

Proceedings of the 13th
International Blaise Users

Conference

IBUC 2010

Baltimore, Maryland USA
October 19 – 21, 2010

Preface

This document contains the papers presented at the 13th International Blaise Users Conference held in
Baltimore, Maryland, USA from October 19 – 21, 2010. The conference included three days of technical
papers and presentations on the use of Blaise and related topics.

The Conference Program was organized and planned by the Scientific Committee, chaired by Hilde
Degerdal, Statistics Norway. Members of the committee included:

• Hilde Degerdal (Statistics Norway, Chair)
• Tom Anderson (Office for National Statistics, UK)
• Karen Bagwell (US Bureau of the Census)
• Gina-Qian Cheung (University of Michigan)
• Leonard Hart (Mathematica Policy Research, Inc., USA)
• Lon Hofman (Statistics Netherlands)
• Vesa Kuusela (Statistics Finland)
• Rebecca Lui (Statistics Canada)
• Jim O’Reilly (Westat, Inc.)
• Mark Pierzchala (USA)
• Fred Wensing (Australia)

Westat, as the host organization, has collected, edited, and printed these proceedings for the benefit of the
conference participants and others.

IBUC 2010 was organized and hosted by Westat. The organizing committee was chaired by Jane
Shepherd and Jim O’Reilly.

i

Table of Contents

Application Development: Tools and Techniques

Business Process Re-engineering using Blaise 4.8 API and Datalink 1
Using Google® API’s and Web Service in a CAWI questionnaire .. 10
CATI Followup Application: Resolving Communications Links Between

Applications Using XML .. 16

Testing

Computer Assisted Interview Testing Tool (CTT) - a review of new features

and how the tool has improved the testing process .. 17
Automated Regression Testing of BLAISE INTERNET: A Case Study 27

Metadata

Moving to a Meta Data Driven World .. 39
Resolving Question Text Substitutions for Documentation Purposes

Using the Blaise 4.8 API Component .. 46
MetaDEx – From Data Dictionary to Complete Blaise Data

Model Code Generation ... 54

Case Management Systems

BlaiseIS Sample Management ... 55
Features of Case Management in CAI Systems ... 63
Management of CAPI and CATI at the Labor Force Survey ... 73

Blaise and the Internet

BlaiseIS Paradata .. 80
C3B: Exploiting The Numerous Possibilities Web Technology Offers

To Elevate Questions ... 94
Moving to Blaise IS .. 106

Use of Blaise in Organizations

Challenges of Developing and Supporting Multimode Survey Instruments 120
Impressions of Basil ... 133
Large-Scale Survey Interviewing Following the 2008 WenChuan Earthquake 146
Multi-Center Collaborative Survey Research with Blaise .. 156
Centralizing the Mink Survey at the National Agricultural Statistics Service 164
Management of Classification Lookup Files ... 169

Coding in Blaise

Coding Tricks To Save Resources ... 188
Longitudinal Survey Data – “Move It Forward” ... 195
The Challenges of Implementing the China Family Panel Study (CFPS) 201

ii

Customizable .NET Event History Calendar: Looking to the Future .. 211
Security Considerations in Blaise Environments: Options and Solutions 221

Computer Assisted Recorded Interviewing (CARI)

Computer Assisted Recorded Interviewing (CARI): Experience

Implementing the New Blaise Capability ... 234
Development of an integrated CARI Interactive Data Access

System for the US Census Bureau ... 247
Implementing Computer-Audio Recorded Interviewing

(CARI) Using Blaise 4.8.2 ... 259

Editing/Processing

Experiences with Blaise for Data Editing in the Housing Rental Survey 274
Post-Collection Processing with Blaise in a Distributed Environment 284
Validation of Survey Data in Xml .. 296

 1

Business Process Re-engineering using Blaise 4.8 API and
Datalink

Mike Hart and David Kinnear, UK Office for National Statistics (ONS)

1. Introduction

In accordance with our remit to develop the use of Blaise within ONS, the Blaise Development Standards
and Support team (BDSS) within ONS Social Survey (ONSSS) have been looking at ways of using the
software to streamline our business processes. ONS Social Survey systems have largely been based on
using Manipula in conjunction with survey-specific Blaise database storage. Whilst this technology is
flexible and well understood, it does have the downside of requiring a continual commitment of trained
resource in the production and maintenance of Manipula scripts, and it can be difficult to manage data
across multiple surveys.

The Blaise API and Datalink functionality provide both an alternative to the reliance on Manipula and an
opportunity to reduce the resource committed to manual interventions in processes such as report
generation, manipulating Blaise databases, and sample file maintenance on longitudinal surveys. At the
same time, this technology can allow survey teams greater control over their business applications.

This paper focuses on the example of Electronic Learning Questionnaires (ELQs) to show how BDSS are
helping to re-engineer a specific business process and showcasing these aspects of Blaise within ONS.

2. Selection of business process for re-engineering

When assessing whether to use Blaise API or Datalink to re-engineer a business process, there were a
number of factors to consider:

i) What would the impact be on other IT systems within ONSSS? Ideally we wanted to introduce an

application that would not have a large impact on other processes;
ii) Was there a clear efficiency gain to be had from re-engineering?
iii) Technical knowledge. The application would be written from a small pool of resource from

within ONS Social Survey, which would influence the range of possible technical solutions.

3. Electronic Learning Questionnaires (ELQ)

3.1 Background

When BDSS took control of the Electronic Learning Questionnaire (ELQ), it became apparent that the
ELQ report writing system provided an excellent opportunity to demonstrate the possibilities of Blaise
Datalink and API. The reasons for this were:

i) The current system requires users to formally request our Information Management (IM)

department to manually run an application to create the ELQ report. This involves filling out an
IM request form, introducing a bureaucratic overhead. Ideally, users should be able to run the
reports direct from their PC’s, with no IM intervention;

 2

ii) The ELQ report system is isolated from other business processes, as it is only reading data from
returned ELQ case data and outputting it into a report format;

iii) A complete solution could be provided using the available technical skills available within BDSS;
iv) A standardised ELQ report across all the surveys could be easily provided, replacing the different

formats that currently exist.

Field interviewers are sent a survey specific Blaise ELQ before they attend a survey briefing. The ELQ
must be successfully completed for the interviewer to be eligible to attend the face-to-face briefing. The
questionnaires are designed to test the interviewer’s knowledge of a survey and key processes involved in
working on it, and the interviewer has 2 attempts to answer each question correctly. If an interviewer
answers a question incorrectly on the first attempt, they are directed towards the relevant section of their
survey specific instructions. A report is generated which highlights the most problematic questions, which
the trainer at the briefing uses to focus the session on problem questions and survey procedures.

For the purposes of this paper, the Household Assets Survey (HAS) ELQ has been selected. The HAS
ELQ will test interviewer’s knowledge on selected questions from the survey, covering pensions,
mortgages and investments, as well as different scenarios that they may encounter. A list of questions
included in the HAS ELQ can be found in Annex 1.

3.2 Current system for requesting ELQ reports

When an interviewer has completed their ELQ, the questionnaire is transmitted back to the office. The
results from the ELQ are extracted by our Information Management Directorate from Blaise, and using a
Visual Basic application which calls Manipula, the data is output to Excel spreadsheet format. Once the
reports are produced, the Field Office team responsible for the survey will format the output into
something that is appropriate for analysing. The process flow, shown in Figure 1 below, details how the
ONSSS Field Office team produced ELQ reports.

Figure 1. ELQ report process

As the process flow demonstrates, there are a number of steps involved to produce the reports, each
requiring some manual resource. An example report produced by our Information Management
Directorate is shown in Figure 2.

Figure 2. Existing ELQ report

There are several limitations to this report and the users would make extensive manual changes to
make it suitable for distribution to the interviewer management teams. The main problem with the report
was that there was no summary page identifying the key points from survey, it was not survey specific, it
was cluttered, hard to read quickly and

One major advantage of using Datalink to move the ELQ data into relational database storage is that it
opens up the possibility of using off
from the data.

4. The re-engineered ELQ reporting system

4.1 Objectives and benefits of

The main reason for re-engineering the ELQ reporting system is to reduce the amount of manual resource
required to produce the reports. A successfully automated reporting system would enable Field Office
users to have direct access to ELQ data from their desktops, and generate standardised reports from a
standardised user interface. With more pressures on the resources of sur
their processes will enable them to continue delivering high quality outputs. Automating the systems will
also release IM resource, enabling them to allocate more time to their core application support role rather
than running business processes for customers.

Implementation of the new application would introduce a common format of ELQ reports across all
surveys, reducing the time Field Office spend on standardising their outputs for analysis. It will also
reduce the training requirements as Field Office staff move from supporting one survey to another.

3

As the process flow demonstrates, there are a number of steps involved to produce the reports, each
requiring some manual resource. An example report produced by our Information Management

There are several limitations to this report and the users would make extensive manual changes to
make it suitable for distribution to the interviewer management teams. The main problem with the report
was that there was no summary page identifying the key points from survey, it was not survey specific, it
was cluttered, hard to read quickly and did not provide them with all the information they needed.

One major advantage of using Datalink to move the ELQ data into relational database storage is that it
opens up the possibility of using off-the-shelf packages like Crystal Reports to produce tail

engineered ELQ reporting system

Objectives and benefits of the new ELQ reporting system

engineering the ELQ reporting system is to reduce the amount of manual resource
the reports. A successfully automated reporting system would enable Field Office

users to have direct access to ELQ data from their desktops, and generate standardised reports from a
standardised user interface. With more pressures on the resources of survey teams, automating more of
their processes will enable them to continue delivering high quality outputs. Automating the systems will
also release IM resource, enabling them to allocate more time to their core application support role rather

business processes for customers.

Implementation of the new application would introduce a common format of ELQ reports across all
surveys, reducing the time Field Office spend on standardising their outputs for analysis. It will also

requirements as Field Office staff move from supporting one survey to another.

As the process flow demonstrates, there are a number of steps involved to produce the reports, each
requiring some manual resource. An example report produced by our Information Management

There are several limitations to this report and the users would make extensive manual changes to it to
make it suitable for distribution to the interviewer management teams. The main problem with the report
was that there was no summary page identifying the key points from survey, it was not survey specific, it

did not provide them with all the information they needed.

One major advantage of using Datalink to move the ELQ data into relational database storage is that it
shelf packages like Crystal Reports to produce tailored reports

engineering the ELQ reporting system is to reduce the amount of manual resource
the reports. A successfully automated reporting system would enable Field Office

users to have direct access to ELQ data from their desktops, and generate standardised reports from a
vey teams, automating more of

their processes will enable them to continue delivering high quality outputs. Automating the systems will
also release IM resource, enabling them to allocate more time to their core application support role rather

Implementation of the new application would introduce a common format of ELQ reports across all
surveys, reducing the time Field Office spend on standardising their outputs for analysis. It will also

requirements as Field Office staff move from supporting one survey to another.

 4

Standard automated reports will enable quicker analysis of results, highlighting possible issues with
questions. It will also enable the face-to-face briefings to be targeted at areas that the interviewers are
struggling with, which should lead to better data being collected in the field.

The re-engineering project also provides an opportunity for the BDSS team to develop Blaise Datalink
and API skills. This will allow us to take a fresh look at existing business processes within ONSSS, with
the possibility of delivering cost effective applications to customers.

4.2 Developing the new application – Stage 1

The data from completed ELQ questionnaires returned by interviewers is already available in a merged
Blaise database, created as part of the IM caseflow system. This will be the source of the ELQ data to be
used in the reporting system.

We decided on using Visual Basic to write the application, with Microsoft (MS) Access as the data
storage method being queried by the application. These decisions were based on the relevant skills that
were readily available within the BDSS team.

A BOI file was created to establish a link between the Blaise ELQ datamodel and the ELQ MS Access
tables. The MS Access tables are based on the Blaise ELQ dictionary, and the data partition type selected
was flat with blocks.

Using the merged Blaise ELQ dataset as the initial data source, the VB application runs a compiled
Manipula script (Copy2BOI.msu) to copy data from here to MS Access tables. With the ELQ data now in
MS Access, a simple SQL select query is run from within the VB application to retrieve the data. The
application currently uses the in-built VB report writer to generate and display the data report on screen,
with the option of printing. However, we are investigating using Crystal Reports to try and avoid
maintaining VB code that makes direct reference to ELQ questions, thereby introducing more flexible
report writing.

