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Abstract 
When there is unit (whole-element) nonresponse in a survey sample drawn using probability-sampling principles, a common 
practice is to divide the sample into mutually exclusive groups in such a way that it is reasonable to assume that each 
sampled element in a group were equally likely to be a survey nonrespondent. In this way, unit response can be treated as an 
additional phase of probability sampling with the inverse of the estimated probability of unit response within a group 
serving as an adjustment factor when computing the final weights for the group’s respondents. If the goal is to estimate the 
population mean of a survey variable that roughly behaves as if it were a random variable with a constant mean within each 
group regardless of the original design weights, then incorporating the design weights into the adjustment factors will 
usually be more efficient than not incorporating them. In fact, if the survey variable behaved exactly like such a random 
variable, then the estimated population mean computed with the design-weighted adjustment factors would be nearly 
unbiased in some sense (i.e., under the combination of the original probability-sampling mechanism and a prediction model) 
even when the sampled elements within a group are not equally likely to respond. 
 
Key Words: Double protection; Prediction model; Probability sampling; Response model; Sampling phase; Stratified 

Bernoulli sampling. 
 
 

1. Introduction  
In the absence of nonresponse, it is possible to estimate 

the mean of a finite population from a survey sample 
without having to assume a statistical model which, no 
matter how reasonable, may not hold true. This is done by 
assigning each element of the population a positive proba-
bility of sample selection and creating estimators around this 
random-selection mechanism. Unfortunately, surveys taken 
in the real world often suffer from nonresponse.  

Two different types of models can be used in the face of 
unit (whole-element) nonresponse. One is a prediction or 
outcome model in which the survey variable of interest is 
assumed to behave like a random variable with known 
characteristics but unknown parameters. The other is a 
response or selection model where the very act of an 
element’s responding to a survey is treated as an additional 
phase of random sample selection.  

Conventionally, survey statisticians prefer response mod-
els for two reasons. In addition to the convenience of 
response modeling allowing them to treat unit response as 
an additional phase of random sampling, a survey is usually 
designed to collect information on a number of variables 
from the sampled elements. Prediction modeling requires 
assuming a different model for each survey variable any one 
of which could fail. Response modeling, by contrast, requires 
only the assumption of a single model. This is no longer true 
when there is item (survey-variable-specific) nonresponse. 
Consequently, prediction modeling is more common when 

handling item nonresponse through imputation. That being 
said, item nonresponse is beyond the scope of this note.  

Under an assumed response model, the element proba-
bilities of response are treated as unknown, which means 
that they have to be estimated from the sample. Typically, 
the response mechanism is assumed to be independent 
across elements and not to depend on whether the element is 
in the sample (each element has an a priori probability of 
response which becomes operational if it is selected for the 
sample). The simplest and mostly commonly used response 
model separates the sample, and implicitly the entire 
population, into mutually exclusive groups, called “response 
homogeneity groups” by Särndal, Swensson and Wretman 
(1992) (the term “weighting classes” is more common; see, 
for example, Lohr (2009, pages 340-341)), and assumes that 
each element in a group is equally likely to be a unit respon-
dent regardless of its probability of selection into the origin-
nal sample, .k  Thus, the response mechanism produces a 
stratified Bernoulli subsample with the groups serving as the 
strata.  

Conditioned on the respondent sample sizes in the groups, 
a stratified Bernoulli subsample with unknown selection 
(response) probabilities is converted into a stratified simple 
random subsample with known selection probabilities: 

/g gr n  for the elements in group g when that group has gn  
sampled elements, gr  or which respond.  

Although the conditional probabilities of response in 
group g under the stratified Bernoulli response model is 

/ ,g gr n  we will see it is often better to multiply the design 
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weight, 1 / ,k kd    for a responding element in the group 
not by / ,g gn r  but by  
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where gS  is the original sample and gR  the respondent 
subsample in group .g  This adjustment factor can be dif-
ferent from /g gn r  when the kd  in group g  vary.  

Little and Vartivarian (2003) claim that using the gf  is 
what is usually done in practice. They argue, however, that 
incorporating design weights into the adjustment factor in 
this way can “add to the variance”.  

In section 2, we develop the notation for estimating the 
population mean of a survey variable. Using the /g gn r  

produces a double-expansion estimator, while using the gf  

produces a reweighted-expansion estimator. We can express 
both using a formulation in Kim, Navarro and Fuller (2006). 
From that expression, it is possible to see that if the survey 
variable roughly behaves like a random variable with a 
constant mean within each group regardless of the design 
weights, then using the gf  will often be more efficient than 
using the / .g gn r  In fact, if the survey variable behaved 
exactly like such a random variable, then the estimated 
population mean computed with the gf  would be nearly 
unbiased under the combination of the original sampling 
design and this prediction model even when the response 
model fails.  

