variables. This dependence will be stated 

more explicitly when necessary.
 

 

For 𝑗 = 1,… , 𝑁: 

𝐹𝑗 𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗  = ℎ𝑗 ∙ 𝑁𝑗
𝑑 + 𝑟𝑗 ∙ 𝐸 𝑁𝑗

𝑏   

                               +𝐸 𝑉𝑗−1 𝑊𝑗−1, 𝐵𝑗 −1, 𝐶𝑗−1    

 

For 𝑗 = 0: 

𝐹0 𝑊0, 𝐵0 , 𝐶0, 𝑥0 = ℎ0 𝑊0 − 𝑥0 + 𝑟0 𝐶0 − 𝑥0   
 

For all 𝑗: 

𝑉𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 = min 𝐹𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗     

                           s. t.     0 ≤ 𝑥𝑗 ≤ min 𝑊𝑗 , 𝐶𝑗    

 

𝑥𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗  = arg min 𝐹𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗     

                                 s. t.     0 ≤ 𝑥𝑗 ≤ min 𝑊𝑗 , 𝐶𝑗    

 

∆𝐹𝑗 𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗  = 𝐹𝑗 𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗 + 1   

                                                             −𝐹𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗    

 

The final definition is a discrete form of a derivative which 

will be used in proving convexity. As with continuous 

functions, the convexity of a discrete function requires a 

non-decreasing derivative. 

 

Transition Observations 
In the course of an induction proof for the threshold 

policy, the nature of the costs and state transitions for 

certain adjacent states and decision values will be 
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important. The relationships below for 𝑗 = 1,… , 𝑁 result 

from the transition equations presented with the SDP 

formulation in Section II. If dependence on the state 

variables, decision variables, or arrival random variables is 

not shown, then these values are held constant in the 

differences below. The notation 𝐼 …   represents an 

indicator random variable, and the relationships are 

grouped for clarity. 

 

Group 1 

𝑁𝑗
𝑏 𝑥𝑗 + 1 − 𝑁𝑗

𝑏 𝑥𝑗  = 𝐼 𝑇𝑗 ≥ 𝐶𝑗 − 𝑥𝑗    

𝑊𝑗−1 𝑥𝑗 + 1 −𝑊𝑗−1 𝑥𝑗  = −1 ∙ 𝐼 𝑇𝑗 < 𝐶𝑗 − 𝑥𝑗    

𝐵𝑗−1 𝑥𝑗 + 1 − 𝐵𝑗−1 𝑥𝑗   = 𝐼 𝑇𝑗 < 𝐶𝑗 − 𝑥𝑗   

𝐶𝑗−1 𝑥𝑗 + 1 − 𝐶𝑗−1 𝑥𝑗  = −1 ∙ 𝐼 𝑇𝑗 < 𝐶𝑗 − 𝑥𝑗    

 

Group 2 

𝑁𝑗
𝑏 𝐵𝑗 + 1, 𝐶𝑗 − 1 − 𝑁𝑗

𝑏 𝐵𝑗 , 𝐶𝑗 = 𝐼 𝑇𝑗 ≥ 𝐶𝑗 − 𝑥𝑗    

𝑊𝑗−1 𝑊𝑗 − 1, 𝐶𝑗 − 1   

                    −𝑊𝑗−1 𝑊𝑗 , 𝐶𝑗  = −1 ∙ 𝐼 𝑇𝑗 < 𝐶𝑗 − 𝑥𝑗    

𝐵𝑗−1 𝐵𝑗 + 1, 𝐶𝑗 − 1 − 𝐵𝑗−1 𝐵𝑗 , 𝐶𝑗  = 𝐼 𝑇𝑗 < 𝐶𝑗 − 𝑥𝑗    

𝐶𝑗−1 𝐶𝑗 − 1 − 𝐶𝑗−1 𝐶𝑗  = −1 ∙ 𝐼 𝑇𝑗 < 𝐶𝑗 − 𝑥𝑗    

 