Variations on the SQL select query embedded in the VB application were introduced to enable data to be
displayed either by briefing date of briefing location, depending on parameters input by users. The
different outputs were achieved by use of different WHERE clauses within the SQL select queries.

 5

Figure 3. ELQ reporting application process

After giving a demonstration of the first version of the application to field Office staff, the response was
favourable. However, they ideally wanted to display not just the responses to the ELQ questionnaire, but
also a summary page displaying those interviewers who had not yet responded, the number who had, the
question causing the most difficulty at attempt 1, questions with in-correct answers after two attempts. In
effect, a method of creating a dynamic sample would need to be integrated into the application, to enable
responders and non-responders to be displayed on the ELQ reports.

4.3 Developing the new application – Stage 2

To create the sample of interviewers for each briefing, a user interface was designed for the VB
application. This interface would enable the user to enter:

i) The interviewer number
ii) Briefing date
iii) Briefing time i.e. morning or afternoon
iv) Briefing location

 6

The briefing details entered through the user interface are stored in a text file. The Blaise API is then used
in the application to copy the details stored in the text file into a Blaise database. This is achieved by
using the ASCII file setting object and the copyfields method of the Blaise database manager object.

Figure 4. Creating the sample for interviewer briefings

A Blaise BOI file was created to enable a link between the briefing data input through the user interface,
and the MS Access BriefingDetails table. Initially a full BOI file type was specified. However, testing
revealed that if the data partition type was flat with blocks, when a record was deleted from the source
Blaise dataset containing the briefing details, a runtime error in the VB application occurred at the point
where the SQL DELETE statement is invoked. Consequently, the BOI file type was changed to Data
only. With only a data table being created, the SQL DELETE statement successfully deleted the selected
record.

On exiting the Briefing Details screen (shown in Figure 4 above), the application then runs a compiled
Manipula script that updates the BriefingDetails.boi updatefile with the data input by the user.

The BriefingDetails table in MS Access, updated with the briefing data supplied by the user, can now be
joined (using the primary key field IntNo) with the MS Access ELQ table containing the returned data.
The SQL select statement embedded in the VB application makes use of the LEFT JOIN command,

 7

enabling all selected interviewer numbers to appear in the final report, irrespective of whether they have
returned data.

The results of running the re-engineered ELQ report system can be seen in Figure 5. In this example, the
first 6 interviewers in the list have returned ELQ data for the date 11/03/2010. The date would have been
a user supplied parameter, and is used in the construction of the SQL query embedded in the application.
The ELQ data table in MS Access has an Administration block, which includes a date field, and this is
used to retrieve the relevant cases filtered by the supplied date. The seventh case (9999) has not yet
returned a completed ELQ questionnaire after attending the briefing on this date. However, the results of
using the LEFT JOIN in the embedded SQL syntax can be clearly seen, as all interviewers being recorded
in the BriefingDetails table as attending the briefing on 11/03/2010 are displayed. As a result, users can
clearly identify non-responders.

Figure 5. The end result

The new report also allows users to easily identify the most problematic questions, which can then be
addressed at the interviewer briefing.

Annex 1

Question Question Text Possible Question Responses

1 The HAS covers a number of topics relating to
assets and debt. Which of the following is NOT
within the scope of the HAS?

- Business Success
- Government spending patterns
- Consumer credit
- Value of accounts and investments held overseas

2 You are about to start an interview (at a
household interviewed at a previous wave) and
you find the case on your laptop is corrupt and
cannot be used. Do you;

- Use a training case to carry out the interview
- Open a second household on another address
- Leave and ask for the case to be re-scattered
- Swap with an ineligible address

 8

Question Question Text Possible Question Responses

3 The DWP uses the HAS to find out? - About peoples business assets
- About wealthy individuals and investment decisions
- The value of peoples property
- If people are saving for retirement

4 What is 'The Boost'? - The £10 voucher to help response
- The respondents who join a household
- New addresses added to the sample
- Multi households addresses

5 How many addresses are in a follow up quota
from a previous wave?

- Less than 13
- 13
- More than 13
- 26
- Variable

6 The OSM agrees to interview but is not the
HRP. The HRP and spouse refuse to take part
in the survey. Do you?

- Interview the OSM and take proxy details for the
HRP/Spouse
- Interview the OSM only, as we are following individuals
- Code the case as a refusal to interviewer
- Code the case as ineligible

7 You expect to find the Smith family at the
sampled address, but you find it empty and
boarded up. The first thing you should do is;

- Contact the FEL and ask for the respondents new address
- Outcome code the address as you found it, vacant
- Try and find out where the respondents have moved
- Code the case as moved away, address unknown

8 You find a 15yr old at the previous wave, now
17yrs old has moved out and is now flat sharing
with five friends a couple of streets away.
Should you;

- Open a second household and make a note of the new
address for future allocation
- Exclude, no longer a household member at the sampled
address
- Open a second household and interview the 17yr old and all
his friends at the new address
- Open a second household and interview the 17yr old only,
as an original sample member

9 What are the extensions of time or extra visits
rules on the HAS?

- No approval is required
- Agreement is required from the Field Office/Survey
Management area via your Field Manager
- Agreement is required from your Field Manager
- None permitted

10 When would you open a second household for
a follow-up address?

- When the original household has moved to a second
address
- When some of the people have left the address
- When another address/household in the quota is corrupt
- When you discover a multi-household

11 Which of the following should you do if a
respondent asks for clarification of an Opinion
question (denoted by an * at the beginning of
the question)?

- Rephrase the question
- Repeat the question as it is written
- Give your own interpretation of the question
- Remain silent in hope respondent will give an answer

12 A household has taken out a loan secured on
their main residence in order to help purchase
a city-centre apartment. The payments they
make partly cover interest and partly pay off the
capital of the loan. How should this be coded at
MType (Type of mortgage)?

- An endowment mortgage or loan
- A repayment mortgage or loan
- Another type (not listed in the coding frame for this question)
- None of the above - this loan should be recorded in relation
to the other property

 9

Question Question Text Possible Question Responses

13 At GCOll 'Do you (or anyone in your
household) own any collectibles or valuables
- such as antiques, artworks, stamps etc -
including items stored or kept elsewhere?' the
respondent tells you that they have a number
of antiques all kept at their main residence.
They also have some valuable paintings in their
second home in Spain. Which, if any, of these
items should be included in their estimate of
current market value at GcolV/GClVb?

- None
- Just the antiques
- Just the paintings
- The antiques and the paintings

14 Thinking about occupational pension schemes,
which of the following options of occupational
pension schemes applies when a respondent
says the value of their pension relates to the
value of contributions made over the years as
well as their salary in the final years before
retirement?

- Money-purchase scheme
- Salary-related scheme
- Hybrid scheme
- None of the above

15 Still thinking about pensions, which of the
following statements reflects the true definition
of a Group Personal Pension (GPP)?

- It is an occupational pension provided by the employer
- It is an occupational pension scheme organised by an
employer but provided by a financial institution
- It is a type of private pension
- It is a special type of stakeholder pension

16 When collecting information on savings and
investments, a respondent tells you that they
have a Basic Post Office Account. What sort of
account should this be included as at FinvTy
('Types of accounts and investments you
currently have')?

- Current account
- Saving/deposit account
- Individual Savings Account (ISA)
- None of the above

17 When completing the financial assets section of
the questionnaire, a respondent tells you that
the Offset Mortgage covered earlier in the
survey has a savings account element. What
sort of account should this be included as at
FInvTy ('types of accounts and investments you
currently have')?

- Current account
- Savings/deposit account
- Investment Bond
- Other financial asset

18 When interviewing a married couple you are
told that the husband and wife hold a credit
card account jointly in both names. Their
daughter is an additional card holder. Against
whose name should the value of any
outstanding debt on the account be recorded?

- All
- The husband and the wife as joint account holders
- The husband or the wife, whoever is interviewed first
- The husband or the wife, whoever is interviewed first, and
the daughter"

19 Which of the following examples would qualify
as a FULL individual interview on the HAS?

- The individual interview has been completed up to and
including 'Trusts'
- The individual interview has been completed up to and
including 'Inheritance'
- The individual interview has been completed up to and
including 'Non-mortgage debt'
- The individual interview has been completed up to and
including 'Employment income'

 10

Using Google® API’s and Web Service in a CAWI questionnaire
Gerrit de Bolster, Statistics Netherlands, 27 September 2010

1. Introduction

From the survey department of Traffic & Transport in Statistics Netherlands came the question if it’s
possible to use Google® Maps in their CAWI questionnaire for pin-pointing locations. To determine this,
a prototype was developed in which the use of Google® Maps was realised. It appeared that not only the
Google® Maps API was needed but also the language API and the Maps Web service. This paper
describes how this was done.

I must warn you that this paper is about the technology involved. I tried to explain this technology in a
most simple way, but I understand that not everybody is able to grasp my solution. This paper is meant
for those who want to do more with BlaiseIS than the basic things and I hope it shows that there are a lot
of possibilities to extend BlaiseIS questionnaires with proprietary functionality.

Although they specifically asked to investigate the feasibility of using Google® Maps for searching on
locations, the survey department of Traffic & Transport never asked the data collection department to
introduce this solution in their questionnaire. One of the reasons they came up with later is that the use of
Google® Maps would increment the burden for the respondent filling in the questionnaire.

2. Searching locations

The Internet questionnaire for the survey on road transport from the department of Traffic & Transport
contains a lot of questions about locations. The location of the home base of the vehicles is asked as well
as the place of departure and destiny of the trips made by these vehicles. Furthermore the respondent must
fill in the locations where a load was picked up and where it was delivered. In the current questionnaire
the respondent can use for these locations lookups on countries and places. Once a country is selected, the
lookup for places (towns, cities) is filtered by this country so only the places within this country will
appear in the lookup list. As the survey is on international transport, foreign countries are included. As it
was expected that respondents will have trouble to spell the names of the foreign places correctly, a
trigram-search was applied for the places. If available the respondent could also provide a zip code of the
location asked.

Once the filled in questionnaire is received, the given locations are translated into coordinates
(latitude/longitude). For this (automatic) translation a web service from a commercial provider is used. If
a location could not be translated using this web-service, it should be done manually. As it appeared this
happened more than was expected costing too much human resources. Even in some cases the web-
service used was not accurate enough.

For these reasons they asked to investigate if it was possible to produce coordinates in the questionnaire
selected by the respondent by using a “maps” interface. Of course, it was obvious to try to use Google®
Maps as it is the most well known solution in this field.

3. BlaiseIS questionnaires and JavaScript

Blaise Internet questionnaires are based on the principle of client/server. That means that a respondent is
entering data on the client side (with the browser on his own computer) and sending that to the server (in
our office). This data is subsequently processed on the server by BlaiseIS components and Active Server
Pages (ASP’s) producing an updated screen that is sent back to the client. The way the data is processed is

 11

determined mainly by the so-called rules in the Blaise data model. The screen that is sent back to the
respondent is written in the universal Internet language HTML, normally enriched with JavaScript.

If the respondent is activating a lookup of any kind, the resulting window (screen) should appear in his
browser so he can manipulate it and select the text or code necessary. That means it should appear on the
client side and not on the server side. Furthermore, the selected text or code should be written to the input
line of the question involved, visible for the respondent in his active screen. In other words: client side.

Within the world of (classic) Internet there is only one global accepted way to make your Internet page
have some dynamics: the use of JavaScript. Although today there are other means possible (Java-applets,
Flash, Silverlight) JavaScript is still the most used solution. To write data from one window to an input
line in another window with JavaScript it is necessary to have 2 things: a pointer to that other window and
a name (identification) of the input line. If a window was opened by an action in another window, the
pointer to that “parent” window is automatically available (in JavaScript it’s called “opener”). But how
about the name of the input line? In BlaiseIS every visible field in the questionnaire is given a name at the
moment the screen is constructed and sent to the browser of the respondent. It is impossible to get this
name before e.g. at design time. The only way to obtain this name is, at the moment the window is opened
in the respondents’ browser to invoke a JavaScript function to scan the HTML source of the active
window. This function was developed already before for another type of search (hierarchical) and stored
in a small JavaScript library that is automatically included in every questionnaire using the caption of a
(camouflaged) label in the Blaise Menu File (.bmf). The function is invoked by a JavaScript command
that is activated the moment an image is loaded at the opening of a window. This command is included in
the question text of a separate question in the Blaise sources that has only one visible part: an image in the
shape of a “Search” button!

