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Combining cohorts in longitudinal surveys 

Iván A. Carrillo and Alan F. Karr1 

Abstract 

A question that commonly arises in longitudinal surveys is the issue of how to combine differing 

cohorts of the survey. In this paper we present a novel method for combining different cohorts, and 

using all available data, in a longitudinal survey to estimate parameters of a semiparametric model, 

which relates the response variable to a set of covariates. The procedure builds upon the Weighted 

Generalized Estimation Equation method for handling missing waves in longitudinal studies. Our 

method is set up under a joint-randomization framework for estimation of model parameters, which 

takes into account the superpopulation model as well as the survey design randomization. We also 

propose a design-based, and a joint-randomization, variance estimation method. To illustrate the 

methodology we apply it to the Survey of Doctorate Recipients, conducted by the U.S. National 

Science Foundation. 
 

Key Words: Superpopulation parameters; Joint-randomization inference; Replication variance 
estimation; Rotating panel surveys; Multi-cohort longitudinal surveys; Weighted 
Generalized Estimating Equations. 

 
 

1  Introduction 
 

The Survey of Doctorate Recipients (SDR) is a National Science Foundation (NSF) 

longitudinal survey whose design incorporates features of both repeated panels and rotating 

panels. The purpose of the survey is to study U.S. doctorate recipients in science, engineering, 

and health fields. It is conducted approximately every two years. A detailed description of the 

SDR can be found at NSF (2012). In this paper we restrict our attention to the data collected from 

1995 through 2008 (7 waves). 

At any particular wave a new cohort is selected. The new cohort consists of a sample of recent 

graduates (from the previous two years) selected from the Doctorate Records File, which is a 

database constructed mainly from the Survey of Earned Doctorates (http://www.nsf.gov/ 

statistics/srvydoctorates/). The selected individuals are kept in the sample, i.e., interviewed every 

two years, until the age of 75, while living in the U.S. during the survey reference week, and 
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while not institutionalized. However, not all the sampled graduates satisfying these characteristics 

are retained forever. Some individuals, rather than entire cohorts, are dropped from the sample in 

order to a) include the new graduates in the new cohorts and b) maintain a relatively constant 

sample size across waves. In Section 2.2 we describe how the selection of the individuals who are 

dropped is made. 

Survey weights for cross-sectional analyses of the SDR are already available, but not for 

longitudinal analyses. Rather than requiring a new longitudinal weight for all the data, the 

method proposed in this paper is able to use the existing cross-sectional weights for longitudinal 

analyses without ignoring any data. We concentrate on estimation of parameters of statistical 

models of the effect of covariates on a response of interest, but the method can also be used for 

estimation of finite population quantities (Carrillo and Karr 2012). We focus on analysis of the 

SDR, but our method is applicable to any fixed-panel, fixed-panel-plus-‘births’, repeated-panel, 

rotating-panel, split-panel, or refreshment sample survey, as long as for each wave there is a 

cross-sectional weight to represent the population of interest at that wave. See Smith, Lynn and 

Elliot (2009), Hirano, Imbens, Ridder and Rubin (2001), and Nevo (2003) for definitions of all 

these types of longitudinal sample designs. 

The SDR is a hybrid of repeated-panel and rotating panel designs. It is not purely a 

repeated-panel design because of the removal of some subjects at each wave. It is not purely a 

rotating-panel design because entire panels (or cohorts) are not removed, only individuals; 

additionally, the composition of the finite population of interest changes over time, unlike in a 

rotating panel survey. 

Diggle, Heagerty, Liang and Zeger (2002) and Hedeker and Gibbons (2006) point out that, 

with longitudinal studies, contrary to a cross-sectional study, it is possible to separate age effect 

(actual change within subjects over time) and cohort effect (difference between units at the 

beginning of the study period). 
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Hedeker and Gibbons (2006) also suggest that since longitudinal studies allow for the 

measurement of time-varying explanatory variables (covariates), the statistical inferences about 

dynamic relationship between the outcome on interest (response) and these covariates are much 

stronger than those based on cross-sectional studies. 

When we are interested in the marginal mean of a variable, possibly conditionally on some 

covariates, and not in measuring change, a longitudinal study is not necessary; a cross-sectional 

study suffices. However, even in this case, a longitudinal study tends to be more powerful, 

because each subject serves as his or her own control for any unmeasured characteristics (Diggle, 

et al. 2002). 

Our approach differs from the existing alternatives in the literature, which have some 

limitations for analysis of such data, and in particular for application to the SDR. For example, 

Berger (2004a) and Berger (2004b) go into detail about the estimation of change using rotating 

samples, but they assume that the composition of the finite population does not change over time, 

which is not the case of the SDR. This assumption does not hold in many other large-scale 

surveys. Also, the methodology proposed by Berger is not easily generalizable to more than two 

waves. Similarly, Qualité and Tillé (2008) also assume the finite population is fixed over time. 

Hirano, et al. (2001) and Nevo (2003) present different methods of estimation assuming a 

fixed-panel plus refreshment for attrition design, but also assume the finite population 

composition is fixed over time. 

A time series approach is utilized by McLaren and Steel (2000) and Steel and McLaren (2007) 

to estimate change and trend with survey data. Although their approach allows for the 

incorporation of within-subject association in the point estimates, they do not consider covariates 

in their models (beyond the implicit time covariates). Also, they only discuss the estimation of 

change for continuous variables. 

Another alternative for analyzing longitudinal data is to fix the finite population of interest, 

except perhaps for deaths, which could be allowed. Studies of this kind are those where there are 
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data available only for a single cohort. For example, Vieira and Skinner (2008), Carrillo, Chen 

and Wu (2010), and Carrillo, Chen and Wu (2011) show some alternatives for modeling with 

single-cohort survey data. However, to use these kinds of analyses with multi-cohort surveys, one 

needs to ignore some (or many) available data, for example those data from subjects who are not 

common to all waves. An example of a weighting procedure of this type can be found in Ardilly 

and Lavallée (2007). 

Finally, the approach of Larsen, Qing, Zhou and Foulkes (2011) is appealing, in principle, 

because it is the way survey practitioners generally proceed. An initial weight is adjusted, among 

other things for calibration to known totals, in this case totals by survey wave. Nonetheless, for 

rotating panels this method is still in its infancy; there are some things that are not completely 

clear how to carry out. For example, it is not clear what the initial weight should be: a constant 

weight?, the earliest available weight?, the average of the available weights for each case?, or the 

latest available weight?  Also, in the case of dropouts, as there exist in the SDR, the authors do 

not clarify how to carry out a nonresponse adjustment with this method. Even more, it is not clear 

why a nonresponse adjustment for dropouts at, say, wave 4 should have any influence on the 

observations at wave 3, as this methodology permits since there is a single weight for each 

subject. Additionally, the authors mention that they estimated standard errors, but they do not 

indicate how to take into account all the features of the sampling design, such as changes over 

time in the stratification and weighting adjustment classes of the SDR. Our method, on the other 

hand, utilizes only cross-sectional weights and variance estimation methods, which have been 

studied thoroughly in the literature and are readily available for the SDR. 