Group 3 

𝑁𝑗
𝑏 𝐵𝑗 + 1, 𝐶𝑗 − 1, 𝑥𝑗 − 1 = 𝑁𝑗

𝑏 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗    

𝑊𝑗−1 𝑊𝑗 − 1, 𝐶𝑗 − 1, 𝑥𝑗 − 1 = 𝑊𝑗−1 𝑊𝑗 , 𝐶𝑗 , 𝑥𝑗    

𝐵𝑗−1 𝐵𝑗 + 1, 𝐶𝑗 − 1, 𝑥𝑗 − 1 = 𝐵𝑗−1 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗    

𝐶𝑗−1 𝐶𝑗 − 1, 𝑥𝑗 − 1 = 𝐶𝑗−1 𝐶𝑗 , 𝑥𝑗    

 

Structure of Optimal SDP Policies 
These relationships provide the necessary insights to 

proceed with a formal statement and proof of the threshold 

policy suggested above. Two assumptions on the input 

data are required: (1) ℎ𝑗 ≤ 𝑟𝑗   and (2) 𝑟𝑗+1 ≥ 𝑟𝑗    ∀𝑗 ≥ 1. 

These do not limit the strength of the result, because (1) 

deferral costs are certain while blocking penalties depend 

on uncertain future arrivals and (2) increasing the blocking 

penalty as the day of surgery approaches would discourage 

filling up the remaining space. 

 

Claim: For 𝑗 = 𝑁,… ,1 and all feasible states  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗   

(i) ∃ a function 𝐺𝑗  𝑛  s.t. 𝐺𝑗  𝑛  is non-increasing in 𝑛, 

𝐺𝑗  1 ≤ 𝑟𝑗 , and ∆𝐹𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗  = 𝐺𝑗 𝐶𝑗 − 𝑥𝑗   

(ii) 𝐹𝑗 𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗    is convex in 𝑥𝑗  

(iii) ∃ 𝐾𝑗  satisfying 𝐺𝑗  𝐾𝑗 + 1 < 0 ≤ 𝐺𝑗  𝐾𝑗   s.t. 

𝑥𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗  = min 𝑊𝑗 , max 0, 𝐶𝑗 − 𝐾𝑗    

(iv) 𝑉𝑗  𝑊𝑗 − 1, 𝐵𝑗 + 1, 𝐶𝑗 − 1  

                    −𝑉𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 =  
0

𝐺𝑗  𝐶𝑗 

   if 𝐶𝑗 − 𝐾𝑗 > 0

   if  𝐶𝑗 − 𝐾𝑗 ≤ 0
   

 

Part (iii) is the desired threshold result, while the other 

parts are necessary in the development of the proof. The 

proof proceeds using weak induction. 

Base Case (𝑗 = 1) 

Observe the following statements about day 0. First, 

no OR slots need to be preserved for future arrivals, 

leading to an effective threshold of 𝐾0 = 0. This gives the 

desired structure to the optimal decisions. 

 

𝑥0 𝑊0 , 𝐵0 , 𝐶0 = min 𝑊0, max 0, 𝐶0 − 𝐾0    
     = min 𝑊0 , 𝐶0   
 

Second, using this choice of 𝑥0 the optimal day 0 value 

function can be written in terms of  𝑊0 − 𝐶0 , which gives 

the following equality. 

 

𝑉0 𝑊0 − 1, 𝐵0 + 1, 𝐶0 − 1 = 𝑉0 𝑊0 , 𝐵0 , 𝐶0   
 

Using the Group 1 transition relationships and this day 

0 equality, the first two desired statements for day 1 

emerge: 

 

∆𝐹1 𝑊1 , 𝐵1 , 𝐶1, 𝑥1   
             = 𝐹1 𝑊1, 𝐵1 , 𝐶1, 𝑥1 + 1 − 𝐹1 𝑊1, 𝐵1 , 𝐶1, 𝑥1   
             = ℎ1 𝑁1

𝑑 𝑥1 + 1 − 𝑁1
𝑑 𝑥1    

               +𝑟1 𝑁1
𝑏 𝑥1 + 1 − 𝑁1

𝑏 𝑥1   

                       +𝐸 𝑉0 𝑊0 𝑥1 + 1 , 𝐵0 𝑥1 + 1 , 𝐶0 𝑥1 + 1  

− 𝑉0 𝑊0 𝑥1 , 𝐵0 𝑥1 , 𝐶0 𝑥1    

             = −ℎ1 + 𝑟1 ∙ 𝐸 𝐼 𝑇1 ≥ 𝐶1 − 𝑥1    
             = −ℎ1 + 𝑟1 ∙ 𝑃 𝑇1 ≥ 𝐶1 − 𝑥1  
             = 𝐺1 𝐶1 − 𝑥1   