The same function is used to give that “Search” button an index number so it is included in the so-called
Tab-order. That is the order in which the parts of a browser window are focussed using the Tab key. Once
it is focussed it can also be activated by a key and not only by the mouse.

4. Create your own search facility

So how do you create your own search facility for your BlaiseIS questionnaire? As was described in the
previous section, using JavaScript you can open a new window with the possibility to write data to an
input line in the active (visible) page of the questionnaire. This window is opened by clicking on a button
image in the questionnaire. As a result it is opened referring to the URL of that window. This URL can
e.g. be an URL of an Active Server Page (ASP). In an ASP you can run a script (VBScript by default)
invoking Blaise(IS) or other installed components. By the way, BlaiseIS consists partially of ASP’s. To
create your own search function, you must therefore create your own ASP and include it in your BlaiseIS
questionnaire adding it to the file section of the Blaise Internet Specification file (.bis). In this ASP you
can manipulate data as much as you want, e.g. opening a Blaise database on the data server and reading
records from it or writing records to it. Applying this concept already several special (but generic!)
functions have been created including the location search with the Google® Maps API.

As can be understood it is necessary to have the use of JavaScript switched to “on” in the browser if you
want to use this special search function. Fortunately almost everybody has JavaScript switched on as
without it the Internet is a very dull place. Although Google® still lets you use a simplified form of their
Maps facility, it is a rigid solution that is very difficult to use. Just in case, if a respondent is one of the
remaining few without JavaScript activated in his browser, he is informed that this search function is not
working.

 12

5. Google® Maps API

On the Internet there is a lot of information available regarding the implementation of Google® Maps
functionality in a web application. See the section with references at the end of this paper for the home
page of Google® Maps in English (also available in other languages). This was the way we learned how
to create the location search with the Google® Maps API in JavaScript. The first location search function
was created with Google® Maps API version 2 as it was the supported version at that moment. It was
obvious that version 2 would not be the supported version much longer, so the solution was converted to
version 3, what is the supported version today. There are a lot of examples available on the website
making it quite easy to understand the different commands and functions and how to implement them.
Basically the use is for free unless you want to include in a commercial environment. However, you can
have a contract with Google® allowing you to use it in a different way. This is described in the Terms Of
Service (TOS) also available on the Internet. As this location search has not been taken into production
until now, Statistics Netherlands have not yet a contract with Google® for this use at the moment. As I
understood we do have a contract with Google® for another type of use: that in publications with a
geographical nature.

If the documentation is still not enough to answer all your questions, there is also a very active Internet
forum on which Google® developers are trying to help you.

 13

The Google® Maps API is a set of JavaScript commands and functions that enables you to manipulate a
map in the same way as it is used on the website of Google® itself. You can use navigation buttons,
zoom-buttons and switch from map to satellite and so on. Too much to mention. More important is the
fact that you can place a marker on the map and move it over the map. To this marker you can attach a
small window with information (address) where the marker is standing on the map. Finally, you can even
retrieve this address information as it is stored in an object (cluster of data). This object contains a very
complicated tree of address parts. It took quite some time to figure out how to retrieve from the object the
information that was needed: the street address, the town and the country. This information can than be
written to the input line in the BlaiseIS questionnaire by the respondent by pressing an OK-button that
was added to the bottom of the screen.

In some cases the marker could be placed on coordinates that did not produce a valid address. Obviously
this was the case in the middle of the ocean. But not only there! Google® appeared to be “political
sensitive”. Certain regions on our planet where there is still a discussion on-going about ownership and
such are also producing empty addresses or non-specific addresses. Examples are Kosovo, Western
Sahara and Northern Korea. Maybe with the exception of Kosovo, these regions are normally not
involved in answers on questions from our questionnaires. No Dutch trucker has been seen there and they
are also not very popular holiday resorts.

6. Languages: a nightmare!

Everything appeared to be very easy. There were hardly any problems to get things working using the
examples on the website of Google®. This “happiness” lasted until version 1 of the location search was
tested! Moving around the maps of the world all kind of strange characters appeared in the address part of
the window. Not all of it, but just parts of the address. This happened although the language parameter
was specifically set to Dutch (nl). Depending on the country the addresses were shown in Greek, Chinese,
Arab or Cyrillic characters. Quite unreadable for our respondents. Although there are not many
transporting firms in The Netherlands providing transport services by road to China, Greece and the
Balkan countries are within reach. Furthermore, these foreign addresses were stored in UNICODE. This
is a character set using 2 characters for one. Blaise, however, only supports the basic ANSI code set, one
character at a time. Writing these addresses to the input line in the BlaiseIS questionnaire resulted in
unreadable characters.

But, no panic, Google® also supports an API with which you can translate words and sentences. This nice
(also JavaScript) API even includes an auto detect of the language of the text to be translated. However,
this auto detect does not work when the text to be translated is a mix of different languages. So the
language parameter was set to “local” producing the address including the name of the country in the
local character set. It appeared that our good friend Murphy was working for Google® too. Suddenly the
addresses were shifted all over the world. Cities in Croatia were moved after translation (according to
Google®) to Australia, the city of Athens, Greece was translated into Athens, USA and so on. It was not
Google® Maps that gave the wrong addresses; it was the translation API that mixed up things.

The problem was finally solved with a mixture of functions, a combined approach. In Google® Maps the
language was set back to Dutch producing an address in different languages. In the translation command
the language of the text (address) to be translated was set to the specific language based on the country
code retrieved from the address object. Not all the countries were included, only those with different
character sets. Even after this change some countries with a small number of different characters
(Slovenia, Croatia, etc.) kept producing strange translations of addresses. Finally these countries were
removed from the translation set and a function converting their “special” characters to characters within
the ASCII character set was added. As a last resort a final addition was made. In some rare cases it could
happen that there were still some “strange” characters left over (missed by all the other conversions). In

 14

that case the coordinates were retrieved from the address object and written back to the input line of the
questionnaire.

It worked! The language nightmare was over.

7. Google® Web service

As was mentioned in section 2 the goal was to retrieve coordinates, not addresses. The address object
produced by Google® Maps contains these coordinates (latitude/longitude). But respondents are not
really trained in reading coordinates. Therefore, in the questionnaire the location produced by Google®
Maps should be a readable address. Besides, in Internet questionnaires the search option is optional. If a
respondent is sure of the address he can decide just to type it in without invoking the search function. The
conversion to coordinates should therefore take place after the question has been filled in. In other words:
on the server in our office.

Besides the interactive Maps API, Google® also provides a web service to convert addresses to
coordinates. A link to more information about this web service can be found on the homepage of
Google® Maps (see Section 10 References). A web service can simply be invoked by calling its URL
with some parameters. It normally responds by sending back an xml-stream. To call an URL from a
BlaiseIS questionnaire ca be done using a so-called HTTP-request. For that purpose an Alien procedure
was created calling a .NET component. In a Microsoft® environment a class is available for this purpose.
This is how it looks:

<Runtime.ComVisible(True)> _
 Public Sub GetResp(ByVal pURL As BlAPI3A.Field,

ByVal pParam As BlAPI3A.Field, ByVal pResp As BlAPI3A.Field,
ByVal pStatus As BlAPI3A.Field)

 Dim objRequest As New WinHttp.WinHttpRequestClass
 objRequest.Open("GET", pURL.Text + pParam.Text, False)
 objRequest.Send()
 pResp.Text = objRequest.ResponseText
 pStatus.Text = objRequest.StatusText
 objRequest = Nothing
 End Sub

By making the question in which the address from the search function is written (or directly typed in by
the respondent) so-called “critical”, the rules on the server are invoked when this question looses the
focus. In these rules the web-service is called through the Alien procedure and returns an xml stream in a
Blaise string field containing the coordinates. This string is subsequently “ripped” with standard Blaise
commands to get hold of the coordinates. Using a status field warnings or errors can be given when an
address could not be converted. As it is server based, the call to the web service is going outside to the
Internet. The fire-walls should therefore be configured to let this call pass through.

8. Look and feel

Using the functions of the Google® Maps API the search function is made as user friendly as possible. A
respondent can double click on any place on the map and the marker jumps to that place showing the
address in the info window. It is also possible to “grab” the marker with the mouse and drag it to a new
place. Furthermore, by clicking on the search button on the top of the search screen, the screen is centred
on the marker wherever it is situated. The whole map can be moved by dragging it with the mouse or
using the navigation buttons. As Google® Maps is a very used function on the Internet, it looks quite
familiar and respondents will probably not have any problem using it.

 15

Finally the search window is given the same standard look and feel of the other BlaiseIS search functions
as we designed them at Statistic Netherlands.

9. More functions

The same technology that is used for the location search is applied for other search functions too. At this
moment a hierarchical search function is available which is designed for large coding tables like the
Combined Nomenclature as used in the European Intrastat survey. Lately a keyword search was added
that can e.g. be used for coding occupations. The concept of this popup search function makes it possible
to develop new functions in a short time. Finally based on the same concept but applied in a different way
a function for a popup question was added to the “family” that can also be used as an alternative for the
remark function.

10. References

Google® Maps homepage: http://code.google.com/intl/en/apis/maps/index.html

Google® Maps terms of service: http://code.google.com/intl/en/apis/maps/terms.html

Google® Language homepage: http://code.google.com/intl/en/apis/ajaxlanguage/documentation/

Google® Forums homepage: http://www.google.com/support/forum/

http://code.google.com/intl/en/apis/maps/index.html
http://code.google.com/intl/en/apis/maps/terms.html
http://code.google.com/intl/en/apis/ajaxlanguage/documentation/
http://www.google.com/support/forum/

 16

CATI Followup Application: Resolving Communications Links
Between Applications Using XML
Joseph Cummings, Statistics Canada

Abstract:
Designing a Blaise application to be used in a Multi-Mode environment has resulted in a strong tool that
can be used for CATI, CADE and failed edit follow-up. Having Blaise interface with external systems in
this Multi-Mode environment has given us some interesting design challenges in terms of methods for
transferring the data between the systems and evaluating the completeness of the data.

This presentation reviews the solutions we originally designed and where we see ourselves moving to in
the near future. Within each of these phases we will review the pros and cons of each strategy and of any
lessons we have learned in the attempt. Some of the interesting challenges and considerations we need to
face involve managing the separation of different collection methods between different groups of users
within a distributed environment. We also need to weigh the pros and cons of distributing the samples
between different collection applications or managing users from different locations through one
centralized sample.

The original design involved electronic collection over the web with the data stored in an SQL database.
The SQL database had a mapping table within it where each field collected could be mapped to a field
within the Blaise database. The collected data would be parsed nightly and loaded into the Blaise
application where it was evaluated for completeness and accuracy.

The current design is similar but extracting the data into an XML format has replaced the parsing tool and
has improved the speed of loading the data into the Blaise application. In addition, the evaluation method
has evolved to be more robust and versatile. The application has also been improved within its Multi-
Mode functionality by introducing the solutions we have for evaluating the loading of external data to the
Data Capture flows and evaluation.

 17

Computer Assisted Interview Testing Tool (CTT) - a review of new
features and how the tool has improved the testing process.
Russell Stark and Rebecca Gatward – Survey Research Center, University of Michigan

1. Introduction
The CAI Testing Tool (CTT) is an application developed by the University of Michigan’s Survey
Research Center to manage and facilitate efficient testing of Blaise questionnaires.

CTT is a comprehensive tool designed to be used by all involved (programmers, project managers, and
clients) in questionnaire testing and development from beginning to end. As Dascola et al. explain in
their paper, presented at the 2007 International Blaise Users Conference, CTT was designed to improve
the quality of CAI instruments through standardized testing procedures, reduce the cost of testing, and
increase access to information about the CAI development process through preset and adhoc reports.

The tool has now been in use for around three years and a new version of CTT has recently been
developed. This paper will outline recent updates to the testing tool, which include the capability to test
Blaise IS questionnaires, will examine how the tool has changed the testing and development process, and
will attempt to quantify how it has improved the quality of CAI instruments and reduced testing costs.

2. Background
Development of the CAI Testing Tool began ‘in-house’ in 2006 and the first production version was
being used by project teams in 2007. The tool was developed with the aim of standardizing testing,
increasing the overall quality of CAI through standardized testing procedures, reducing testing costs and
increasing access to information about CAI development through standard and ad-hoc performance metric
reports.

3. Key components of the CAI Testing Tool
The CTT consists of six main components, these are summarized below, a more detailed description of
the tool is provided in Dascola et al (2007).