The rest of the paper is organized as follows. In the next section we give a description of the 

SDR design. After that, in Section 3, we propose a novel approach for longitudinal analysis of 

marginal mean models with multi-cohort surveys. Then we present the application of the 

methodology to the SDR. Finally we offer a few discussion points in Section 5. 
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2  The SDR design 
 

2.1  Finite population 
 

The SDR finite population of interest can be represented as in Table 2.1. At wave 1, i.e., the 

first time of interest, there is a finite set, 1(1) 1= ,U U  of 1(1) 1=N N  Ph.D. holders, either recent 

or not, who satisfy the requirements of the SDR. 
 
 

Table 2.1 
SDR finite population 
 

:j 1 2 3  1J  J

1(1)U  2(1)U  3(1)U    1(1)JU   (1)JU

1(1)N  2(1)N  3(1)N    1(1)JN   (1)JN

2(2)U  3(2)U    1(2)JU   (2)JU

2(2)N  3(2)N    1(2)JN   (2)JN

  
1( 1)J JU    ( 1)J JU 

1( 1)J JN    ( 1)J JN 

( )J JU

( )J JN

1U 2U 3U  1JU  JU

1N 2N 3N  1JN  JN

 
 

At wave 2 only a subset of the subjects in 1(1)U  still satisfy the SDR requirements; we call this 

subset, of 2(1)N  subjects, 2(1) .U  In addition, there is a set of new, recent Ph.D. recipients, who 

have obtained their degree since wave 1, and also satisfy the other requirements of the survey. 

This set of new graduates in scope is called 2(2)U  and is of size 2(2) .N  Therefore, at wave 2, there 

is a total of 2 2(1) 2(2)=N N N  subjects in the population of interest 2 2(1) 2(2)= .U U U  

At the next wave, wave 3, the same process occurs. Some people in 2(1)U  leave the population 

of interest and there are only 3(1)N  left in 3(1) .U  The same thing happens with the set 2(2) ;U  only 

a subset 3(2)U  of 3(2)N  among them still satisfy the requirements of the SDR. Additionally, there 

are 3(3)N  recent graduates entering the population of interest; this set is called 3(3) .U  In total, the 

finite population of interest at wave 3 is 3 3(1) 3(2) 3(3)= ,U U U U   with 3 3(1)=N N   

3(2) 3(3)N N  subjects. 
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This procedure, of thinning of old cohorts and adding new cohorts, continues until the last 

wave of interest, wave .J  We notice that the finite population of interest changes at every wave 

due to two main reasons. Firstly, some of the subjects in the old cohorts are no longer in scope at 

the current wave, and they are not part of the current target population. Secondly, the recent 

graduates are added to the target population in the current wave. We denote by = 1, 2, ,j J  

the wave of interest (outside the parenthesis) and by = 1, 2, ,j J   the cohort to which a 

subject belongs (inside the parenthesis), and therefore wave(cohort )( ) = .j jU U  

 
2.2  Sampling 
 

The sampling design of the SDR has a similar structure to the finite population and is depicted 

in Table 2.2. At wave 1, a (complex) sample 1(1) 1=s s  of 1(1) 1=n n  subjects is selected from 

within the 1N  elements in 1.U  Each element i  in 1s  is interviewed and its data collected; also, 

there is a design weight 1 1= 1 /i iw   associated with it, which is the inverse of its inclusion 

probability at wave 1. 
 
 
Table 2.2 
SDR Sample 
 

:j  1  2  3     1J    J  

 1(1)s    2(1)s    3(1)s        1(1)Js     (1)Js  

 1(1)n    2(1)n    3(1)n        1(1)Jn      (1)Jn  

   2(2)s    3(2)s        1(2)Js     (2)Js  

   2(2)n    3(2)n        1(2)Jn     (2)Jn  

     3(3)s        1(3)Js     (3)Js  

     3(3)n         1(3)Jn     (3)Jn  

            
         1( 1)J Js      ( 1)J Js   

         1( 1)J Jn      ( 1)J Jn   

           ( )J Js  

           ( )J Jn  

 1s   2s   3s      1Js    Js  

 1n   2n   3n      1Jn    Jn  
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At the second wave, the elements in 1(1)s  who are not in scope anymore are simply dropped 

from the frame (though their observations at wave 1 are kept), and a subsample 2(1) ,s  of size 

2(1) ,n  of those still in scope is selected. Not all the members in 1(1)s  who are still in scope at wave 

2 are retained in the sample; this is in order to be able to make up room for the sample of the new 

Ph.D. recipients and still maintain more or less the same sample size as in wave 1. A sample 2(2)s  

of size 2(2)n  is selected from 2(2) ;U  people in 2(2)s  form the second cohort. The total sample at 

wave 2 is 2 2(1) 2(2)= ,s s s  which is of size 2 2(1) 2(2)= ,n n n  which is approximately equal to 

1.n  All the people in 2s  are interviewed at wave 2. The design weights at wave 2, 2 2= 1 / ,i iw   

are such that the sample 2s  represents the population of interest at wave 2, namely 2 .U  

The same procedure is repeated at each wave, till the last one ( ),J  where a subsample of the 

remaining subjects from each of the previous 1J   cohorts is selected, and a new sample (the 

new cohort) ( )J Js  of recent graduates is selected from ( ) .J JU  At the last wave, all people in 

( )=1
=

J

J J jj
s s   are interviewed and a design weight = 1 /iJ iJw   is created for each person 

interviewed, so that Js  represents the finite population .JU  

With respect to how the selection of the individuals that are dropped is made, for example in 

2008, according to NSF (2012), the subsample 08 08(08)\s s  was selected by stratifying 06s  “into 

150 strata based on three variables: demographic group, degree field, and sex.” They go on to 

explain that: 
 

 the past practice of selecting the sample with probability proportional to size continued, 

where the measure of size was the base weight associated with the previous survey 

cycle. For each stratum, the sampling algorithm started by identifying and removing 

self-representing cases through an iterative procedure. Next, the non-self-representing 

cases within each stratum were sorted by citizenship, disability status, degree field, and 

year of doctoral degree award. Finally, the balance of the sample (i.e., the total 

allocation minus the number of self-representing cases) was selected from each stratum 

systematically with probability proportional to size.  
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It is worth mentioning that up to 1989 the cohort (or more specifically the graduation year) was 

part of the stratifying variables (and weight-adjustment cells), but beginning in 1991 it has not 

been; it was replaced by the disability status. For more details about the subsampling procedure, 

including the description of the sample allocation, see NSF (2012) or Cox, Grigorian, Wang and 

Harter (2010). 