In Section 3, we show that empirical results in Little and 
Vartivarian (2003) are consistent with these arguments and 
offer some concluding remarks.  

 
2. The two estimators 

 
Suppose we want to estimate the population mean of a 

survey variable :ky  
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where the population U  is divided into G  groups, 1, ...,U  
,GU  each gU  contains gN  elements, and 1 ...N N    
.GN  In the absence of nonresponse, each gN  is estimated 

in an unbiased fashion under probability-sampling theory by 
ˆ ,

gk Sg kN d  and each 
gUy

 
is estimated in a nearly (i.e., 

asymptotically) unbiased fashion  
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under mild conditions when gn  is sufficiently large. We 
assume both here.  

For a formal statement of the conditions under which 
each 

gSy
 
is consistent under probability sampling theory 

and therefore nearly unbiased, see Fuller (2009, page 115). 
The interested reader is directed to Fuller whenever a result 
in this note depends on assumptions about the design and 
population as the sample size grows arbitrarily large. A 
more rigorous treatment of much of what is to be discussed 
here under the response model can be found in Kim, 
Navarro and Fuller (2006).  

Let us label the full-sample estimator for Uy  we have 
been discussing ˆ .

g

G
S g Sy N y

 
There are more direct 

ways to render ,Sy  but this version will better serve our 
purposes.  

If we adjust for nonresponse using the gf  in equation 
(1), we have the reweighted-expansion estimator:  
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Technically, ˆ
rwy  is the ratio of two reweighted-expansion 

estimators, but we use the simpler terminology here.  
Employing the /g gn r  results in the double-expansion 

estimator: 
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For our purposes, this estimator can also be expressed as  
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where 
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(so that ˆ ).
g gS Sk k k gd p d N    

Both ˆ
rwy  and ˆ
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For the reweighted-expansion estimator, all 1,kq   while 
for the double-expansion estimator, k kq p  as defined by 
equation (3).  

We will soon have use of the following for our two 
estimators:  
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where .k k Se y y   Equation (5) holds exactly when all 
1.kq   When ,k kq p  the near equality depends on the 

gr  being sufficiently large and other mild conditions.  
Now assume the following response model holds: Each 

element k  in a group has an equal, positive probability of 
response that does not vary with k  or with .ky  That is to 
say, the response indicator ,k  which is 1 when k  responds 
if sampled and is 0 otherwise, is a Bernoulli random 
variable with a common mean in gU  regardless of the 
values of k  and .ky  

By treating unit response as a second phase of probability 
sampling in this way, the added variance/mean-squared-
error due to nonresponse given the original sample and the 

gr  for both estimators can be expressed as  
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under mild conditions on the population and original 
sampling design we assume to hold, including (again) that 
the gr  are sufficiently large. These conditions make both 
estimators nearly unbiased under quasi-probability sampling 
theory (probability theory augmented with a response 
model) and render the distinction between large-sample 
variance and mean squared error moot. Quasi-probability 
sampling theory is also known as “quasi-design-based” and 
“quasi-randomization-based” sampling theory. 

Looking at equations (6) and (7), we see that at one 
extreme ˆ

rwy  has an added variance due to nonresponse of 
(approximately) zero when all the originally sampled ky  in 
a group are equal, while at the other ˆ

dey  has an added 
variance of zero when all the originally sampled k kd e  (or, 
put another way, the [ ])k k Sd y y  in a group are equal.  

Heuristically, the reweighted-expansion estimator is 
more efficient than the double-expansion estimator when 

gSe  is a better predictor of ke  for gk S  than .
gk Sp e  

Thus, when the groups were constructed as advised in Little 
and Vartivarian (2003) and earlier in Little (1986) so that 
the ky  in a group are homogeneous (as opposed to the 

[ ]k k Sd y y  being homogeneous), then the reweighted-
expansion estimated computed with the gf  will usually be 
more efficient than the double-expansion estimator com-
puted with the / .g gn r  

The heuristic observation can be formalized with an 
alternative justification for using the reweighted-expansion 
estimator. Suppose the following prediction model holds: 
Each ky  in gU  is a random variable with common mean, 

,g  regardless of k  and .k  Then ˆ
rwy  is nearly unbiased 

under mild conditions with respect to the combination of the 
original sampling mechanism (which treats the kd  as 
random, where 0kd   for )k S  the prediction model 
(which treats the ky  as random). That is to say, E [Ed y  

ˆ( )] 0,rw Uy y S    since the double expectation of both 
ˆ

rwy  and Uy  are nearly / .G G
g g gN N   This combined 

unbiasedness is exact when the design is such that S kd   
.N  Stratified, simple random sampling is an example of 

such a design. Unstratified sampling with unequal proba-
bilities and many multistage designs are not.  
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It is not hard to see that ˆ
rwy  is also exactly unbiased with 

respect to this double expectation (i.e., ˆE [ E (d y rwy   
)] 0)Uy S   when all the g  are equal. In fact, the pre-

diction-model expectation of both ˆ
rwy  and ˆ

dey  equals this 
common mean, as does the prediction-model expectation of 
an estimator without any adjustment for unit nonresponse, 
that is, with the gf  in ˆ

rwy  replaced by 1. The advantage of 
ˆ

rwy  over ˆ
dey  under the prediction model obtains only when 

the g  vary, that is, when the survey variable has a different 
prediction mean across the groups.  