3.1 Automated testing tool
The CTT is a fully automated tool used to maintain a bug log for Blaise applications. This is a program
that ‘follows’ the tester while they run through a Blaise application. The tool keeps a keystroke log, can
capture screen shots, and automates the bug log and bug log item prioritization. Pre-loads (scenario
information) can be specified to ensure all aspects of Blaise instruments are tested.

3.2 Pre-load builder
The CAI Testing Tool also includes a pre-load builder, which is used to enter or load any data required to
test the instrument. The pre-load builder allows us to create a new or update a pre-load for a revised
instrument, or delete an existing pre-load via an administrative data entry screen.

3.3 Random case generator
The random case generator feature tests questionnaire routing using test cases that have been created
using random data. Using the output the programmer can determine if all the questions in the instrument
have a response. The programmer can then investigate if the blank fields are due to a routing or
programming error. The Random Case Generator includes some ‘intelligence,’ with preloaded
information guiding what variables are not randomly generated, to allow for focused generation of case
data and testing of targeted paths. This feature helps ensure every piece of the questionnaire has been

 18

tested. The module produces an Excel file called frequency.csv, which lists the questions alongside the
number of times each question has been answered.

3.4 Management
The ‘manage problems’ screen works as a functional dashboard to deal with issues. Its general purpose is
to review and manage the bugs or enhancements reported during testing. The bottom half of the screen is
primarily used by the Blaise programmer. Here they can view all information about the issue and update
information about each problem for example, the problem status, open a screenshot or audit trail, and
enter the date when a problem is fixed. This screen displays all problems, regardless of status. The
addition of a capability to sort, move and filter columns is a great improvement in the newest version.
Blaise and BlaiseIS problems are all listed on the ‘manage problems’ screen in the same way.

3.5 Reporting
CTT has a built-in reporting function providing the tester, coordinator and programmer the ability to
generate specific reports. This helps each level of the testing staff to focus their efforts effectively. The
ready to test report is designed primarily for testers. This report shows the tester which problems have
been repaired, their locations and other relevant data. The tester can use this report as a guide to what to
re-test and to confirm that problems have been solved. The ‘Not Fixed’ and ‘Not Fixed High Priority’
reports are designed for the Blaise programmer. This allows them to one-click a report of what they
currently have to work on. We also display a number of summary reports that provide information on test
performance metrics (e.g. Problems found, problems fixed problems remaining etc.). These are used by
managers and testing coordinators to monitor testing progress.

3.6 Administration
The Administrative tasks tab in CTT contains a variety of upper-level functions. Managers or
coordinators can add projects and set-up files for testing, assign testers to projects, attach specific
priorities to different problem types, import master preloads and assign access rights. These
administrative tasks are grouped in the Admin tab and then are shown as large icons on the ‘ribbon’.

4. Recent developments to the CAI Testing Tool
Since 2007, we have continued to develop the CTT. The enhancements made are in response to feedback
from users and the need to keep up to date with new developments in Blaise. The key developments are
described below.

4.1 Updated user interface
Since the first version of the CTT was developed, we have updated the overall look of CTT using the now
familiar ‘Ribbon’ interface. It allows for a smoother user interface, using large icons for navigation
(figure 1) instead of dropdown menus from the title bar. We have also introduced tabs, allowing similar
tasks to be grouped and separated. Users have reported that they find the new user interface and its
updated look easy to navigate.

 19

Figure 1. Large icons for navigation

4.2 Blaise IS
A recent addition to the functionality of CTT, is the ability to test both BlaiseIS web-based instruments
and ‘standard’ Blaise instruments simultaneously (figure 2). The Blaise IS component has been designed
to follow the functionality of the general Blaise testing tool as close as possible.

Figure 2. Blaise and BlaiseIS questionnaires are accessible from the CTT

The report problems screen, which users see most often, is nearly identical in both versions, as is the
short-cut key (F8) used to call this screen (figure 3). This reduces the need for any retraining for users
who were trained on the original system or the need for separate trainings for general Blaise and BlaiseIS
testing.

 20

Figure 3. New problem screen in BlasieIS testing

The BlaiseIS testing tool has been designed to work in all major web browsers (IE, Mozilla Firefox,
Chrome, and Safari). After a user has selected an instrument to test, they are prompted to select
whichever browser they prefer (and have installed) (figure 4).

Figure 4. Choosing a Web browser for BlaiseIS testing

 21

Figure 5. Example of BlaiseIS instrument, with CTT

4.3 Manage problems
Many updates have been made to the Manage Problems screen. A wish list item from the first version of
CTT was the ability to sort and filter information based on user requirements. This option is now
functional, even allowing the user to resort each column to their needs. This main screen also now
features a functional screenshot button. This permits the user to open a screen capture of the problem in
question. Feedbacks from CAI programmers lead to the development of the Multiple Updates button
(figure 6). This allows the programmer to update the statuses of multiple issues without having to save
each time they updated a line.

Figure 6. Multiple Updates screen

User’s access levels now determine what each level of user sees on the Manage Problems screen. Access
level 1 (tester) cannot see the problems listed by default. This was put in to place to help keep the
interface clean and uncluttered for novice testers. Access levels 2 (Testing Coordinator) and 3
(Programmer) allow users to perform Administrative tasks as well as view all issues listed.

 22

Figure 7. Example of Duplicate Problem screen

5. How the CAI Testing Tool has changed the testing process

The CAI Testing Tool has been used extensively within the Survey Research Center since the first
production version was completed in 2007. In order to understand how the CTT has changed the testing
process, it would be useful to briefly describe how testing was carried out before CTT was developed.
Pre-CTT, comments were recorded on one or multiple Excel spreadsheets. This meant that a lot of time
was spent reconciling logs and trying to determine what the tester was trying to convey. Too much time
was spent working on ‘bug logs’ and not enough on testing or developing the instrument. CTT integrates
all of the functions for Blaise testing we need into one software package, and automatically gathers the
testing information and outputs it to formats which can be used by all.

In this section of the paper we describe how CTT has improved the testing experience from each of the
three main users perspective: tester, programmer and manager.

5.1 Tester

5.1.1 Direct access to the CTT
The main advantage of using the CTT for the tester is the ability to access the tool and record comments
directly from the Blaise questionnaire (figure 8). Using a short-cut key, they can record comments with no
need to jump between applications. The testers comments are saved directly into one master ‘bug’ log ,
the tool ‘stamps’ the comment with the field name/path, records the testers username and attaches any
additional data – for example, a screen shot to the comment.

 23

Figure 8. CTT Blaise testing notes entry screen

5.1.2 Existing problem
The ‘existing problem’ feature, eliminates duplication of effort – the tester is notified if a comment has
already been attached to a field – they can then check if the existing check is the same as the one they
have (figure 9a and 9b). When appropriate testers can then click a ‘duplicate problem’ button while
testing inside Blaise, affirming they have recognized the problem also, but do not need to make separate
note for it.

Figure 9a. Duplicate problem screen (Blaise)

 24

Figure 9b. Duplicate problems screen (Blaise IS)

5.1.3 Screen shots
Testers have found the screen shot option is particularly useful when commenting on screen layouts
because it reduces the amount of text they are required to enter to describe the problem, in addition the
programmer is able to see how the screen layout appears without entering the Data Entry Program (DEP)
themselves.

5.1.4 Central creation of testing cases
The ability to create ‘master scenario’ testing cases has also saved time. Those with particular access
levels can create ‘master’ cases and make them available to more than one tester. The tester can then
select and save the cases to their own ‘testing area’. This feature reduces time spent specifying scenarios
and for testers recreating them, it also helps ensure all testers are using the correct testing parameters.

In further benefit of using a shared pool of master cases is that the cases can be prefilled to particular
points in the questionnaire, this allows the tester to concentrate on elements of the questionnaire they have
been assigned to test rather than wasting time getting to the point of testing. This is especially useful
when testing effort has been divided between sections of the questionnaire or when clients wish to
concentrate their testing on the questions they are funding.

5.1.5 Remote testing
One of the aims of the CTT was to allow remote testing. This facility has proved to be useful with not
only off-site testers, such as field interviewers, but also with clients.

5.1.6 Sharing test cases
A further feature that has saved testers’ time is the ability to share cases or scenarios with others. In the
CTT, testers can save cases they have created whilst testing and those with a higher access level can
create and save ‘master’ cases for others to use when testing. This eliminates the need for others to spend
time recreating a reported.

5.1.7 Targeted retesting
When retesting the questionnaire the tester is able to access the ‘Ready to Test’ report. This report, in
Adobe .pdf format, outputs a form displaying problems that the programmer has changed the problem
status from ‘New’ to ‘Ready to test’ after they have repaired the problem. This lets the tester focus on re-

 25

testing the specific problems in the instrument. After the tester has determined that the problem has been
fixed, the tester will enter that information via the Update Problem status check box (figure 10).

Figure 10. Update Problem status screen

5.2 The programmer

5.2.1 Consolidating Comments
For the programmer, the key advantage is that all comments are stored in a consolidated list, in a
standardized format with other details, such as field name and tester username attached. The programmer
no longer has to decipher emails, Excel spreadsheets, scraps of paper, or remember to act on comments
provided face to face. Having comments all in one place ensures programmers have all the information in
one place and streamlines their editing time.

5.2.2. Specifying reports
A further key feature is the reporting function in the CTT. The programmer can either view or print
standard reports or specify them. For example, programmers can select just the problems they have been
assigned to fix or a general list of unfixed problems, and then work from a printed copy.

5.2.3 Identifying problems
Programmers have found that simply being able to view and manipulate the list of problems helps
identify similarities in problems and can lead to further common problems being found. CTT gives
programmers the more confidence in an instrument because they know it has been tested thoroughly and
can release it with more confidence.

5.3 The Manager

5.3.1 Control of the testing process
The CAI Testing Tool enables the manager to have control over the following aspects of the testing
process.

• Access to survey questionnaires or questionnaire versions is controlled by username. This
ensures that the intended version of the questionnaire is used for testing and testers do not waste
time working on an incorrect version.

 26

• The manager can also control which aspects of the questionnaire are tested or the scenarios used
by creating master cases.

• If necessary, the manager can control which problems are fixed first by prioritizing cases.

5.3.2 Setting up scenarios for testing
Setting up ‘master’ testing cases once has also streamlined the testing process for the manager because the
scenarios do not need to be specified to the testers and only need to be specified once.

5.3.3 Managing problems
Storing all the testing information in one database is also beneficial to the manager partly, again, because
of the efficiency of just needing to consult one list, but mainly because problems can be prioritized,
sorted, and allocated to programmers to fix within the database.

5.3.4 Information about the testing process
Reports generated from the CTT allow the manager to access information on progress at any point
throughout the testing process.

6. Conclusion

In summary, the CAI testing tool has made the testing process more efficient – saving time and thus
money and improved the quality of CAI questionnaires.

The tool has fulfilled all the objectives set out to justify its development. Using the CTT ensures that all
projects are following a standardized approach to testing and teams are not wasting time developing their
own databases in which to collate comments. The tool has saved time for all those involved in the testing
process. The CTT also stores and allows access to documentation about the entire testing process,
providing a source of data about one project and the ability to run reports easily. The tool also acts as a
repository for information about future enhancements and could provide information that could be used to
influence development of future projects or the questionnaire development process.

From our experience CTT has facilitated a smoother (and more harmonious) testing process with all those
involved working in the same environment accurate and appropriate information can be shared easily
among the programmer, tester, and manager.

We have found the CAI Testing Tool to be a useful tool that reduces the burden of testing for all involved
in the process. Although the quality of a questionnaire can only be as good as the time spent testing it--
this tool allows the tester to concentrate their efforts on releasing an instrument with minimal errors.

References

Dascola, M., Pattullo, G. and Smith, J. (2007): CTT: CAI Testing Tool Proceedings of the 11th
International Blaise Users Conference, 2007, Annapolis.

Pattullo, G., Stark, R. and Batra, P. (2010) Testing Tool Manual Survey Research Center, University of
Michigan.

 27

Automated Regression Testing of BLAISE INTERNET: A Case
Study
Karen Brenner and Sudha Manoj, Westat

A commercial off the shelf (COTS) testing product, TestPartner, is being used to automate test cases for
Blaise Internet projects. This paper will review the pros and cons of automated testing and present
considerations in making a decision about whether automation is the best option for a particular project.
We will look at how we implemented automated testing and discuss issues that Blaise Internet presented
and how they were resolved.