From the preceding description, it is clear that the design of the SDR is not a rotating panel 

design. Beside the fact that the composition of the finite population of interest is changing over 

time, a rotating panel design would select, at time ,j  a new cohort from ,jU  and not from 

1\j jU U   as the SDR does. 

Another peculiarity of the SDR is that, at each wave ,j  a frame of the recent graduates ( )j jU  

exists, from which the new cohort ( )j js  can be selected straightforwardly. However, in other 

applications, the cost of building such a frame, i.e., a frame of new members, may be excessive 

(particularly as it cumulates over waves), and the new cohort may need to be selected from jU  

(as opposed to from ( ) ).j jU  The method proposed in this paper can also be applied in such cases, 

as long as for the total sample at wave , ,jj s  a cross-sectional weight can be created to represent 

.jU  We further discuss this topic in Section 3.2. 

Notice that in the notation ( ) ,j js   the quantity j  represents the wave to which the sample 

refers, and j  denotes the sample’s cohort, i.e., the wave at which the sample was first selected. 

The notation for the weights is ,ijw  where the first subscript identifies the subject, and the second 

refers to the wave of interest, regardless of when the subject was first selected. 

 
3  Methodology 
 

3.1  Motivation 
 

Assume that (in a non-survey context) interest lies in the 1p   vector parameter   in the 

following model:  
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1[ | ] = = ( ), = 1, 2, , , = 1, 2,

Var[ | ] = ( ), = 1, 2, , , = 1, 2,
:

Cov[ | ] = , = 1, 2,

| , , = 1, 2, ;

ij ij ij ij

ij ij ij

i i i

k l k l

E Y X g X j J i

Y X j J i

Y X i

Y Y X X k l

  


  


  

 
 






 (3.1) 

where ijY  is the response variable for subject i  at wave , ijj X  is a 1p   vector of covariates, 

1 2= ( , , , ) ,i i i iJY Y Y Y  1 2= ( , , , )i i i iJX X X X  is a p J  matrix; ( )g   is a monotonic 

one-to-one differentiable “link function”; ( )   is the “variance function” with known form; and 

> 0  is the “dispersion parameter.” Since, in general, the J J  covariance matrix i  is hard 

to specify, we model it as 1/2 1/2Cov[ | ] = = ( ) ,i i i i iY X V A AR  a “working” covariance matrix; 

where 1 2= diag[ ( ), ( ), , ( )]i i i iJA        and ( )R  is a “working” correlation matrix, 

both of dimension ,J J  and   is a vector that fully characterizes ( )R  (see Liang and Zeger 

1986). 

To estimate   we select a (single-cohort) sample of n  elements from model   and we (intend 

to) measure each of them at J  occasions. If all the elements in the sample respond at every single 

occasion ,j  the task can be completed with the usual generalized estimating equation (GEE) 

methodology of Liang and Zeger (1986). However, in any study it is rarely the case that all 

subjects do respond at all waves. It is more common to have some elements in the sample who 

drop out of the study. 

Under this situation, and assuming that the missing responses can be regarded as missing at 

random or MAR (see Rubin 1976), in particular that the dropout at a given wave does not depend 

on the current (unobserved) value, Robins, Rotnitzky and Zhao (1995) proposed to estimate   by 

solving the estimating equations: 1

=1
ˆ( / ) ( ) = ,

n

i i i i ii
V     0  y  where 1 2= ( , , ,i i i    

) ,iJ
 1 1 1

1 1 2 2
ˆ = diag[ , , , ],ˆ ˆ ˆi i i i i iJ iJ ijR q R q R q R     is the response indicator for subject i  at wave 

,j  and ˆ ijq  is an estimate of the probability that subject i  is observed through wave .j  

For survey applications, one would use the estimating equation 1 ˆ[ ( / )i i i ii s
w V 


      

( )] = ,i i 0y   where iw  is the survey weight for subject .i  Another way of writing this 



158 Carrillo and Karr: Combining cohorts in longitudinal surveys 
 

 
Statistics Canada, Catalogue No. 12-001-X 

equation is 1 ˆ( / ) ( ) = ,i i wi i ii s
V 


    0y    with 1 1

1 1 2 2
ˆ = diag[ , , ,ˆ ˆwi i i i i i iw R q w R q  

1 ].ˆi iJ iJw R q   

We notice that the diagonal elements of ˆ
wi  are simply wave-specific nonresponse-adjusted 

survey weights whenever the subject is observed, and are equal to zero whenever the subject is 

missing. This feature in and of itself suggests a solution to the multi-cohort problem, which will 

be presented in the next section. 

 
3.2  A novel approach to combining cohorts in longitudinal surveys 
 

Based on the discussion in the previous section, if we have a fixed-panel, fixed-panel-plus-

‘births’, repeated-panel, rotating-panel, split-panel, or refreshment sample survey, we propose to 

estimate the superpopulation parameter   in model   by the solution to the estimating equations:  

                                              1( ) = ( ) = ;i
s i i i i

i s

V W




 

 0y


 


 (3.2) 

where the sum is over the sample ,s  i.e., over all the elements selected (for the first time) in any 

of the samples 1(1) 2(2) ( ), , , .J Js s s  The diagonal matrix iW  is 1 1 2 2= diag[ ( ) , ( ) , ,i i i i iW I U w I U w   

( ) ],i J iJI U w  with ijw  being the (nonresponse-adjusted) cross-sectional weight for subject i  at 

wave j  (as long as subject i  is part of sample )js  and ( )i jI U  is the indicator of whether 

subject i  belongs to finite population jU  or not. In Section 3.2.1 we argue why this is a 

reasonable estimation procedure, and in Section 3.2.2 we discuss the missing value issue. 

The cross-sectional weights ,ijw  in ,iW  are such that the sample js  represents ,jU  when 

used in conjunction with said weights. This means that, for each observation i  in sample ,js  

there has to be a survey weight ,ijw  which could be regarded as the number of units that such 

observation represents in .jU  However, remember that the sample js  is composed of different 

sets of subjects, or different subsamples (the different cohorts), and the integration of these 

subsamples into a single cross-sectional weight variable ijw  may not be a straightforward task. 
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For the SDR, the construction of the cross-sectional weight for wave j  is not too complicated 

as the different cohorts are selected independently, from non-overlapping populations. The base 

weight in that case is easy to compute, and all that remains is the adjustment for things like 

attrition and calibration to known totals in the population .jU  

On the other hand, in other situations, for example, when a frame of new members does not 

exist, the new cohort may need to be selected from the overall population at the given wave, or 

from a frame containing new members plus some old members, or from multiple frames. In such 

cases, the building of the cross-sectional weights may not be as straightforward, and the theory of 

multiple frames may need to be used. We refer the reader to the works of Lohr (2007) and Rao 

and Wu (2010), and references therein, for cases like that. 