 

where 𝐺1 𝑛 = −ℎ1 + 𝑟1 ∙ 𝑃 𝑇1 ≥ 𝑛  
 

Note that 𝐺1 1 ≤ −ℎ1 + 𝑟1 ≤ 𝑟1. Also, 𝐺1 𝑛  is clearly 

non-increasing in 𝑛, which gives ∆𝐹1 𝑊1 , 𝐵1 , 𝐶1, 𝑥1  non-

decreasing in 𝑥1 and proves the convexity of 

𝐹1 𝑊1, 𝐵1 , 𝐶1, 𝑥1  with respect to 𝑥1. 

Minimizing 𝐹1 𝑊1 , 𝐵1 , 𝐶1, 𝑥1  then suggests looking 

for the point where the derivative changes signs. In other 

words, seek out  𝐾1 such that 𝐺1 𝐾1 + 1 < 0 ≤ 𝐺1 𝐾1  
and try to set 𝑥1 = 𝐶1 − 𝐾1. Such a  𝐾1 exists because 

𝐺1 0 = −ℎ1 + 𝑟1 ≥ 0 (by assumption on input data) and 

because 𝐺1 𝑛 → −ℎ1 < 0 as 𝑛 → ∞. If the desired value 

for 𝑥1 is infeasible, then choose 𝑥1 on the boundary closest 

to the desired value. This gives the desired expression for 

the optimal decision in terms of the threshold 𝐾1. 

 

𝑥1 𝑊1 , 𝐵1 , 𝐶1 = min 𝑊1 , max 0, 𝐶1 − 𝐾1    
 

All that remains for the base case is to show the final 

piece of the claim, which is critical for the inductive step. 

For brevity, define 𝑥1
∗∗ = 𝑥1 𝑊1 − 1, 𝐵1 + 1, 𝐶1 − 1  and 

𝑥1
∗ = 𝑥1 𝑊1, 𝐵1 , 𝐶1 . From the expression above for the 

optimal decisions, there are two cases to consider: (1) 

𝑥1
∗∗ = 𝑥1

∗ = 0 when 𝐶1 − 𝐾1 ≤ 0 and (2) 𝑥1
∗∗ = 𝑥1

∗ − 1 

when 𝐶1 − 𝐾1 > 0. 
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Case 1 (𝑥1
∗∗ = 𝑥1

∗ = 0): 

The group 2 transition relationships state that in this 

scenario the subsequent day 0 states (from the 

corresponding 𝑥1
∗∗ and 𝑥1

∗ states) will either be identical 

(for 𝑇1 ≥ 𝐶1) or differ in such a way that by the day 0 

observations above they will have the same value (for 

𝑇1 < 𝐶1). The desired difference then depends only on the 

differences in deferral and blocking costs. 

 

𝑉1 𝑊1 − 1, 𝐵1 + 1, 𝐶1 − 1 − 𝑉1 𝑊1 , 𝐵1 , 𝐶1   
               = ℎ1 𝑁1

𝑑 𝑊1 − 1, 𝐶1 − 1 − 𝑁1
𝑑 𝑊1, 𝐶1    

           +𝑟1 ∙ 𝐸 𝑁1
𝑏 𝐵1 + 1, 𝐶1 − 1 − 𝑁1

𝑏 𝐵1 , 𝐶1   
               = −ℎ1 + 𝑟1 ∙ 𝑃 𝑇1 ≥ 𝐶1  
               = 𝐺1 𝐶1   
 

Case 2 (𝑥1
∗∗ = 𝑥1

∗ − 1): 

According to the group 3 transition relationships, the 

blocking costs and subsequent day 0 states will be identical 

in this scenario. The deferral costs will also be the same, 

giving: 

 

𝑉1 𝑊1 − 1, 𝐵1 + 1, 𝐶1 − 1 − 𝑉1 𝑊1 , 𝐵1 , 𝐶1 = 0 

 

These two cases yield the final piece of the base case. 