Automated Testing Lifecycle
This paper focuses on Automated Testing for comprehensive regression testing changes in a Blaise
Internet instrument. Like the overall software development lifecycle (SDLC), test automation has its own
lifecycle consisting of the following six steps:

1. Level of Effort Analysis: The decision whether to automate testing is based on analyzing the field
length of the project, system stability, available resources, test environment, tool compatibility, and other
factors. A number of significant benefits and false expectations of automated testing are discussed later
in this paper.

2. Test Tool Acquisition: A test tool can be developed or purchased after comparing and evaluating
tools on the market. TestPartner (by MicroFocus) is the standard automation tool currently used by the
Westat Testing Unit; it has been successfully implemented on Westat projects.

3. Automated Testing Introduction Process: An overall test process and strategy needs to be in
place before introducing automated testing for any new project. For example, documented system
changes must be passed to testing to update the version of suites of scripts and expected results.

4. Test Planning, Design, and Development: This phase includes setting up a preliminary schedule
and test environment guidelines, and developing the automated scripts. The Testing Team leads this
phase of the work with staff equipped with a second desktop PC for developing and tuning the automated
scripts. This phase includes close collaboration with the developer and/or tool tech support to help
manage how the tool integrates with the system.

5. Execution of Tests: The test environment needs to be in place as planned. The automated scripts
must have dedicated PCs on which to run. Dedicated PCs for automated testing are totally independent of
development PCs, so that they can provide “unpolluted” platforms on which to test. Thus, they should be
as close to the end user configuration as possible. It may be desirable for testing platforms to have
increased processing speed and memory. This consideration has to be weighed against testing on a
system that is identical to the end user system. The tester will execute automated scripts and provide test
results for evaluation.

6. Test Program Review and Assessment: Test program review and assessment activities need to
be conducted throughout the testing lifecycle, to allow for maintenance of scripts and continuous process
improvement activities.

 28

Significant Benefits of Test Automation
Once it has been determined that automation is appropriate for a project, the team can look forward to the
following benefits:

1. Increased depth and breadth of regression testing.
2. Elimination of long, repeatable manual test cases. (Although automation doesn’t eliminate

manual testing, it does replace lengthy repeatable test cases so that testers can focus on particular
issues.)

3. Reduction of the schedule.
4. Unattended testing. Automated tests can run unattended and overnight.
5. Improved quality of the test effort.
6. Improved assessment of system performance. Besides allowing for greater consistency and test

coverage, automation can be used to ensure that the system’s performance requirements meet or
exceed user expectations.

False Expectations for Automated Testing
After considering the automated testing life cycle, the benefits of automation must be weighed against
false expectations:

Automation can be implemented at any time
Automated testing requires a long-term project with an instrument that is relatively stable, that needs to
have run a specified set of regression tests on a regular basis that have predictable results. If the project
tries to implement automation prematurely, while a system is still being developed, it will increase the
maintenance required to keep suites of scripts running that can provide useful feedback about software
issues.

Automation can replace manual testing
Automated test tools should be viewed as enhancements to manual testing; they will not develop a test
plan, design and create test cases and procedures, and execute the tests. The test team will never achieve
100% test automation of an application, because it is not possible to test all combinations and
permutations of all inputs. An experienced tester will certainly need to execute tests during exploratory
testing that were not predicted when writing test cases.

Automation is easy
Vendors sell an automated tool by exaggerating its ease of use, usually referring to it as a
“record/playback” tool. Automation is actually more complicated than that, because recorded test scripts
must be enhanced manually with code to make the scripts robust, reusable, and maintainable. To be able
to modify the scripts, the tester must be trained and become an expert on the tool’s built-in scripting
language.

One tool does it all
Currently, one single test tool will not fulfill all testing requirements for most projects. Different tools are
used for regression, file comparison, load, and other aspects of testing.

 29

Immediate test effort reduction
In addition to the learning curve associated with applying automated testing to a project, test automation
requires that the team pay careful attention to automated test procedure design and development. The
automated test effort can be viewed as its own software development life cycle, complete with the
planning and coordination issues that come along with a development effort. Time is invested up front to
organize, plan, script, and debug.

Selecting an Automated Tool
There are many tools in the market which support automation. TestPartner is the testing tool we selected
to automate our regression testing process at Westat. Like most automation test tools, you can create
scripts automatically using TestPartner’s record facility. When recording your actions, the responses of
the application you work with are translated into TestPartner scripts. TestPartner can record just
keystrokes, mouse moves and clicks. It works best at an object level –- identifying objects by name.
Your actions are translated into simple commands. TestPartner lets you quickly record and execute test
scripts. The tester can then modify test scripts to include hand-coded programming that cannot be
recorded, to enhance the scripts and make them easier to maintain. All automated test tools will require
this hand-coding to make scripts robust, even though tools are generally marketed as “record and
playback.”

In a basic out-of-the-box Blaise for Windows script, TestPartner is not able to uniquely identify the
objects on the screen, since Blaise for Windows does not supply a unique attribute to the windows
control. One option we’ve implemented with a Blaise for Windows application is to build a web front
end for a Blaise survey, that uses the Blaise database, and then easily build automated test scripts using
the HTML web interface.

TestPartner works well with Blaise Internet and raises very few issues.

Example of how the tool works
For demonstration purposes, we have version 1 of an instrument which is relatively small and has already
been determined to be a candidate for automation. First, we need to record the script by going through
the instrument manually. Each object in the instrument has an object name with unique properties. The
object name is displayed in the script when the tool generates the code. The script generating options we
use record the tester’s actions such as keystrokes and mouse clicks as they are applied to the objects on
the screen. These options make the script more understandable when read and allow us to more easily
maintain it. Once the script is recorded the first time, we can play it back. After the script runs, the results
will be displayed in the results window. If the script runs through correctly, the results show as passed. If
the instrument has any changes or does not run, the script fails and the results are displayed as failed.

Here is an example of a script running on version 1 of the instrument.

Record and Playback buttons are the red dot and the blue arrow:

 30

Script:

Results Window:

 31

If a script stops during playback, we know that there is an issue. When it is determined to be a defect, we
enter the issue in our standard bug tracker. If it is not a defect, for example an intentional change to the
instrument, we have to modify the script to make it run. This requires maintenance of the scripts as the
versions of the instrument keep changing. It is not very difficult, but scripts have to be updated on an
ongoing basis. One can edit the code manually to comply with the screen or re-record portions of scripts
to incorporate the new information and allow the script to continue running.

First, it is important to note that automation tools have a variety of checks that can be used for more test
coverage. Without checks, you’re only testing navigation. Adding checks lets you confirm that the
application is validating input, performing calculations correctly, saving data reliably, and reporting
accurately, by comparing actual responses to expected responses and reporting any discrepancies.

Here are some of the checks that can be used in TestPartner.

Bitmap Checks: These checks compare a bitmap in the target application with one that was previously
defined. Bitmap checks are used to verify the appearance of toolbars, the desktop, and other windows
that contain non-textual information.

Content Checks: A content check enables you to verify the contents of controls that the tool supports.
Currently, tables and list controls in a Windows-based or Web-based application are supported. List
controls include list boxes, drop-down lists, combo boxes, and various “tree” type controls, such as those
used in Windows File Manager and Windows Explorer.

Field Checks: Field checks enable you to conduct specific types of text comparisons, including date
and time, of individual fields you select in a window or area.

Text Checks: These checks can be used to verify the text on a screen. You can check an entire window
and mask the area(s) that contain variable data, such as the current date or anything else that you want to
ignore during the check. One can add a check by simply selecting the area of the window that contains
the text to capture.

In the following examples, we will be examining an instrument where a field has been added to the page
and a response list has been modified. We want to look at how to set up the script to spot various types of
changes and how to maintain the scripts.

Text Check Example
In this example, version 1 of the instrument asks a Yes or No question on screen1, while version 2 of the
instrument lists classifications in college. We captured the text and ran the same check on version 2. The
script is expecting to find certain text in a specific location, and notices that there is a discrepancy. Since
the text does not match, the check fails and is displayed on the results screen.

 32

Failure Screen:

When you click on the failed check, it takes you to the details page, and the differences of the text are
displayed as shown in the screenshot below.

Content Check Example
Content checks can be used to check the text of the items in a list or the number of items in a list, and if a
list item is selected, the content check can be used to check the number of columns and rows in the table.
One can add a check by simply selecting the field with the dropdown list to capture the items in the list.

 33

In this example, version 1 of the instrument has eight items in the dropdown list on screen3, while version
2 of the instrument has been modified to have nine items. We created a content check in version 1 and
ran the same check with version 2. Since the content of the items in the dropdown does not match, the
check fails and it is displayed on the results screen.

When you click on the failed check, it takes you to the details page and the differences in the content are
displayed as shown in the four screenshots below. In this case, it shows any items added, selections
added, selections missing, and any positional differences.

Items added:

 34

Selections added:

Selections Missing:

 35

Positional differences:

A script without checks would still run without errors as long as the navigation remained the same as
originally scripted.

Example of an Issue with Script Maintenance – New Objects
The one area where we had additional maintenance issues using our tool with Blaise Internet was when
there was a question (object) added to the instrument.

On this screen which is version 1, there are two questions.

 36

The new version 2 has three questions. The first question seen in the red box has been added.

When we run the script during regression testing, the script stops when it gets to the new object. The
script is expecting to be located on the classification field, but instead the focus is on the newly added
survey field. Once it stops a debug screen appears as shown below.

When we click on Debug, it opens up the script and highlights the line where the problem exists, as
shown in the screenshot below:

 37

The result is that when an object is changed (added or removed) on a Blaise Internet page, the properties
of all pre-existing objects on that page also change. One can edit or re-record the script to add the
missing question or edit the code manually to correspond with the new screen updates and continue the
script.

In our example, the script has the object name for question 1 as “Name=qu1fpala”, and the object name
for question 2 as “Name=qu2” as seen in the screenshot below.

After the new question is added, the properties of all pre-existing objects on that page also change. Now
you will notice that the object name for question 2 is now “Name=qu2fpala” instead of
“Name=qu1fpala”.

 38

This indicates that the object properties change on that particular page when objects are added or
removed. Therefore, the script has to be re-recorded for that section or the user can manually change the
code. The maintenance issue is made easier because in general there are not many objects on a Blaise
Internet page.

Conclusion
In summary, there are many automated testing tools. This paper addresses our experience using one
COTS product. We were able to use an automated testing tool to successfully perform regression tests on
a Blaise Internet instrument. The regression testing is ongoing and will be considered for other complex
Blaise instruments.

 39

Moving to a Meta Data Driven World
Chris Seymour, Statistics New Zealand

1 Introduction

The recent international financial crisis has left the economies of many countries reeling as stock markets
have fallen and financial institutions failed. Governments have been forced to intervene with rescue
packages to ensure their countries’ financial systems do not collapse.

With the extent and duration of the global financial crisis not yet known governments are now demanding
more information, sooner, but with an expectation that additional funding will not be available to help it
happen.

This message comes within an environment where the governments, such as New Zealand’s have clearly
articulated that public sector spending will be cut over the coming years.

“Most Government agencies will receive no Budget increases over the next 3 or 4 years, as the
Government moves to get back into surplus as soon as possible”

This ‘tightening of the belt’ is requiring government agencies to rethink the programmes of work that
provide value for money.

2 Changing the ‘status quo’

Within National Statistical Office’s (NSO’s) the global financial crisis and reduction in state sector
funding highlights a need to challenge the ‘status quo‘. This in turn is leading to significant changes in
areas that have previously been considered sacrosanct. For example:

“…the U.K. is getting rid of the 200-year-old head count because it's expensive, incomplete and
out of date before it's even published… In a country struggling with a $235 billion deficit, the
census might be seen as a luxury”

While some agencies are considering moves to cut programmes of work, economic analysts are predicting
that there will be a surge in demand for more timely information. Agency independence and isolation has
also meant that may NSO’s operate in an environment which consists of numerous, often disconnected,
technologies and systems which are difficult to bend to new methods of operation.

In order to stay relevant NSO’s will need to be able to adapt and react faster to changing demands while
operating at a lower total cost. To do so will require the use of new methods and technologies by which
this can be achieved.

Within the data collection arena, which is an increasing expensive exercise for NSO’s, cost and efficiency
drivers are resulting in Statistics New Zealand reviewing all aspects of their collection activities.