Expression (3.2) is a generalization of equation (2.25) in Vieira (2009). The latter is applicable 

only when all the subjects have the same number of observations or any missing responses can be 

regarded as missing completely at random or MCAR (see Rubin 1976). As discussed in Robins, 

et al. (1995), using such an equation when the missing responses are not MCAR produces 

inconsistent estimators; therefore, with a rotation scheme like that of the SDR, where not all 

subjects are dropped (or kept) with the same probabilities, its usage would not be appropriate. 

The adequacy of equation (3.2) in that case and when there are missing responses is addressed in 

sections 3.2.1 and 3.2.2, respectively. If all subjects have cross-sectional weights that do not vary 

over time (or have a single longitudinal weight) equation (3.2) reduces to equation (2.25) in 

Vieira (2009). 

 
3.2.1  Unbiasedness 
 

The unbiasedness property of the estimating function is important because, as Song (2007, 

Section 5.4) argues, it is the most crucial assumption in order to obtain a consistent estimator. 

Let us define ,N  the so-called “census estimator,” to be the solution to the following finite 

population estimating equation:  
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                                     1( ) = I (U)( ( )) = ,i
U N i i i i N

i U N

V 




 

 0y


  


 (3.3) 

where the sum is over ,U  i.e., over all the elements who became members of the target 

population in any of 1(1) 2(2) ( ), , , ,J JU U U  and 1 2I (U) = diag[ ( ), ( ), ( )].i i i i JI U I U I U  In 

order to show design-unbiasedness of the estimating function ( ),s   we need to show that its 

design expectation is ( )U   for any .  

The sampling design characteristics of a longitudinal survey can be thought of as those of a 

multiphase sample, as can be seen in Särndal, Swensson and Wretman (1992, Section 9.9). We 

therefore use the methodology of multiphase sampling for the derivations. We assume, without 

loss of generality, that there are only three waves; the derivations with just three waves show the 

patterns for general ,J  with respect to unbiasedness and variance. 

As we mentioned earlier, we assume that ijw  is the cross-sectional weight for subject i  at 

wave ,j  if that subject belongs to ,js  and zero otherwise. From the theory of multiphase 

sampling we have that for 1 1 1
1(1) 1 1 2 1 2| 1(1)

, = , = ,i i i i i si s w w       and 1 1 1
3 1 2| 3|1(1) 2(1)

= ;i i i s i sw       

for 1
2(2) 2 2, =i ii s w    and 1 1

3 2 3| 2(2)
= ;i i i sw     and for 1

3(3) 3 3, = ;i ii s w    where ij  is the 

inclusion probability of subject i  in sample ( )j js  and | 1( )ij s j j
  is the conditional inclusion 

probability of subject i  in sample ( )j js   given 1( ) .j js   

Using ( )pE   to denote the expectation with respect to the sampling design, we have:  

                                 
3

1

=1 ( )

( ) = ;i
p i i i i p i i i

i s j i s j j

E V W E B W

 

  
       

  y e





 (3.4) 

where 1= ( / )i i iB V     and = .i i ie y   For example, for 
2(2)

i i ii s
B W

 e  we obtain:  

                  

*
2(2)

2(2) 2(2) 2(2)

def
**

2(2) 2(2)

= | =

= = I (U) ,

p i i i i i i i i i
i s i U i U

i i i i i i
i U i U

E B W E E B D s E B D

B D B

  

 

      
           

  

 

e e e

e e

 (3.5) 
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where 2 2 2(2) 3 3 3(2) 2(2)= diag[0, ( ) ( ), ( ) ( ) ( )],i i i i i i i iD I U w I s I U w I s I s  *
2 2 2(2)= diag[0, ( ( ) ( )),i i i iD I U w I s  

3 3| 2(2) 2 3|2(2) 2(2)
( ( ) ( )) / ( )],i i s i i i sI U I s    and **

2 2 2= diag[0, ( ( ) ) / ,i i i iD I U    3 2 2( ( ) ) / ];i i iI U    

similarly we can show that 
1(1) 1(1)

= I (U)p i i i i i ii s i U
E B W B

 
 
 
 e e  and 

3(3)
=p i i ii s

E B W


 
 
 e  

3(3)
I (U) .i i ii U

B
 e  From these expressions and equation (3.4) we conclude that [ ( )] =p sE    

( )U   for any ,  which means that the estimating function ( )s   is design-unbiased for the 

finite population estimating function. 

Furthermore, as the target of inference is the superpopulation parameter, we need to guarantee 

that the model for ij  is such that ( ) = 0ij ijE Y    is satisfied, where ( )E   represents the 

expectation with respect to model .  For if this is the case, we have:   

def
1[ ( )] = [ ( )] = [ ( )] = I (U) ( ) = ;i

p s p s U i i i i
i U

E E E E V E
   




   

 0


   


y  

so that the estimating function ( )s   is model-design unbiased. The requirement 

( ) = 0ij ijE Y    means that the mean model needs to be correctly specified; consequently, one 

needs to pay attention to residual diagnostics for the particular model being fitted. 

 
3.2.2  A note on nonresponse 
 

In the SDR, as in any other (longitudinal) survey, there is nonresponse. Some sampled 

individuals choose not to participate at all, whereas some subjects participate in some waves but 

not in others. The SDR remedies this situation by making a nonresponse adjustment to the 

cross-sectional survey weights. 

Assume that the nonresponse adjustment at wave j  is a multiplication by the inverse of the 

estimated wave j  response probability .ˆ rij  For example, the nonresponse-adjusted weight for a 

person who did respond at wave 3 (and was first selected at wave 2), i.e., for 3(2) ,i r  would be 

1 1 1
3 2 3| 32(2)

= .ˆri i i s riw       

We need to redefine the estimating equation, to include only the respondents, as 

1( ) = ( / ) ( ) = ,r i i ri i ii r
V W


    0y     where the sum is over the respondent set ,r  i.e., 
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over all the elements who belonged for the first time in any of the respondent sets 

1(1) 2(2) ( ), , , ,J Jr r r  and the matrix riW  is 1 1 2 2= diag[ ( ) , ( ) , , ( ) ].ri i ri i ri i J riJW I U w I U w I U w  

Also, denote by ( )j jr   the set of cohort j  respondents at wave .j  Obviously, = 0rijw  if 

( )=1
= .

j

j j jj
i r r 
   

If additionally, the response mechanism ( )R  can be assumed to be MAR, we then have, for 

example for 
2(2)

:i ri ii r
B W

 e  

     
def

* **

2(2) 2(2) 2(2) 2(2) 2(2)