 

Inductive Step 

Assume that all parts of the claim hold for day 𝑗1. 

 

∆𝐹𝑗 𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗    

 = 𝐹𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗 + 1 − 𝐹𝑗 𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗    

 = ℎ𝑗  𝑁𝑗
𝑑 𝑥𝑗 + 1 − 𝑁𝑗

𝑑 𝑥𝑗     

  +𝑟𝑗 ∙ 𝐸 𝑁𝑗
𝑏 𝑥𝑗 + 1 − 𝑁𝑗

𝑏 𝑥𝑗    

         +𝐸  𝑉𝑗−1  𝑊𝑗−1 𝑥𝑗 + 1 , 𝐵𝑗 −1 𝑥𝑗 + 1 , 𝐶𝑗−1 𝑥𝑗 + 1  

− 𝑉𝑗−1  𝑊𝑗−1 𝑥𝑗  , 𝐵𝑗−1 𝑥𝑗  , 𝐶𝑗−1 𝑥𝑗     

 

By the group 1 relationships, the day 𝑗1 states are 

identical when 𝑇𝑗 ≥ 𝐶𝑗 − 𝑥𝑗 . Otherwise, the states have the 

form of the difference in part (iv) of the induction 

assumption. By the induction assumption then, the 

resulting values are equal when 𝐶𝑗−1 𝑥𝑗  − 𝐾𝑗−1 > 0. But 

for 𝑇𝑗 < 𝐶𝑗 − 𝑥𝑗 , it follows that 𝐶𝑗−1 𝑥𝑗  = 𝐶𝑗 − 𝑥𝑗 − 𝑇𝑗 . 

Combining these pieces with the induction assumption, the 

difference in day 𝑗1 states is 𝐺𝑗−1 𝐶𝑗 − 𝑥𝑗 − 𝑇𝑗   when 

𝐶𝑗 − 𝑥𝑗 − 𝐾𝑗−1 ≤ 𝑇𝑗 < 𝐶𝑗 − 𝑥𝑗 , and is zero otherwise. This 

is reflected in the conditional expectation below, allowing 

the derivative calculation to continue. 

 

∆𝐹𝑗 𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗  = −ℎ𝑗 + 𝑟𝑗 ∙ 𝑃 𝑇𝑗 ≥ 𝐶𝑗 − 𝑥𝑗    

      +𝐸 𝐺𝑗−1 𝐶𝑗 − 𝑥𝑗 − 𝑇𝑗  |𝐶𝑗 − 𝑥𝑗 − 𝐾𝑗−1 ≤ 𝑇𝑗 < 𝐶𝑗 − 𝑥𝑗    

                       =−ℎ𝑗 + 𝑟𝑗 ∙ 𝑃 𝑇𝑗 ≥ 𝐶𝑗 − 𝑥𝑗       

                           + 𝑃 𝑇𝑗 = 𝐶𝑗 − 𝑥𝑗 − 𝑖 ∙ 𝐺𝑗−1 𝑖 
𝐾𝑗−1

𝑖=1
  

                      = 𝐺𝑗 𝐶𝑗 − 𝑥𝑗    

where 𝐺𝑗  𝑛 = −ℎ𝑗 + 𝑟𝑗 ∙ 𝑃 𝑇𝑗 ≥ 𝑛  

                           + 𝑃 𝑇𝑗 = 𝑛 − 𝑖 ∙ 𝐺𝑗−1 𝑖 
𝐾𝑗−1

𝑖=1
  

 

It is important to note that if 𝐾𝑗−1 = 0, then the final 

summation in this expression disappears. Moving on to 

show that 𝐺𝑗  𝑛  possesses the desired qualities, the next 

two results use both the induction assumptions on 𝐺𝑗−1 𝑛  

and the assumption that 𝑟𝑗 ≥ 𝑟𝑗−1. 