Notice that if either the response model or the prediction 
model holds, then the reweighted-expansion estimator is 
nearly unbiased in some sense (i.e., under the combination 
of the original design and the response model or under the 
original design and the prediction model). This property has 
been called “double protection” against nonresponse bias. 
See, for example, Bang and Robins (2005).   

3. Concluding remarks  
In this note, we discussed two distinct types of models. 

We stressed a response model, which treats the response 
indicators, ,k  as a Bernoulli random variable within each 
group but with unknown parameters. We also described a 
prediction model, which treats the survey values, ,ky  as 
random variables with unknown means that could vary 
across groups but not within them.  

As part of the response model, we assumed that within a 
group, the k  do not depend on the .ky  Analogously as part 
of the prediction model, we assumed that within a group, the 

ky  do not depend on the .k  When both k  and ky  are 
treated as random variables the former assumption, that 
nonrespondents are missing at random, is equivalent to the 
latter assumption, that the response mechanism is ignorable 
(see, for example, Little and Rubin 1987). It should be under-
stood, however, that the ky  need not be treated as random 
variables under the response model and the k  need not be 
treated as random variables under the prediction model. The 
two concepts (missingness at random and ignorable non-
response) may be equivalent in some sense but they are not 
identical. 

The heart of Little and Vartivarian (2003) is a series of 
simulations featuring a binary survey variable, two potential 
response groups, and two original selection probabilities. 
Both the survey variable and response indicators are gener-
ated under five models. The expected value of each is a 
function of, 1, the response group only, 2, the selection 
probability only, 3, neither, or, 4 and 5, one of two equal 
combinations of response group and selection probability. 
This produces 25 scenarios, of which 10 are of primary 
interest to us. Those are the ones in which the survey 

variable is a function either of only the response group or of 
neither the response group nor the selection probability. 

As our theory predicts when the survey variable is a 
function of neither the response group nor the selection 
probability, both the reweighted- and double-expansion 
estimators have empirical biases near zero (Table 5 in Little 
and Vartivarian) because both are nearly unbiased under the 
combination of the original sampling design and a valid 
prediction model: all population elements have the same 
mean. When the survey variable is a function of the re-
sponse group and the response indicator is wholly or partly 
a function of the selection probability, only the reweighted-
expansion estimator is nearly unbiased empirically since 
only it is unbiased under the combination of the original 
sampling design and a valid prediction model. As a result, 
ˆ

rwy  also has less empirical root mean squared error and 
significantly less average absolute error as an estimator for 

Sy  (Tables 4 and 6 in Little and Vartivarian, respectively; 
the significance test treats the mean value across the 
simulations of ˆ ˆ

rw S de Sy y y y        as asymptotically 
normal). 

When both the survey variable and response indicators 
are functions of the response group only, the reweighted-
expansion estimator has slightly less empirical root mean 
squared error and average absolute error than the double-
expansion estimator but the latter is not significant.  

It should not surprise us that the reduction in empirical 
root mean squared error is modest. The contribution to the 
variance from nonresponse under the response model 
mechanism expressed in equations (6) and (7) is conditioned 
on the original sample (technically, the contribution of non-
response to the total quasi-probability variance of ,

ˆ
Sy q  is 

the expectation of Aq  in equation (6) under the original 
sampling mechanism). In applications where the response 
rates are relatively large (in the simulations they averaged 
0.5), this contribution can be dominated by the probability-
sampling variance/mean squared error of the full-sample 
estimator, ˆ .Uy  

Two warnings are in order. The respondent sample size 
within each group must be sufficiently large for the 
reweighted-expansion estimator to nearly unbiased under 
quasi-probability theory. For the double-expansion esti-
mator, each gr  need only be positive. Moreover, that the 
reweighted-expansion estimator is doubly protected against 
nonresponse bias is only helpful when either the assumed 
response or prediction model is correct. If both the 
response probabilities and survey values vary with the 
design weights, then the reweighted-expansion estimator 
can be meaningfully biased. Despite the slant taken in this 
note, that is the take-away message Little and Vartivarian 
(2003) intended, and it cannot be disputed.  
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