= = = = ,R i ri i R i i i i i i i i i i i i
i r i s i s i s i s

E B W E B D B D B D B W
    

   
   
   
    e e e e e  (3.6) 

where 2 2 2(2) 3 3 3(2)= diag[0, ( ) ( ), ( ) ( )],i i ri i i ri iD I U w I r I U w I r  *
2 2 2 = diag[0, ( ( ) ) / (i i ri iD I U     

2 3 3 2 3| 32(2)
), ( ( ) ) / ( )],ˆ ˆri i ri i i s riI U      and **

2 2 3 3= diag[0, ( ) , ( ) ].i i i i iD I U w I U w  The third 

equality in (3.6) requires that the nonresponse model used for ˆ rij  satisfies 
def

( )[ ( )] = = .ˆR i rij rijj jE I r     This means that in the model for ˆ rij  we have to include as much 

available information, thought to influence the nonresponse propensity, as possible, in order for 

this assumption (i.e., the MAR assumption) to be tenable. For example, if the nonresponse is 

thought to be independent across waves, one should include, in the model for ,ˆ rij  as many 

variables from the corresponding wave as possible. If, on the other hand, it is reasonable to 

assume that the response propensity at a given wave depends on previous responses (and possibly 

response history), then those responses should be included in the response model, and so on. 

The design as well as the model-design unbiasedness follow immediately from (3.6) together 

with the previous section. Hereafter we therefore ignore the issue of nonresponse for notational 

simplicity. 

 
3.3  Variance and variance estimation 
 

We now develop a (Taylor Series) linearization for the variance of the proposed estimator. 

The basic technique is due to Binder (1983). For simplicity in the derivations and notation we 

divide through by ;N  we redefine  
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1 1( ) = ( )i
s i i i i

i s

N V W 




 




 


y  and 1 1( ) = I (U)( ),i
U i i i i

i U

N V 




 




 


y  

where 
=1

= .
J

jj
N N  Let ̂  be our estimator, which satisfies ˆ( ) = ,s 0  and let N  be the 

“census estimator,” which satisfies ( ) = .U N 0  Assume = (1 / )N P mO N   and 

ˆ = (1 / ),N P mO n   with 1 2= min{ , , , }m JN N N N  and 1 2= min{ , , , }.m Jn n n n  We 

can write the total error of ̂  as ˆ ˆ= ( ) ( ) =N N         Sampling Error + Model Error. 

After some straightforward calculations, the total variance, or more precisely the total MSE, can 

be decomposed as:  

                           Tot Sam Sam Mod
ˆ ˆ= ( )( ) = 2 (1 / ),p mV E V C o n 

         (3.7) 

where 2 =A A A   for any matrix ,A Sam = pV E V  is the “sampling variance” component, 

Sam Mod2 C   is the cross “sampling-model variance” component, =pV ˆ ˆ[( )(p NE      

) ],N
 Sam Mod = ,pC E C   and ˆ= ( )( ) .NC E 

      Furthermore, by Taylor series 

expansions we can obtain the following approximations: ˆ =  N 1[ ( )] ( )N s NH      

(1 / ),P mo n 1ˆ ˆ= [ ( )] ( ) (1 / ),s P mH o n       and = N  1[ ( )] ( )UH      

(1 / ),P mo N  where we define 1 1( ) = ( / ) I (U)  i i ii U
H N V 


  ( / ) i   and ˆ ( ) =H   

1 1( / ) ( / ).i i i ii s
N V W 


         

We then get, for pV  and C  in (3.7),  

                              1 1= [ ( )] Var [ ( )][ ( )] (1 / ),p N p s N N P mV H H o n      (3.8) 

                              

1 1

1 1 1

ˆ= [ ( )] [ ( ) ( )][ ( )] (1 / )

ˆ ˆ= [ ( )] ( )[ ( )] (1 / ),

s U P m

V P m

C H E H o n

N H H H o n

 
 

  


  



   

  
 (3.9) 

where Var [ ( )] = [ ( ) ( )]p s N p s N s NE       and 1 1ˆ ( ) = [( / )  V i i i ii s
H N V W 

 
     

1 ( / )]; i iV     the derivation of (3.9) can be found in the Appendix. 

In conclusion, so far we have found that:  
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                              
 

Tot

1 1

1 1 1

= 2 (1 / )

= [ ( )] Var [ ( )][ ( )]

ˆ ˆ2 [ ( )] ( )[ ( )] (1 / ).

p p m

N p s N N

p V m

V E V E C o n

E H H

N E H H H o n

 

 


  


  



  

  

  

 (3.10) 

In (3.10) all the terms can be estimated by “plugging in” the estimate ˆ   except for the term 

Var [ ( )];p s N   this is the subject of the next section. 

If the sampling fraction is small, i.e., ,n N  the first term in expression (3.10) is a good 

approximation for the total variance; i.e., the expression for TotV  is simply pE V  (and lower order 

terms). If, on the other hand, the sampling fraction is large, both terms in (3.10) are required. 

 
3.3.1  Design variance of the estimating function 
 

In order to derive an expression for Var [ ( )],p s N   we assume = 3,J  as before. The 

methodology is that of two-phase sampling (more precisely, multiphase sampling), as discussed 

in chapter 9 of Särndal, et al. (1992). After some derivations (see Appendix), and defining 

1
= (1 3) (2 3) 2 3= ( / ) | , = ( ), = , = (0, , ) ,i i i i i i N i i i i iN

B V e e         e y e e e  and (3 3) =i e  

3(0, 0, ) ,ie   we obtain:  

                                          
3 3 3

( ) ( )
=1 =1 =

Var [ ( )] = = ,p s N j j k
j j k j

D D    (3.11) 

where  
def

32
( ) ( )=( )

= Var = ,j p i i i j ki s k jj j
D N B W D

 e  for = 1, 2, 3,j  

def
2

( ) ( 3)

( )

def
2

( 1) ( 3) 1( 1)

( 1)

def
2

(1)3 3 (3 3) 2(1) 1(1) 1(1)

3(1)

= Var I (U) , for = 1, 2, 3,

= Var I (U) | , for = 2, 3,

= Var I (U) | , |

j j ij i i i j
i s j j

j j ij i i i j j j
i s j j

i i i i
i s

N D w B j

N D E w B s j

N D E E w B s s s



  
 



 
  

  
    

  
 
 













e

e

e ,  
  
  

 

and in the Appendix we show that:  
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2
( ) ( 3) , 1 ( 3)

( ) 1( )

= Var I (U) Var I (U) ,j k ik i i i k i k i i i k
i s i sk j k j

N D w B w B
  

   
      
  e e  

for = 1, 2, 3,j  and 3 > .k j  In general, we have proved the following  
 

Property 3.1  The (design) variance of ( )s N   can be decomposed as:  

( ) , 1 ( )2
=1 = ( ) 1( )

Var [ ( )]

1
= Var I ( ) Var I ( )

p s N

J J

p ij i i i j J p i j i i i j J
j j j i s i sj j j j

w B U w B U
N 

    



    
        

  e e 



 
(3.12)

 

( ) , 1 ( )2
=1 1

1
= Var I ( ) Var I ( ) ,

J

p ij i i i j J p i j i i i j J
j i s i sj j

w B U w B U
N 

  

    
        

  e e   (3.13) 

where we let , 1 = 0i jw   whenever 0= , = 0,ij j w  and to get (3.13) we have changed variables 

and used the independence among cohorts.  