 

𝐺𝑗  1 = −ℎ𝑗 + 𝑟𝑗 ∙ 𝑃 𝑇𝑗 ≥ 1   

                     + 𝑃 𝑇𝑗 = 1 − 𝑖 ∙ 𝐺𝑗−1 𝑖 
𝐾𝑗−1

𝑖=1
 

          = −ℎ𝑗 + 𝑟𝑗 ∙ 𝑃 𝑇𝑗 ≥ 1 + 𝑃 𝑇𝑗 = 0 ∙ 𝐺𝑗−1 1  

          ≤ −ℎ𝑗 + 𝑟𝑗 ∙ 𝑃 𝑇𝑗 ≥ 1 + 𝑃 𝑇𝑗 = 0 ∙ 𝑟𝑗−1 

          ≤ −ℎ𝑗 + 𝑟𝑗  

          ≤ 𝑟𝑗  

 

𝐺𝑗  𝑛 − 1 − 𝐺𝑗  𝑛   

     =  −ℎ𝑗 + 𝑟𝑗 ∙ 𝑃 𝑇𝑗 ≥ 𝑛 − 1    

                            +  𝑃 𝑇𝑗 = 𝑛 − 1 − 𝑖 ∙ 𝐺𝑗−1 𝑖  
𝐾𝑗−1

𝑖=1
 

     − −ℎ𝑗 + 𝑟𝑗 ∙ 𝑃 𝑇𝑗 ≥ 𝑛    

                            +  𝑃 𝑇𝑗 = 𝑛 − 𝑖 ∙ 𝐺𝑗−1 𝑖  
𝐾𝑗−1

𝑖=1
 

     = 𝑟𝑗 ∙ 𝑃 𝑇𝑗 = 𝑛 − 1  

      +𝑃 𝑇𝑗 = 𝑛 − 1 − 𝐾𝑗−1 ∙ 𝐺𝑗−1 𝐾𝑗−1  

      + 𝑃 𝑇𝑗 = 𝑛 − 𝑖  𝐺𝑗−1 𝑖 − 𝐺𝑗−1 𝑖 + 1  
𝐾𝑗−1−1

𝑖=1
  

      − 𝑃 𝑇𝑗 = 𝑛 − 1 ∙ 𝐺𝑗−1 1   

 

At this stage, note that 𝐺𝑗−1 𝐾𝑗−1 ≥ 0 by the selection of 

Kj1 and 𝐺𝑗−1 𝑖 − 𝐺𝑗−1 𝑖 + 1 ≥ 0 and 𝐺𝑗−1 1 ≤ 𝑟𝑗−1 by 

the induction assumption. Continuing with the 

computation gives: 

 

𝐺𝑗  𝑛 − 1 − 𝐺𝑗  𝑛 ≥ 𝑟𝑗 ∙ 𝑃 𝑇𝑗 = 𝑛 − 1   

                                           −𝑟𝑗−1 ∙ 𝑃 𝑇𝑗 = 𝑛 − 1   

                                       ≥ 0  
 

Therefore 𝐺𝑗  𝑛  is non-increasing in n, which gives 

𝐹𝑗 𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗   convex in 𝑥𝑗 . Using the same argument 

presented in the base case, minimizing 𝐹𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 , 𝑥𝑗   

requires finding  𝐾𝑗  such that 𝐺𝑗 𝐾𝑗 + 1 < 0 ≤ 𝐺𝑗  𝐾𝑗   

and trying to set 𝑥𝑗 = 𝐶𝑗 − 𝐾𝑗 . Again, this  𝐾𝑗  is guaranteed 

to exist because 𝐺𝑗  0 = −ℎ𝑗 + 𝑟𝑗 ≥ 0 and because 

𝐺𝑗  𝑛 → −ℎ𝑗 < 0 as 𝑛 → ∞. If the desired value for 𝑥𝑗  is 

infeasible, then choose 𝑥𝑗  on the boundary closest to the 

desired value. This gives the required expression for the 

optimal decision in terms of the threshold 𝐾𝑗 . 

 

𝑥𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗  = min 𝑊𝑗 , max 0, 𝐶𝑗 − 𝐾𝑗     
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In order to finish up the final part of the claim, define 

𝑥𝑗
∗∗ = 𝑥𝑗  𝑊𝑗 − 1, 𝐵𝑗 + 1, 𝐶𝑗 − 1  and 𝑥𝑗

∗ = 𝑥𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 . 