“Respondents to statistical surveys are increasingly difficult to contact, disengaged and reluctant.
This raises collection costs and impacts on data quality.”

The current state, which results in information being duplicated, in multiple phases of the Business
Process Model (BPM) and within multiple technologies, each of which requires involvement from IT
specialists, is now harder to justify and rationalize.

 40

As such Statistics New Zealand is increasingly interested in the separation of content from technology.

3 Meta data driven systems

Advancements in technologies and standards are changing the way metadata is viewed by NSO’s. A
definition of metadata states:

“Metadata is loosely defined as data about data”

No longer is metadata the information that must be collected to assist in understanding disseminated data;
which has resulted in varying degrees of usefulness and completeness. Now metadata is seen as a
corporate asset which can be used to drive the business process and has sparked a number of activities
which are transforming the way data is being managed through the BPM.

Over the last two years Statistics New Zealand has focused on the development of metadata driven
platforms within the ‘process’ space of the BPM. This approach has allowed us to construct a platform
that can store any shape of data, while at the same time allow for change and growth in the information
without the reliance on IT specialist.

The following sub sections present the core concepts as they relate to data, data modelling and statistical
processing design (data transformations).

3.1 Concept Library
A concept library provides a central repository of information about the questions and variables that are
collected through survey instruments and administrative datasets. It provides not only a mechanism to
introduce standardisation of questions and variables, but also defines a minimum level of information
capture.

In order to realise the real benefits of the metadata that could be captured new approaches were
investigate for the storage of this information type; from which we turned to dimension modelling.

Questionnaire Processing
System

Data mart

Survey Designer

IT Specialist IT Specialist IT Specialist

Create

Uses Uses

Creates Uses

Survey Flowchart

 41

3.1.1 Dimensional Modelling
Dimensional modelling is a technique where the data structures are presented in a standard intuitive
framework consisting of a central fact table surrounded by a number of dimension tables (i.e. a traditional
star-schema). The fact table stores the measures which is the data that is of primary interest; with the
dimension tables containing the descriptive information that give context to the facts.

3.2 Process Configuration
The configuration store provides a hierarchical repository for process configuration information. This
information type is generally unstructured in nature and has been stored as xml documents which are
directly interpreted by the processes they configure. Examples of configurable processes include standard
statistical tasks such as: data editing, imputation and transformation, reweighting, tabulation, variance
calculation, data storage and extraction, etc.

3.3 Routing Rules
The success of this work has prompted thinking within the collection space that over the next few years
aims to deliver a flexible and configurable system that can meet our collection needs both now and into
the future.

Of particular importance for a collection system will be the capturing of the questionnaire routing
information - this type of data is heavily used within the processing phase to determine the eligibility
status of the response for a respondent. Current tools force this information to be directly embedded in the
instrument with no way of accessing or interpreting it. This results in the duplication of this information,
often in multiple technologies, which becomes disconnected and prone to error through re-interpretation.

This has lead to the investigation of rule engine technologies with the aim of centralising the creation and
storage of this information.

The combination of metadata and metadata driven tooling will enable the delivery of a collection platform
for Statistics New Zealand which provides it users with the flexibility and control they require, while at

Data

Meta Data

Collection

Collection
Instance
Instrument

Instrument
Map

Instrument

Question

Unit of
Interest

Fact Fact

Collection
Instance

Change
History

 42

the same time delivering a lower total cost of ownership through reduced IT involvement over any
collection’s lifecycle.

4 Bringing systems together

The advancement in infrastructure elements such as metadata driven question libraries, configuration
driven tooling and graphical routing technologies, coupled with the increasing development and adoption
of data related industry standards, provide us with the confidence that the physical instrument can be
separated from the information used to create it and the information it collects.

As this generation of tools begin to emerge, tools like Colectica, although immature and not yet capable
of supporting the corporate arena, offer promising sign that this vision can be realised.

The vision:

4.1 Standards
One of the key factors behind these advancements is the emergence of standards aimed at the statistical
world. With adoption on the increase, statistical organisations are positioning themselves to take
advantage of the transparency and ease that standard bring.

Of the standard gaining favour, the Statistical Data and Metadata eXchange (SDMX) standard for
aggregated data and Data Documentation Initiative (DDI) for unit record data are the lead candidates.

4.1.1 SDMX

“SDMX is an initiative to foster standards for the exchange … of aggregated statistical data and
the metadata…”

Survey Flowchart

Questionnaire
(Instrument)

Processing
System

Data mart

Survey Designer

Analyst

Create

Generates

Loads

Uses Generates

IT Specialist

Supports

Supports

Supports

Metadata
driven tools

Uses

Supports

Analyst

 43

4.1.2 DDI

“The Data Documentation Initiative (DDI) is an effort to create an international standard for
describing social science data…designed to document data across the research data life cycle,
from questionnaire design to data publication…”

Although SDMX is recognised as the leading candidate for the interchange of aggregated data between
statistical organisations, it has been the adoption of DDI within the collection space that is providing
excitement in achieving our collection vision.

4.2 International collaboration
Recently a number of NSO’s have meet to investigate the setting up of an international collaboration
group which will focus on the needs of statistical offices. The will enable NSO’s to combine resources
(people, budget and time) to deliver solutions (or part solutions) that can be shared by multiple agencies,
which independently a single agency would not have been able to create.

Although this programme is in its inception it shows promise in delivering solutions tailored to the
statistical world, which to date not, have not been available through traditional IT vendors.

Standards, such as SDMX and DDI, will play a key role in the success of the work undertaken by those
agencies involved in the collaboration exercise.

4.3 Changing the cost model
The use of standards brings with it a number of other indirect benefits for statistical organisations; it
enables new entrants into the arena.

As vendors and open source communities begin to produce offering in the statistical space, the cost
models for agencies can begin to move from projects (capital expenditure) towards that of licensing
products (operational expenditure). This shift provides a huge advantages to organisations and
governments leaders as the total cost of operation can be determined up-front, which in turn enables
better planning and forecasting of financial expenditure.

5 Direction

With reliance upon an increasingly time-poor, mobile and technically competent population, collection
systems will need to be flexible.

The vision enabled through the use of metadata and standards is clear.

• Survey design is given back to survey designers
• Questionnaire development is standardised through the use of question libraries
• Instruments are generated, not hand crafted.
• Duplication is eliminated with the use if IT systems that directly consume the survey design
• Flexibility is enabled through choice of questionnaire delivery modes.

DDI is delivering a standard by which technology can, and is, being developed that will enable a true
multi-model environment which caters for current technologies, and provides the potential to enable new
modes to be seamlessly plugged-in with very little integration, cost and effort.

 44

Metadata and configuration will be the information required to feed into these types of system that
provides the flexibility for users to tailor the collection environment to their needs from which to create
and manage the instruments, using the mode which they require, for a given survey.

6 What about Blaise?

So where and how does Blaise fit into our collection vision for the future?

As stated above, Statistics New Zealand’s current questionnaire development processes and systems are
unsustainable in the current climate, and the answer to this question will largely depends on the
functionality within the upcoming BlaiseNG release.

Three possible scenarios exist:

6.1 Blaise meets DDI
The best possible scenario is that Blaise introduces functionality that enables the tool to be DDI
compliant. This would provide the best possible combination of flexibility and standardisation within a
single tool from which to create survey instruments.

6.2 Wrap it up
This would require the building of software that could externalise the blaise data model using a standard’s
based model such as DDI. This would allow the instrument ‘content’ to be developed independently, but
still use the Blaise DEP to capture the response from a respondent, limiting the impact on existing IT
investments. As a number of NSO’s use Blaise it is envisaged that this work could be done through the
NSO collaboration group to be offered back to the international community.

However, while this scenario offers the potential of flexibility and standardisation when creating a survey
instrument, the architected solution could be brittle as it relies on an as yet unknown data model, outside
the control of the community, and is likely to change over time.

6.3 Move on
The last scenario limits Blaise to a viewing ‘engine’ only as new tools are transitioned into the collection
environment. The survey instrument would be produced as a standards based document which is then
translated into the language of the tool required to display it.

Channels

Meta Data

Routing
Rules

DDI

CAPI

CAPT

CAWI

Other

Configuration

Data

DDI

 45

Initially Blaise, with the instrument generated through software like ‘Colectica’, would still be used to do
this. As more tools emerge that can consume a standards compliant document and collection support
systems were redeveloped Blaise would begin to be phased out.

Although the path ahead for Blaise at Statistics New Zealand is still not set, it is clear that tools which are
metadata driven and standards compliant will play a significant part in the makeup of our collection
system.

7 Summary

The global financial crisis has put added pressure onto governments and government agencies to reduce
cost; in particular leading statistical offices to begin rethinking the methods, justifications and practices
used to create statistics in an environment that is demanding more, sooner.

Within Statistics New Zealand metadata is playing an increasing part in the generation of systems that use
rather than just collect this type of data and are proving to be more flexible and resilient to change.

The use of standards, such as DDI, are seen as a key enablers both in terms of aligning technology and
allowing IT vendors into the market, which will result in new cost models that offer the potential to lower
the overall cost of ICT for statistical agencies.

A DDI or standards aware Blaise has the potential to be at the forefront of survey development tools in an
environment where significant change is underway.

8 References

Collections 2020 Paper, Andrew Hunter, 16/07/2010

(Hon) Bill English - Finance Minister, http://www.parliament.nz/en-
NZ/PB/Business/QOA/4/b/9/49HansQ_20100422_00000002-2-Budget-2010-Value-for-Taxpayers-and-
Better.htm, 22 April 2010

Adam White, http://www.time.com/time/world/article/0,8599,2005245,00.html#ixzz0wol9NEMQ, 21
July 2010

Keith Chung, Input Data Environment (IDE) Design Overview, November 2007

The DDI Alliance, http://www.ddialliance.org, August 2010

The SDMX Sponsor Committee, http://sdmx.org/?page_id=10, August 2010

http://www.parliament.nz/en-
http://www.time.com/time/world/article/0,8599,2005245,00.html#ixzz0wol9NEMQ
http://www.ddialliance.org
http://sdmx.org/?page_id=10

 46

Resolving Question Text Substitutions for Documentation
Purposes Using the Blaise 4.8 API Component

Jason Ostergren, Helena Stolyarova, and Danilo Gutierrez, The University of Michigan

Overview

The Health and Retirement Study (HRS) is a national longitudinal survey on the health concerns and
economics of aging and retirement. The HRS utilizes a CAI instrument for biennial interviews of one to
three hours in length given to around twenty thousand participants. One of the prominent features of the
HRS CAI instrument is that it makes uncommonly heavy use of text substitution in its question wording.
In some HRS questions, the entire wording consists of text substitutions, and oftentimes multiple
substitutions are used in succession and/or layered inside of others. While this situation provides for a
more dynamic and streamlined interview experience, for the purposes of documentation it presents a steep
challenge for anyone attempting to resolve and document the various permutations of question wording.

There are various reasons why HRS finds text substitutions so necessary. At a basic level, they allow
HRS to provide exact wording to the interviewer rather than offering a parenthetical that forces the
interviewer to choose the correct words on the fly (e.g. “What is your husband’s name?” vs. “What is
[your/his/her] [husband’s/wife’s/partner’s] name?”). Some substitutions are very closely tied to particular
bits of data like gender and tend to be fairly simple. Others reflect more complicated and dynamic data
gathered from multiple variables or the flow of a particular interview. What is more, these various kinds
of substitutions can be layered on top of each other to produce even more complicated structures.

HRS has tried a number of schemes to resolve these text substitutions in the past. These range from
manually tracing the logic of the substitutions to parsing the Blaise instrument source code in various
ways. These past attempts have each proved deficient in some way. While no scheme is ever likely to be
perfect, by making use of improvements in the Blaise API, HRS has now written a program that can
resolve these text substitutions accurately and efficiently. The key advance involves tracing variable
assignments through parameters between blocks and procedures using the API.

Text Substitutions in the HRS

To see how this works, it is first necessary to understand how HRS handles text substitutions in the code
of its instrument. Depending on how one counts, the present iteration of the HRS instrument contains
between 6,000 and 15,000 text substitutions in its primary interview language. When Blaise was adopted
as the platform for the HRS interview in 2002, an array of problems related to text substitutions presented
themselves and the solutions chosen continue to drive the structure of our instrument. In particular, HRS
chose to move all code for text substitutions into procedures and pass the necessary arguments and the
text output as parameters. Procedures were chosen over blocks in part because they do not require
maintenance of instance fields to call them and because HRS had no desire to store the internal variables
used in generating the text substitutions in the database.