In (3.11), (3.12), and (3.13) we have assumed that the cohorts are design-independent. 

However, in some cases this assumption may not be tenable; an example of such a case is the 

multiple frame situation discussed in the first part of Section 3.2. Another instance in which it 

may not be appropriate to assume cohort independence is when weight adjustments cross cohorts, 

which is the case of the SDR; we discuss this issue in Section 5. Calculations for the case of three 

cohorts, in the Appendix, show that (3.13) holds for the variance terms even without 

independence. The Appendix also identifies conditions under which it is a good approximation 

for the covariance terms. 

 
3.3.2  Estimation 
 

The estimation of TotV  in (3.10) can be achieved as follows. ˆ( ), ( ),NH H   and ( )H   can be 

estimated by ˆˆ ( ).H   ˆ ( )VH    can be estimated by ˆˆ ( ),VH    where = Cov[ | ]i i iY X  can be 

estimated by ˆ ˆ .i i
e e  

We use (3.13) in Property 3.1 to estimate Var [ ( )].p s N   As long as there is a method to 

estimate the variance of (cross-sectional) Horvitz-Thompson (H-T) estimators, expression (3.13) 
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can be used. If we define ( )= I (U) ,ij i i i j JZ B e  we notice that each of the terms involved in the 

computation of (3.13), terms like Var ,p ij iji s j
w Z


 
 
  is simply the variance of a wave j-  H-T 

estimator. Obviously, the variance estimation method needs to account for the sampling design as 

well as for any nonresponse and calibration adjustments performed, but this does not present any 

additional complications beyond what is found in any cross-sectional problem, as everything is 

implemented cross-sectionally. The SDR uses replication to estimate variances of cross-sectional 

estimators, but any method of design variance estimation can be used. 

We use the cross-sectional replicate weights that SDR provides, but we do not re-estimate the 

parameter of interest at each replicate. First, note that we require replication only for the 

estimation of the “meat” (Var [ ( )])p s N   of the design variance ( ).pE V  Secondly, although ̂  

does appear in the expression for the H-T estimator whose variance needs to be calculated (and 

re-calculated at each replicate), the work of Roberts, Binder, Kovačević, Pantel and Phillips 

(2003), who apply the “estimating function bootstrap” (Hu and Kalbfleisch 2000) to survey data, 

show that in a setting like ours, it is not necessary to re-compute the estimator at each replicate, 

but that the full-sample estimator suffices. This simplification speeds up the computation of the 

replicate estimates. 

As a way of illustration, say we currently are at wave ,j  i.e., we are estimating the thj  term in 

(3.13). The thr  replicate of the first term is ( )
( )

ˆ ˆ( )I (U) ( ),r
ij i i i j Ji s j

w B
 e   where ( )r

ijw  is the 

thr  replicate weight for subject i  at wave ,j  and the thr  replicate of the second term is 

( )
, 1 ( )

1

ˆ ˆ( )I (U) ( ),r
i j i i i j Ji s j

w B 
 e   where ( )

, 1
r

i jw   is the thr  replicate weight for subject i  at wave 

1.j   

 
4  Application to the SDR 
 

The dataset we use is the restricted SDR data, under a license agreement from NSF. The SDR 

collects information about employment situation, principal employer, principal job, past 

employment, recent education, demographics, and disability, among others that vary from wave 
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to wave. We use only information requested in all the waves of interest: 1995, 1997, 1999, 2001, 

2003, 2006, and 2008. 

To illustrate our methodology, we constructed a model for individuals’ salaries over time. The 

response is the log of salary (in the principal job), with an identity link function, and several 

covariates; modeling log of salary (as opposed to salary) is a standard practice. There are both 

time-independent covariates (such as gender) and time-dependent ones (such as employment 

sector). We have four major classes of covariates. The Degree variables are: degree field, years 

since degree, and age at graduation. The Job variables are: job field or category, sector, postdoc 

indicator, adjunct faculty indicator, hours worked per week in the principal job, weeks per year in 

the principal job, how related is the job to the doctoral degree, part-time for different reasons, 

number of months since started in the principal job, the starting month in the principal job, 

whether the employer/type of job has changed since previous wave, and whether changed 

employer/type of job since previous wave because was laid off or job terminated. The Person’s 

demographics are: gender, citizenship status, race/ethnicity, presence of children in family, 

marital status, and spouse’s working status. Finally, the “Environment” variables are: years since 

1995, state (of employment), and the consumer price index (of the region of employment). The 

full list of variables, interactions, and categories can be found in Carrillo and Karr (2011). For 

categorical variables, the reference category is the one with the largest count. 

The dataset for our model consists of 59,346 subjects and 190,693 observations, distributed as: 

95 =n 30,234, 97 =n 30,652, 99 =n 26,732, 01 =n 26,778, 03 =n 24,956, 06 =n 25,910, and 

08 =n 25,431. Those data correspond to non-missing salaries between $5,000 and $999,995, for 

people with consistent ages across the waves, and with non-missing value for the variable 

indicating whether the (postsecondary educational institution) employer was public or private. 

The average (cross-sectional) survey weight for each of those waves are: 95 =w 15.37, 97 =w

16.28, 99 =w 19.96, 01 =w 20.74, 03 =w 22.71, 06 =w 22.93, and 08 =w 24.88. 
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The survey weights that we use for each wave are the final adjusted weights. These weights 

are the original design weights adjusted for nonresponse and post-stratification. However, the 

theory that we developed in Section 3 assumes that the weights are the inverse of the selection 

probabilities; in other words, the original design weights. This is a mismatch whose effect we 

plan to investigate in the future. On the other hand, the calculations in the last part of the 

Appendix (which do not assume anything about the weights) suggest that the effect of this 

mismatch is small. 