Just as in the base case, the expression for the optimal 

decisions yields two cases for the relationship between 

these two policies: (1) 𝑥𝑗
∗∗ = 𝑥𝑗

∗ = 0 when 𝐶𝑗 − 𝐾𝑗 ≤ 0 and 

(2) 𝑥𝑗
∗∗ = 𝑥𝑗

∗ − 1 when 𝐶𝑗 − 𝐾𝑗 > 0. 

 

Case 1 (𝑥𝑗
∗∗ = 𝑥𝑗

∗ = 0): 

The group 2 transition relationships state that in this 

scenario the subsequent day 𝑗1 states (from the 

corresponding 𝑥𝑗
∗∗ and 𝑥𝑗

∗ states) will either be identical 

(for 𝑇𝑗 ≥ 𝐶𝑗 ) or differ in such a way that part (iv) of the 

induction assumption may be applied (for 𝑇𝑗 < 𝐶𝑗 ). 

Applying the induction assumption when 𝑇𝑗 < 𝐶𝑗  gives 

that the difference in values between the day 𝑗1 states 

will be 𝐺𝑗−1 𝐶𝑗−1  when 𝐶𝑗−1 − 𝐾𝑗−1 ≤ 0, and will be zero 

otherwise. But when 𝑇𝑗 < 𝐶𝑗 , note that 𝐶𝑗−1 0 = 𝐶𝑗 − 𝑇𝑗 . 

This implies that the value of the day 𝑗1 states will only 

be nonzero when 𝐶𝑗 − 𝐾𝑗−1 ≤ 𝑇𝑗 < 𝐶𝑗 , a result which 

appears in the conditional expectation below. 

 

𝑉𝑗  𝑊𝑗 − 1, 𝐵𝑗 + 1, 𝐶𝑗 − 1 − 𝑉𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗   

               = ℎ𝑗  𝑁𝑗
𝑑 𝑊𝑗 − 1, 𝐶𝑗 − 1 − 𝑁𝑗

𝑑 𝑊𝑗 , 𝐶𝑗     

           +𝑟𝑗  𝑁𝑗
𝑏 𝐵𝑗 + 1, 𝐶𝑗 − 1 − 𝑁𝑗

𝑏 𝐵𝑗 , 𝐶𝑗   

           +𝐸 𝐺𝑗−1 𝐶𝑗 − 𝑇𝑗   𝐶𝑗 − 𝐾𝑗−1 ≤ 𝑇𝑗 < 𝐶𝑗     

               = −ℎ𝑗 + 𝑟𝑗 ∙ 𝑃 𝑇𝑗 ≥ 𝐶𝑗   

                          + 𝑃 𝑇𝑗 = 𝐶𝑗 − 𝑖 ∙ 𝐺𝑗−1 𝑖 
𝐾𝑗−1

𝑖=1
  

               = 𝐺𝑗−1 𝐶𝑗−1   

 

Case 2 (𝑥𝑗
∗∗ = 𝑥𝑗

∗ − 1): 

As in the base case, the group 3 transition relationships 

show that the blocking costs and subsequent day j1 states 

will be identical in this scenario. The deferral costs will 

also be the same, giving: 

 

𝑉𝑗  𝑊𝑗 − 1, 𝐵𝑗 + 1, 𝐶𝑗 − 1 − 𝑉𝑗  𝑊𝑗 , 𝐵𝑗 , 𝐶𝑗 = 0  

 

These cases complete the proof of the claim.             ∎ 

 

The definition of 𝐺𝑗  𝑛  and part (iii) of the claim 

suggest a constructive algorithm to determine the optimal 

thresholds for any set of input data. The proof of the base 

case demonstrates that in addition to setting 𝐾0 = 0, 

𝐾1  can be found by iterating through 𝐺1 𝑛  for 𝑛 = 0, 1, 2,
… until it changes signs. Using 𝐾𝑗−1 and storing 𝐺𝑗−1 𝑛  

for 𝑛 = 1, 2, . . . , 𝐾𝑗−1, 𝐺𝑗  𝑛  can similarly be computed 

and 𝐾𝑗  selected at the point where 𝐺𝑗  𝑛  changes sign. 