The problems which HRS confronted fell mostly into three categories which included the degree of
clarity of the flow code, the ease of translation, and performance. The HRS instrument possesses a high
degree of complexity in its flow logic and thus code readability has been a real problem in the struggle to
debug and maintain the instrument. Pulling all of the text substitution code out of the flow rules helps to
keep these rules readable to the programmer, decreasing the likelihood of flow bugs. Additionally, HRS
has Spanish language translators who work in the code but are not as proficient with Blaise as the main
programmers. Sectioning off all the text substitutions into procedures which are placed together near the

 47

top of each include file has made translating this text somewhat easier and minimized the incidence of
flow bugs being introduced by a translator.

Performance was also a serious problem in the early versions of the HRS Blaise instrument, in large part
due to an excess of generated parameters, some of which were in effect global text substitutions – that is
common substitutions referring to the respondent’s spouse or partner, for example, which are used across
different content areas. To improve performance in the handling of these common substitutions, HRS
built a procedure which was called at the beginning of the instrument that packaged up the 40 or so
strings into an array which was exported to a field at the datamodel level. This array was then passed into
each content block (of which there are approximately 25) and another common procedure was used to
unpack this array into a set of substitution strings for use in that block (see figure 1). This meant there
would be no generated parameters from outside content blocks while also requiring only one field to be
passed into each block, as opposed to up to 40 separate substitution strings.

Figure 1. A hypothetical instance of a text substitution in an array

Although all of this makes the instrument more reliable and efficient, the results of this scheme when it
comes to handling metadata are mixed. In some ways, sectioning off these substitutions makes them
easier to digest manually for the staff tasked with documenting them, but this is not at all an easy task
given the size of the HRS. For automated documentation systems, this has proved a nightmare because it
has simply been difficult to trace the content of a substitution among all the blocks, procedures and
parameters though which it may have passed.

When it first adopted Blaise, HRS found itself almost immediately in need of ways to resolve text
substitutions. Question wording with accurate substitution text was needed for IRB approval,

 48

documentation, translation, quality assurance and other purposes. Manual attempts by programmers to
document substitutions, such as placing the resolved text in the question text of the substitution variable
proved to be impractical to maintain. It also proved too difficult for non-programmers assigned to
document the instrument to determine the possible outcomes of the substitutions in the web of parameters
through which they passed.

Resolving Text Substitutions: General Approach

Ideally, a program which resolves substitutions properly would operate as described in the following
paragraphs. It would walk through the statements of the Blaise instrument in order, stopping at questions
which are asked and which contain carets in the question text of the language being resolved. It would
begin by correctly parsing the name of a substitution variable out of some question text, done by matching
text following the carets which indicate substitutions. Some care needs to be taken here and also at later
points to parse this correctly keeping in mind potential sources of error such as the fact that fully qualified
variable names may be used and that characters like periods at the end of sentences may be adjacent to the
variable name.

Once the variable containing the substitution is named, the correct instance of that variable must be
identified since identically named variables can exist in different blocks. The program must begin
searching for the variable in the immediate block. If no such variable is present, it must then begin to
search upwards through the parent block and on to its parents as necessary. If the variable was a
parameter, the program must identify the name of the variable passed in by the calling block and begin
the process again based on that variable. If a fully qualified variable name is provided at any point that
ends the search.

Once the actual substitution variable is identified, the program must find and evaluate any values assigned
to that variable. Once processed, these become the resolved content of the text substitution – for example
‘husband/wife/partner’ – and can be plugged into the documentation of the question text at the location of
the variable. In a simple case, there may be only a few strings such as ‘husband’ and ‘wife’ to locate. In
more complicated cases, variables may be nested in the assignments which themselves have to be
recursively traced and resolved and then incorporated into the larger resolution process of their parent
substitutions. Additionally, it is necessary to filter out assignments for texts in languages other than the
one presently being resolved (in HRS there are six “languages” – three each of English and Spanish for
respondents, proxies, and proxies for deceased respondents– which each may have specialized
substitutions).

The process of finding these assignments involves walking through all statements looking for direct
assignments to that variable as well as assignments coming from export parameters of blocks or
procedures. When parameter assignments occur, a recursive process of identifying assignments to the
export parameter in question inside the other block or procedure begins. Assignments can also come
from fully qualified references to the variable or from generated parameters. Finally, in some cases in
HRS, assignments can come from parts of the instrument which are not even on the route at the point
where the question with the substitution being resolved was asked (but which could nonetheless appear in
the actual interview). Incidentally, HRS has made no attempt to account for this last eventuality, even
though it occurs frequently in the first section of the HRS instrument due to the complexity of HRS and
the way the rules engine works.

Beyond the mechanics of tracing the substitutions as described above, various additional obstacles exist
which have to be handled. For example, some substitutions simply display a user input value without
ever being assigned a value in the rules, which means there is nothing from the rules to use. However, if
description texts exist in these situations, it makes sense to substitute them. Another problem is handling

 49

array indexes which can make matching variable names difficult, for starters. It can be useful to try to
filter the results by array index if a definite number is given, but it is often the case that a counter variable
is provided, or worse that more than one array index is involved or that some expression such as
‘blockA[i – 1].Q1’ is used. HRS found that it was not worth tracing any indexes more complicated than a
simple number. It also seems advisable to avoid tracing mostly irrelevant variables like counters when
resolving text substitutions.

Implementation: Blaise API Use

HRS has been using the Blaise API to gather metadata since 2001, but only with more recent versions of
the API has HRS been able to use it to write a program along the lines described above. The API
provides a RulesNavigator object which can be used to walk through the entire statement hierarchy of
the instrument. It also provides field metadata for statements that put a field (including blocks and
procedures) on the route, which includes items such as question text that can be searched for the carets
indicating substitutions. The functionality of this is well known and will not be described here, but the
information that is gleaned from it is the key to this process. What follows is a description of the new
kinds of data that must be gathered from the RulesNavigator in order to resolve text substitutions
effectively.

Given the large number of places in the process where tracing parameters is critical, it is vitally important
to glean information about parameters from the API. Three pieces of information are vital. These are the
name of the parameter inside a block or procedure (that is, its name in the parameters section) and the
corresponding name of the variable outside which is passed in as an argument to the block or procedure
call. Finally, it is necessary to know the direction of the parameter (import, export or transit) – that is,
whether the data passed by the parameter is flowing into or out of the block or procedure in question.

To obtain this information, it is necessary to look at the StatementText and the Field object for the
statement calling the block or procedure. If there are parameters involved, the StatementText string
will contain the text “{Parameterlist:}” followed by a comma delimited list of names of the parameters on
the outside of the block or procedure call. By splitting this list by commas, an array can be obtained
which will correspond to the order of parameters listed in the Fields collection inside the block or
procedure. These Fields can be obtained from the method get_DefinedFields() on the Field
object used above. Then it is necessary to loop through this set of fields and obtain each LocalName,
which will provide, in order, the inside names that correspond to the variable names from the
“Parameterlist.” While looping through the set of Fields, it is vital to collect their ParameterKind,
which will require casting them to IBlaiseField2. It may also be helpful to verify that they are
parameters by checking that FieldKind == BlFieldKind.blfkParameter.

With these data about parameters in hand, it is possible to trace the originating variable of a text
substitution upwards through layers of parameters by matching the outside parameter and continuing the
search in the parent block. It is also possible to track down assignments to a variable by matching a
variable receiving an assignment from the export parameter of a block or procedure with that export
parameter so that the assignments to that export parameter can be tracked down in turn.

Finally, in rare cases the API functions in such a way as to prevent tracing these substitutions. Basically,
the problem is that a procedure called from inside a loop at any structural depth lower than the loop block
is treated differently by the API than a procedure called outside of a loop or in the looped block itself.
The Field object for the procedure call statement is null in the former case but not in the latter. This
prevents us from gathering information about the procedure's parameters as described above. The ideal
solution would be for procedures called inside of loops to be handled just like those outside of a loop. It

 50

is hoped that this paper has laid out a sufficient case for the benefits of this functionality to spur interest in
resolving these remaining quirks.

There is one implementation issue that deserves special mention with regard to the sort of text
substitution program described above. HRS found that it was not practical or efficient to directly use the
RulesNavigator object to do the tracing described above. In particular, the RulesNavigator does
not lend itself to free movement within the statement tree, and, at least in many of our early attempts, had
a propensity to max out system resources resulting in extremely slow execution or crashes due to the large
size of HRS datamodels. Instead, the text substitution program that HRS has built walks through the
RulesNavigator in a forward-only fashion, but it simultaneously generates a parallel XML document
which incorporates all relevant information and is arranged in a similar hierarchical fashion. At each
point where a text substitution needs to be resolved, the XML document is used to trace originating
variables and assignments exactly as described above. The resolved text substitutions are then
incorporated into the XML document as nodes connected to the variable containing the substitution.

Figure 2. Sample XML file output for one statement

XML File Overview

The XML document is handled entirely in memory, despite consuming some 200 megabytes in the case
of HRS. The entire process requires between 5 and 10 minutes of execution time on a typical computer.
The originally intended output of this process is a delimited text file containing only the substitution
information, but a side benefit of generating the XML document is that it can also be saved to disk at the

 51

end of the process and used for other purposes. It turns out to be particularly valuable both because of the
resolved text substitutions that are contained within and because the XML seems more accessible than the
RulesNavigator object to programmers and non-programmers alike. Important uses for this XML
output are described below.

Potential Uses of the XML File

One critical function is to accurately resolve text substitutions for input to a metadata documentation
system. As a byproduct of the process which handles text substitutions, HRS retrieves a variety of
valuable metadata such as field names in ask order as processed by language. The table below describes
potential uses of this information.

Figure 3. Potential uses of the XML file with resolved text substitutions for metadata documentation system

Simple Questionnaire

The Simple Questionnaire (SQ) is a formatted output text file designed to document the set of questions
in the order and the form they are presented to a respondent, including question wording with accurate
text substitutions. The SQ does not contain “ask rules.” The procedure to produce an SQ was previously
a challenge since many HRS questions use text substitutions. The method described above significantly
simplifies the process. In a current version of our SQ generating program, we are using a forward-only

Blaise
Application
(datamodel)

XML file
(includes
resolved text
substitutions)

Simple Questionnaire, text file with:
 - Field Name
 - Long Field Name
 - Descriptor
 - Question Text in all Languages with
 resolved text substitutions
 - Codeframes in all Languages with
 resolved text substitutions
 - Data type
 - DK/RF flag
 - Empty Flag

Relational Database

HTML file

Support Table of Fills for Michigan
Questionnaire Documentation System

Automated Text Comparisons

Field Effect Finder

 52

data reader to read the XML file created from the Blaise datamodel. By construction, each question is
represented by a separate node in the XML file, with the following attributes attached to the node:

 - Field Name
 - Long Field Name
 - Descriptors
 - Question Text with resolved text substitutions
 - Codeframes with resolved text substitutions
 - Data type
 - DK/RF flag
 - Empty Flag

As the program reads these attributes for each question node, it produces a formatted output that
accurately represents the question texts, codeframes and other prompts that are presented to interviewers
during the interview. The output of this process is an easy-to-read text file. The advantage of this
approach where we divide the processing from the presentation is that each can be separately modified to
accommodate further needs and changes in the final product. This gives us a great deal of flexibility. We
can omit, reformat or replace parts of the metadata from the XML file as required for different
presentations.

HTML File

The XML file can also be converted to XHTML format by using appropriate XML-to-HTML filters or by
adding tags to the nodes. This is a means of altering the presentation in a portable and familiar way. It
also allows the metadata to be reorganized in versatile ways.

Portability

Another advantage of a widely-used format like XML is that it can fairly easily be directly imported or
programmatically converted to a relational database or other useful storage format. This is helpful for
users who want access to this metadata in a way that they are more comfortable with than either the
Blaise API or our XML output.

Automated Text Comparisons

This process also makes possible the automation of text comparisons that allow reviewers to easily
determine when and how changes were implemented which turns out to be very important for making
best use of resources in translation work, among other things. As with the Simple Questionnaire, a small
program can be written based on the XML to compare targeted parts of the metadata. There are two work
processes in HRS that benefit greatly from the use of such products:

1. Translation comparisons during development. Automated text comparisons between different builds of
the datamodel allow translators to easily determine the changes in English that need to be applied to
Spanish. Tracking these changes has typically been a very involved, cumbersome, and time-consuming
task.