The covariates and interactions that we considered were selected because they were suggested 

either by exploratory analyses or by the subject matter experts at the NSF. Carrillo and Karr 

(2011) present the estimated   coefficients in the model = log(SALARY ) =ij ij ijy X   ,ij  

where ijX  includes the intercept along with the other covariates. This   corresponds to the one 

in model ,  in Formula (3.1), and whose properties are discussed in Section 3. The working 

covariance matrix is estimated to be ˆˆ ˆ= ( ),iV  R  with 2ˆ = =ˆ   

   08 082

=95 =95
= 0.196,ˆij ij iji s j i s j

w e w p
 

     where ˆ=ˆij ij ije y X    and =p 208 is 

the number of covariates in ,ij ijX w  is the cross-sectional weight for subject i  at wave j  as long 

as ji s  and zero otherwise. The estimate ̂  contains the 21 = (7 6) / 2  estimated auto-

correlations    ˆˆ ˆ= = ,ˆ ˆij ij ijjj j j ij ij iji s i s
w w e e w w p     

        for =j j

1995, 1997, 1999, 2001, 2003, 2006, 2008, and ˆ = 1jj  for all .j  These estimated values form 

the auto-correlation matrix:  

95,97 95,99 95,01 95,03 95,06 95,08

97,99 97,01 97,03 97,06 97,08

99,01 99,03 99,06 99,08

01,03 01,06 01,08
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ˆ ˆ ˆ ˆ ˆ ˆ1 1 0.38 0.36 0.32 0.3
ˆ ˆ ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ1
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ˆ ˆ1
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0 0.28 0.27
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We now give some conclusions about salaries in the Ph.D. workforce based on the estimated 

coefficients, which appear in Carrillo and Karr (2011). First of all, a sensible estimate of mean 

salary considers the intercept, the hours worked per week (whose average is 47), and years since 

degree (average of 15); so that an estimate of the overall average is exp(9.4 47   

2 20.038 47 0.0003 15 0.03 15 0.0006) = $52, 067,       for a subject with all other 

continuous covariates equal to zero and in the reference of all categorical covariates. 

All other things being constant, women’s salaries are about 93.4% those of men, whereas race 

does not seem to have an effect on salaries. The gender years since 1995 interaction is not 

significant; therefore this salary differential is not changing over time. Notice that with a single 

year’s data, we would not be able to evaluate the effect of time. Even more important than that, 

using only the data from a single wave, say 2008, we would not be able to assess whether the 

effect of being female is changing over time. 

Doctorate holders with a management job have the highest salaries, followed by those in 

health occupations; on the other hand, those with the lowest salaries are the ones employed in 

“other” occupations, followed by those in political science. 

Among employment sectors, salaries are highest in for-profit industry (20% higher than for 

the reference category of tenured faculty in public 4-year institutions), followed in order by the 

federal government, self-employment, non-profit industry, all of which are higher than the 

reference category. The lowest salaries are those in two-year colleges and in two- and four-year 

institutions for which tenure is not applicable. 

The highest single negative effect on salaries also occurs within the education sector. Those 

with positions as adjunct faculty members have salaries that are approximately 59% of the 

salaries of comparable doctorate holders. Not surprisingly, postdoctoral salaries are only about 

74% of the salaries of comparable people in other types of positions. 

Sector is also a contributing factor to the hard-to-interpret dependence of salary on the starting 

month for the current position: salaries are lower for starting months of August and September. 



170 Carrillo and Karr: Combining cohorts in longitudinal surveys 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Additional analyses show that the monthly effect is present only in the education sector, where, 

as we have seen, salaries are lower than in industry or government, and in which starting months 

of August and September are common. Therefore, sector is part of the answer, but not the entire 

answer. Finer-grained divisions of the education sector, using Carnegie classifications, further 

reduce, but do not remove, the significance of monthly effects. The SDR does not seem to 

contain sufficient data to remove the monthly effects entirely, so we have retained the SDR 

definition of sector. 

People with degrees in computing and information sciences have the highest salaries (around 

20% higher than in the biological sciences), followed by those in electrical and computer 

engineering and in economics (approximately 16% higher). Doctorate holders in agricultural and 

food sciences, environmental life sciences, earth, atmospheric, and ocean sciences, and in “other” 

social sciences have the lowest salaries. The “other” social sciences are the social sciences 

excluding economics and political science. 

Married people have the highest salaries, followed by those who are in married-like 

relationships, widowed, separated, divorced, and never married. The latter have salaries only 

around 89% as high as the married ones; one could argue that there is some association between 

never married and age. The presence of children older than two is associated with higher salaries, 

but the presence of children younger than two is not. 

Doctorate holders with jobs only somewhat related to their degree field make around 93% of 

what people with closely related jobs (the reference category) do. If the job is not related to the 

doctoral degree as the result of a change in career or professional interests, they make around 

82% of what people with closely related jobs do. On the other hand, those with jobs not related 

for other reasons make only about 76% of what the reference category does. 

There is an increase of around 3% for every additional year since doctorate graduation, 

although there is a diminishing effect for higher number of years. We interpret this as the effect 
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of experience. There is a small penalty for receiving the doctorate later in life; for every 

additional year of age at graduation, the salary reduces by 1%. 

We also found that the regional Consumer Price Index (CPI) is significant. The higher the 

CPI, the higher the salary. We could not use the CPI associated with the labor market of 

employment because the SDR data do not identify geography beyond the state. We included the 

state in the model as a proxy for cost of living; the state effect is highly significant and some state 

coefficients are among the highest overall. The highest salaries are in California, Washington 

D.C. and its suburbs, and New York City and its suburbs. On the other hand, the lowest salaries 

are in Puerto Rico, Vermont, Montana, Maine, Idaho, South Dakota, North Dakota, and in the 

Territories/Abroad. 

Having a part-time job due to being retired or semi-retired is significant and in several 

significant interactions. Because of this, we do not think that the available data present the full 

picture about retirement, for example, for people who are (semi-)retired and yet have full-time 

jobs. 

Finally, we analyzed residuals; Figures 4.1 and 4.2 show a Box and Whisker plot of 

standardized residuals by year and a spaghetti plot of standardized residuals, respectively. 

Figure 4.1 shows that the model fits reasonably well for all the reference years as most of the 

standardized residuals lie between -2 and 2. Also, the distributions of residuals do not seem to 

greatly differ from year to year. 

From Figure 4.2 we also conclude that the model fits reasonably well for most people, as most 

of the lines fluctuate between -2 and 2. Nonetheless, there are a few people for which the model 

seems to greatly over-predict in 2003 and some few people for whom that happens in 2006. We 

included several terms in the model to correct this issue but clearly none seemed to do so 

completely. 

The last thing we tried was to produce exploratory classification trees for these residual blips. 

We found that, in the dataset available, the only thing related to them was the survey mode. The 
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blips in 2003 are disproportionately high for web responses, and the blips in 2006 are 

disproportionately high for CATI responses. We conclude that either there is a mode effect in 

these two years or those respondents have something different, in those years, that is not included 

in the available variables. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1  Box and Whisker plot of standardized residuals by year 
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2  Spaghetti plot of standardized residuals 

 

 

Finally, the plot of fitted values versus observed (which can be found in Carrillo and Karr 

2011) also shows a similar story. For most observations the model performs well, apart from 

those few cases in 2003 and 2006 for whom there is large over-estimation. 
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5  Conclusions and future research 
 

We have proposed a novel approach to combining different cohorts of a longitudinal survey. 