 

Impact of Assumptions 

Recall that this SDP formulation reflects a simplified 

version of the scheduling problem where room capacities 

and RQ decisions are stated in terms of the number of 

cases, essentially ignoring case durations. The nature of 

the threshold result for the single room SDP and its lack of 

limitations on the arrival distributions make the relaxation 

of this assumption quite feasible. Provided that the 

blocking and deferral costs are assumed to be proportional 

to case durations, the arrival distributions, state variables, 

and decision variables could easily be changed to reflect 

units of time. The resulting thresholds would then reflect 

the number of hours that the OR manager should preserve 

on each day for remaining arrivals. While the durations of 

the cases on the RQ might not allow the thresholds to be 

reached exactly, clever use of the 𝐺𝑗  𝑛  derivative values 

would still allow for effective decision-making. 

 

IV. Computational Results 
 

Sensitivity to Cost Ratios 
In the algorithm for computing the optimal policy 

thresholds, it is interesting to note that the room capacity 

and day 0 utilization costs play no role in determining the 

thresholds. In fact, what drives the thresholds (aside from 

the arrival distributions) is the ratio of blocking to deferral 

costs. To demonstrate the sensitivity of the thresholds to 

this ratio, a range of ratios was tested on different arrival 

scenarios. Three arrival scenarios were considered, 

corresponding to early, middle, and late demand arrival 

patterns, and the daily arrivals were assumed to follow 

Poisson distributions with the rates shown in Table 3. 

  

Arrival 

Scenarios 

Days Before Surgery 

4 3 2 1 0 

Early 2 1 0.5 0.5 0 

Middle 1 1 1 1 0 

Late 0.5 0.5 1 2 0 

Table 3. Primary service line arrival rates for three 

scenarios 

 

For each of these scenarios, the day 0 costs were set to 

0, the deferral costs were fixed at 1, and a range of 

blocking costs was selected. For simplicity, within each 

system the blocking cost remains constant from day to day. 

The optimal daily thresholds were computed using the 

algorithm suggested above for each combination of arrival 

pattern and blocking cost (Table 4). In each scenario, a 

blocking-to-deferral cost ratio of 1:1 leads to thresholds of 

0, in effect equivalent to a greedy RQ policy. For larger 

ratios, the threshold patterns mirror the arrival patterns. 

Ratios in the range of 2:1 and 3:1 give day-to-day 

thresholds that roughly match the expected day-to-day 

arrivals, while ratios of 5:1 or higher yield thresholds that 

begin to mirror the cumulative remaining expected 

arrivals. For lower blocking costs, the thresholds in the 

late-arriving demand scenario start low and increase as the 

day of surgery approaches. This suggests that if RQ 
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demand is high and arrives early, then a primary service 

line with late-arriving demand runs the risk of losing its 

space before it has an opportunity to fill it. If the OR 

stakeholders wish to avoid having a specialty lose its 

allocated space in this manner, then a blocking cost 

structure with higher blocking costs before the demand 

arrival peak and lower costs after the peak could be 

implemented to alleviate this tendency. Another alternative 

for avoiding this behavior is to set a block release date, 

which, while sub-optimal with regard to the SDP, is often 

more practical for OR managers due to the inherently 

relative nature of the blocking and deferral costs. 

 

  Arrival Scenarios 

Blocking 

Costs 

Early Middle Late 

Days Before Surgery 

4 3 2 1 4 3 2 1 4 3 2 1 

1 0 0 0 0 0 0 0 0 0 0 0 0 

2 2 1 0 0 1 1 1 1 0 1 1 2 

3 3 1 1 1 2 2 2 1 1 2 2 2 

4 4 2 1 1 3 2 2 2 2 2 3 3 

5 4 2 1 1 3 3 2 2 3 3 3 3 

6 4 2 1 1 4 3 3 2 3 3 4 3 

7 5 3 2 1 4 4 3 2 4 4 4 4 

Table 4. Optimal SDP decision thresholds for a range of 

blocking costs across three demand arrival scenarios 

 

Block Release Dates 

Because of the practicality of block release dates, it is 

important to understand the extra costs incurred by 

implementing a block release policy. In order to explore 

these costs, a simulation environment was created for the 

development of the schedule for a single operating room. 

As above, the day 0 costs were set to 0 and the deferral 

costs were set to 1. The room capacity was set to 4 and the 

other input data is specified in Table 5, along with the 

corresponding optimal SDP thresholds. Because block 

release dates in practice range from a week to just a day 

before surgery, the arrival rates were extended beyond a 

week before surgery. 

 

  Day Before Surgery 

  6 5 4 3 2 1 0 

Blocking Costs 4 4 4 4 4 4 0 

Primary Service 

Arrival Rates 0.25 1 1 1 0.25 0.5 0 

Request Queue 

Arrival Rates 0.17 0.17 0.17 0.17 0.17 0.17 0 

Optimal SDP 

Thresholds 2 2 2 2 1 1 0 

Table 5. Input data and optimal SDP decision thresholds for 

testing the effects of block release dates 

In addition to exploring the effects of block release 

dates, the simulation environment facilitates exploration of 

RQ policies other than the optimal thresholds generated by 

the SDP. One such alternative RQ policy is a greedy policy 

which takes as many cases as space allows (i.e. thresholds 

set to 0).  Recall that a block release date is the first day on 

which RQ cases may be added to the schedule, and the RQ 

policy dictates how post-block release decisions should be 

made. For each policy combination shown in Table 6, the 

OR schedule was simulated over 1,000 replications. The 

optimal SDP solution is reflected by using the optimal 

thresholds and no block release date, and the costs of other 

scenarios are shown as percentage increases over this 

optimal combination. 

 

Post-Block Release 

Date Policy 

Block Release Date 

None 4 3 2 1 0 

Optimal Threshold - 9.6 17.5 26.6 42.7 54.5 

Greedy Threshold 17.1 31.0 39.9 31.8 50.1 54.5 

Note: All apparent differences are statistically significant to 95% 

confidence. 

Table 6. Percentage difference in average cost over optimal 

SDP thresholds with no block release date 

 

The results in Table 6 show that the optimal 

thresholds significantly outperform the greedy thresholds 

for every possible block release date except for day 0 

(when the two thresholds match). When the optimal 

thresholds are used, costs increase consistently as the block 

release dates move closer to the day of surgery. This 

makes sense intuitively, since reducing the block release 

date increases the number of days when the optimal 

decision is not allowed. In effect, lowering the block 

release date forces more deferrals when the optimal 

thresholds indicate that it would be preferable to run the 

risk of incurring blocking penalties. When the greedy 

thresholds are used, the costs also generally trend upward 

as the block release date is lowered. However, a dip is 

noticed when the block release date is day 2, 

corresponding to the day when the optimal threshold drops 

from 2 to 1. While the exact reason for this dip is difficult 

to ascertain, it does suggest that if a block release date 

must be used with greedy thresholds, a correct choice of 

block release date can effectively counteract some of the 

greedy behavior. Overall, these results suggest that if a 

block release date must be used for practical reasons, then 

it is important to combine it with the optimal thresholds. 

 

V. Conclusion 
 

The initial aim of this paper is to motivate and propose 

the dynamic single-day surgery scheduling problem as the 

first model in the literature to simultaneously capture the 
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roles of block schedules, block release dates, and RQ 

policies in the dynamic evolution of a single day’s OR 

schedule. To gain insight into more complex versions of 

the model, a simplified version is formulated as an SDP 

and a single OR version is analyzed both theoretically and 

computationally. The theoretical analysis reveals that 

optimal request queue decisions for a single room should 

follow a threshold policy, where a desired amount of OR 

space is preserved on each day for yet-to-arrive surgical 

demand. The proof of this result leads directly to an 

algorithm for computing these optimal thresholds. The 

computational results demonstrate both the sensitivity of 

these thresholds to relative customer satisfaction costs and 

the added costs incurred by combining the thresholds with 

block release dates (as is often done in practice). 

The insight gained from this analysis of the single OR 

problem suggests two primary directions for future 

research. The first involves the incorporation of case 

durations, as proposed at the end of Section III. The 

second involves trying to extend the threshold result to 

multiple room versions of the SDP, with and without case 

durations, where in the worst case the single room 

thresholds could be used as an efficient heuristic. 
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