The major requirement of our method is that there is a cross-sectional survey weight for each 

wave, or that one can be built from available information. This weight should allow for statistical 

inference to the population of interest at the corresponding wave. In that case, our method should 

perform better than usual estimation procedures (where the auto-correlation is not incorporated) 

in many practical situations, in particular when there is a high auto-correlation among responses 

from the same subject. 

In general, survey practitioners avoid as much as possible the use of multiple survey weights. 

However, in the case of rotating panels this is an appealing approach for at least two reasons. On 

the one hand, it allows for the use of all the available data in a clear and cohesive way in a single 

analysis procedure. On the other hand, we have shown how readily available cross-sectional 

survey weights can be directly used for longitudinal analysis, without the need to develop, store, 

and distribute an additional longitudinal weight or weights. 

Our method is directly applicable to any kind of longitudinal survey as long as there are cross-

sectional survey weights available (or these can be created) at each wave, and these weights 

represent the population of interest at the particular wave. 

For the theory that we developed about the variance of the estimator proposed, we utilized the 

(cross-sectional) design weights ,ijw  which are the inverse of the inclusion probabilities. Yet for 

the application in our model for salary in the SDR we used the final (cross-sectional) survey 

weights, which are not the original design weights, but adjusted (in the usual way) weights. This 

mismatch requires further exploration. 

Similarly, in our derivations of the variance, we assumed that the cohorts were independent. 

However, the SDR does not totally satisfy this assumption for two reasons. Firstly, at any 

particular wave, the selection of the sample from the old cohorts is not performed independently 

across cohorts. In order to reduce the number of strata, since 1991 the NSF has collapsed strata 
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over year of degree receipt for the old cohorts. Additionally, the post-stratification adjustments 

made to the design weights do not condition over cohort either, and as a result, weights are 

shared across cohorts. This sampling selection scheme and weighting adjustment procedure 

violate the independence across cohorts. Some additional calculations (included in the Appendix) 

have shown that the independence among cohort is not such a crucial requirement for our 

variance estimation method to produce good approximations, as explained in Section 3.3.1. In 

future research we plan to evaluate in more detail the impact of this issue. 
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Appendix - Proofs 
 

 To develop an expression for ,C  we first simplify ( ) ( ).s U
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where    (1)A = ,i i i ii s i s
B W

 
 e F  and let B = I (U) .k s i i i k k ki s

k i
B W B 

   e e  

The two sums in A  are model-independent, ie  and k
e  (in B)  are two model-

independent terms, and A and B both have model-expectation zero; therefore, 
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equation (3.9) follows. 

 We now develop the expression for Var [ ( )],p s N   the design variance of the 

estimating function; we redefine 1
== ( / ) |i i iN
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where, for line (A.1), we assume that the (three) cohorts are design-independent. Now, 
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where Diag{ }e  is, for a column vector ,e  a diagonal matrix with diagonal entries being 

the elements of ,e  and  (1) 1(1) 2(1) 1(1) 3(1) 2(1) 1(1)= ( ), ( ) ( ), ( ) ( ) ( ) .i i i i i i iI s I s I s I s I s I s I  

Similarly we can get 2
(2) (2)

2(2)
= Var Diag{ }p i i i ii U

N D B W


 
 
 e I  and 2

(3) =N D  

(3)
3(3)

Var Diag{ } ,p i i i ii U
B W


 
 
 e I  where  (2) 2(2) 3(2) 2(2)= 0, ( ), ( ) ( ) ,i i i iI s I s I s I  

and  (3) 3(3)= 0, 0, ( ) .i iI s I  Now, let us concentrate on (1) ;D  letting =iC  

Diag{ },i i iB W e  we have:  



176 Carrillo and Karr: Combining cohorts in longitudinal surveys 
 

 
Statistics Canada, Catalogue No. 12-001-X 

              

2
(1) (1) (1) 1(1)

1(1) 1(1)

(1) 1(1)

1(1)

(1) 2(1) 1(1) 1(1)

1(1)

(1) 2(1) 1(

1(1)

= Var = Var |

Var |

= Var | , |

Var | ,

p i i i i
i U i U

i i
i U

i i
i U

i i
i U

N D C E C s

E C s

E E C s s s

E E C s s

 







    
        

  
    
    
       



 







I I

I

I

I 1) 1(1)

(1) 2(1) 1(1) 1(1)

1(1)

2 2 2
(1)1 (1)2 (1)3

|

Var | , |

= .

i i
i U

s

E C s s s

N D N D N D




         


         

 

 I

 

(A.2)

 

Let us do each of the terms in (A.2) in turn, beginning with 2
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where (4)
(1) 2| 2(1) 2(1) 021(1)

= [ , ( ), ( )] , = (0, 1, 1) ,i i s i iI s I s   1I  and line (A.3) is because, 

conditional on 1(1) 2| 1(1)
, i ss   is constant and therefore the variance of that component is 

zero. This means that:  
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We can, similarly, show that:  
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With similar calculations, we obtain the corresponding expressions for 2
(2) ,N D  

2
(2)2 ,N D  2

(2)3 ,N D  and 2 2
(3) (3)3= .N D N D  

 Finally, we sketch the development of an expression for Var [ ( )]p s N   without 

assuming independence among cohorts. First, notice that ( )s N   can be written as:  
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letting (2 3) 2 3= I (U) , = I (U)[0, , ] ,i i i i i i i i iB B e e z e z  and (3 3) 3= I (U)[0, 0, ] ,i i i iB e z  

Var [ ( )]p s N   can be expanded as:  
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(A.4)

 

In this last expression, the first thing we notice is that all the diagonal elements in all the 

covariance terms are exactly equal to zero; this means that whether or not the cohorts 

are independent of one another, expression (3.13) is exact for the variance terms. 

To analyze the importance of the covariance terms, we concentrate on the term in line 

(A.4); the conclusion for the other terms is the same; note that this term can be written 

as:  

                  2
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Property 3.1 states that if the cohorts are design-independent, all the covariance terms 

are exactly equal to zero. In addition to that, from this last expression we conclude, 

trivially, that if the waves are design-independent, all the covariance terms are equal to 

zero too. This formula for the term in line (A.4) also implies that if the individual 

weights do not vary greatly between consecutive waves, and there is a high overlap 

between consecutive waves, the covariance terms are not too large. Finally, if the 

overlap is small, it is reasonable to assume design-independence between the waves, and 

then the covariance terms can be safely approximated by zero. 
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