2. Documentation of changes between released datamodel versions. Datamodel changes that affect
interviewers need to be summarized and disseminated during data collection periods.

 53

Field Effect Finder

As a side effect of our text substitution process, we get very useful information about how fields and
parameters are related in the datamodel. It is possible for a field to influence different parts of the
datamodel under different names through parameters. For example, you might have a condition
depending on a parameter called piSex, which actually represents data in a variable called
Respondent.Gender. We include nodes in the XML which tell you about these relationships. You can
write a simple program that takes a particular variable as an input, reads through the XML, and finds all
of the places that this variable of interest affects, even under a different name.

Support Table of Fills for MQDS

This was, in fact the main justification for this programming effort. HRS was concerned that an older
mechanism that was being used would not be maintainable in the future. As previously mentioned,
extracting text substitutions from the datamodel and using them accurately in documentation has always
been a challenge at HRS. This new process to produce accurate text substitutions (fills) has allowed us to
replace an older, less accurate, more complex and less flexible process. One of the main output products
of this process is a delimited text file containing only the fills. A table called the “support table” is
generated from this delimited file and is used as input for the Michigan Questionnaire Documentation
System (MQDS), which HRS uses to document the survey. The support table content now has much
more accurate metadata than ever before. The resulting output from MQDS now needs less editing,
leading to a lesser workload for the editors of this documentation. The documentation’s purpose varies,
but is mainly used to get study approval from the Institutional Review Board (IRB) at the University of
Michigan.

IRB documentation, End-User Documentation and Quality Assurance

While producing documentation for IRB study approval was the original purpose of the new process and
products, it will likely become equally important in producing metadata for quality checks and end-user
documentation. Some of the other things the new process allows us to do are:

- produce field descriptors and quickly check for duplicates and errors throughout our large
instrument

- produce field names in ask order sequence for checking integrity and completeness in
documentation

- produce question text and codeframe text and check them for omissions and errors
- produce ask rules for use in easy-to-read formats

Conclusion

In short, HRS was in need of a new product to save time and increase accuracy in metadata processing of
text substitutions for IRB documentation to obtain study approval. The application described here took
advantage of features currently available in the RulesNavigator class of the Blaise API which make it
possible to trace the effects of variables throughout the structure of a datamodel. This effort was
combined with another longstanding HRS project which converted metadata from the API into an XML
document in order to make that information more widely accessible. The intention was to provide a
source of metadata with text substitutions in the XML which could be exploited by small, easy-to develop
programs for a variety of uses as described here and others that have not yet been imagined.

 54

MetaDEx – From Data Dictionary to Complete Blaise Data Model
Code Generation
Farit Vakhaetov, Department of Population Health Research, Alberta Health Services - Cancer Care

Abstract:
Population Health Research is a department focused on population-based epidemiological research in the
areas of cancer incidence, causes, survival, and prevention. Blaise has been broadly used in the
department to create CAPI data collection instruments from the early 2000s. Based on understanding of
the crucial role of metadata definition for effective and robust data collection, management, and analysis,
the Meta Data Extended (MetaDEx) Tool was initiated as a utility to create and maintain data dictionaries
mainly for surveys, but it can be also used for analytical and other data sets. Its functionality was later
extended to generating complete Blaise instrument code. The program was developed in C# and
Microsoft Visual Studio 2008. All metadata is stored using eXtended Markup Language (XML).

MetaDEx facilitates a two-step approach in which subject matter specialists prepare specifications, and
then IT specialists develop the Blaise CAI instrument. Data specification is structured hierarchically and
defines the questionnaire content, text formatting, data flow, constraints, etc. While the system supports
the generation of simple Blaise instruments directly from basic data definition, more complex data models
require additional programming. The code generation module is built on advanced Blaise specific
attributes and parameters which might be specified for any entity in the data dictionary. Additional ability
to attach direct Blaise language elements (i.e. LOCALS, PARAMETERS, AUXFIELDS, SETTINGS,
etc.) and entire code constructions (i.e. RULES or PROCEDURE definitions) to the section (block)
provides virtually unlimited flexibility. Code generation is not limited to initial coding only, but also
supports an iterative process of Blaise questionnaire authoring. MetaDEx completely eliminates any
manual modifications in the data model script after it is generated, which guarantees congruency between
the data dictionary and the actual production instrument in Blaise.

 55

BlaiseIS Sample Management
Hueichun Peng, Lisa Wood and Gina-Qian Cheung - Survey Research Center, University of Michigan

1. Introduction
The University of Michigan’s Survey Research Center (SRC/SRO) has been involved in research projects
using web surveys as a means of data collection for years. We have used a variety of web survey
software packages such as Inquisite and DatStat Illume. Some of the software comes with limited
technical systems for sample management, such as tracking survey status, sending out emails and data
report download. As these research projects with web surveys are getting dynamic in a variety of
manners (e.g., mixed mode data collection and diary types of web surveys), we get ever increasing
complex technical specifications and challenges. As a result, we have developed various systems for
sample management for web survey projects.

In the last 3-4 years, SRO has initiated exploration of web surveys using BlaiseIS. In August, 2009, we
started to do extensive testing and prototyping with BlaiseIS 4.7 for a large scale project, the Army Study
to Assess Risk and Resilience among Service Members (STARRS). The original work scope for the
Army STARRS project involved using web surveys on a very large scale (400,000+ respondents) and as
part of mixed mode data collection in different waves. We made the technical decision to use BlaiseIS as
the web survey data collection tool.

In May 2010, we used an internal SRO project to launch key components with BlaiseIS as a pilot project
as well as proof of concept for our design and programming work with the Army STARRS Project. Since
BlaiseIS does not have a sample management system (SMS), we included programming BlaiseIS sample
management functions in our development. The result was very successful.

SRO’s implementation of BlaiseIS involves incorporating the web SMS modules within our current
Blaise SMS (SurveyTrak) system. We will explain how we designed and managed the process flow of
running a BlaiseIS survey, starting from loading sample lines and key preload information, designing and
scheduling email jobs, logging survey status, reporting, and closing out the survey.

2. Key Components of BlaiseIS Sample Management
Using the knowledge we have gained from working with web survey projects, we defined five key
components we needed for managing sample with BlaiseIS.

1. Link the SMS database with BlaiseIS
2. Create email functions

• Send email invitations and reminders with customized templates
• Track bounced-back emails
• Automatic resend efforts

3. Monitor/control sample
4. Manage/integrate web contact attempts with other contact efforts such as call records
5. Manage survey status and store key BlaiseIS paradata variables in SMS for production

monitoring

2.1 Link the SMS Database with BlaiseIS
Linking sample management data with BlaiseIS was first accomplished by parallel preload of sample
lines in BlaiseIS and our SMS (SurveyTrak) database. Specifically, the project ID, sampleline ID and
login credentials were preloaded into both BlaiseIS and our SMS.

 56

The remainder of this section outlines the process used to allow the respondent to access the BlaiseIS
survey and to update our SMS database with key data from BlaiseIS (see figure on next page).

2.1.1 Authentication using our existing SMS/SurveyTrak database
Authentication using our existing SMS/SurveyTrak database involved multiple steps:

1) The Respondent (R) is sent an email directing them to a survey portal-login page. The
respondent logs onto a portal page outside of BlaiseIS. This portal-logon page validates
credentials in our SMS database.

2) If authentication passes, the R is automatically routed to the BlaiseIS start-up asp page.
3) If the authentication fails (e.g., credentials are not valid, the case has already been completed, or

the sample line status is closed out), the R will be routed to customized warning pages or other
processing module.

2.1.2 Routing to BlaiseIS start-up page
If R passes the authentication at the Portal page, it gets into the BlaiseIS start-up page. For our pilot
study, the stored procedure at authentication passes in the logon credentials and the project ID and outputs
sample line ID and the location (i.e., URL) of the BlaiseIS start-up page. Then we automatically redirect
R into BlaiseIS. The sample line ID is the unique key in the BlaiseIS database.

2.1.3 Determining survey completion
We captured survey completion by adding a second page after the receipt.asp. When R gets to this last
page, the page calls a stored procedure in our SMS/SurveyTrak that updates the sample line as the survey
is completed. In addition, we update the SMS/SurveyTrak result code to a finalized result code and add a
final contact record.

2.1.4 Capturing BlaiseIS paradata
We added modules to capture detailed paradata and navigation data and save these data in a BlaiseIS
Journal (see paper by Ostergren and Liu, IBUC 2010). Then we synchronize these paradata (on an
aggregate/sample line level) to our SMS as a scheduled job (data was linked using the sample line ID).
This information is used for to create managerial reports and for production monitoring.

 57

2.2 Create Email Functionality
We added two modules to (1) automate the process of sending email invitations and reminders, and (2) to
capture and log bounced back emails. We developed a suite of C#.Net applications to handle these two
processes. For the Send Email module, we used the SMTP Client object of the .Net Mail Namespace; for
the Bounce Back Checker module, we used IMAP programming with .NET Sockets Namespace.

Overall, the design of the two Email Modules was to try to minimize human effort in managing the email
contacts for web surveys.

2.2.1 Send Email Module
The sending email function is triggered to run at scheduled times that are pre-determined and specified by
the project. The email template can be customized with pre-filled information from the sample line. For
the pilot project we conducted in May, the sample was divided into two types. For each sample type, there
were three templates:

1. Invitation
2. Reminder 1
3. Reminder 2

Criteria for which R should get an email of each type were based on data for the R that was included into
our SMS database and the pre-determined dates. For example, if the R has already completed the survey,
reminders would not be sent.

When the send email module is triggered, it calls a stored procedure in the SMS database by passing in
project ID, type of email, and the time the job is triggered. The stored procedure outputs a record set (i.e.,
a list of sample lines that should receive the email); our C# .Net program processes the record set and
sends out emails one by one. The email has the following information and functions.

 58

• Prefilled information specific to R (such as names)
• Credential data to log onto the BlaiseIS survey
• Portal page URL
• The email content and subject line are customized by pre-defined logic (different email

templates for different sample types)
• After the email is sent, the program calls a second stored procedure in our SMS to record a

contact attempt record for the R
• Email can be scheduled to run at different times with pre-defined logic
• We use ASCII encoding format for the email body
• Email is sent from a specific email box. The Email Bounced Back Checker (BBC) module

checks emails in this email inbox to identify and process bounced back emails.

2.2.2 Bounced Back Checker (BBC) Module
The second part of email program is to track and handle bounced backed emails. The purpose of this
module is multi-functional, including:
§ Catch the bounced back emails that result from our email sending program
§ Record the bounce back in our SMS database
§ Inform project and production managers of the bounced-back email
§ If possible, launch resend efforts

Bounced back emails will come back to the email inbox used by the Send Email Module. Due to logging
by the BBC, this specific email box should only be used by Email Modules and should not to be used for
managerial communication purposes with the R. We set up a second study email box, and directed
respondents to use this second email box for any replies back to project staff.

The following outlines the process established for the Bounce Back Checker (BBC) module.

• 1st Step: Create a Bounced Back Definition table that specifies the bounced back text to
search for and the error codes assigned to each kind of text. This can be configured and
customized by project. The table below lists the definitions we used for our Pilot Project.

 59

• 2nd Step: Logging emails that appear in the study email send inbox. The BBC module opens

emails one by one at the root folder of the study’s specified email box. The program parses
the content (including header) of the email messages in this email box and tries to match the
text with bounced back definition texts we defined in step #1.

For example, we defined that if the program finds “The message could not be delivered
because the recipient's mailbox is full”, we categorize it as a “Mailbox is full” bounced back
and code it with the “2006” bounced back code. Or, if we find the text “Could not deliver the
message in the time limit specified. Please retry or contact your administrator”, we treat it as
a “Could not deliver at time sent” bounced back and code it with the “4901” bounced back
code.

If the parsing finds a match, it moves the email to a processed sub-folder, and logs the email
in a Bounced Back Log table with a bounced back code. If the parsing cannot identify the
email message, the program either leaves the message in the root folder for managerial
checking or moves it to a pending sub-folder. Review of the bounce backs that were not
logged could result in new bounced back messages being added to the Bounced Back
Definition table.

• 3rd step: The BBC module is triggered to run at scheduled times to process the logged

bounced back email messages as a batch. At the end of each batch, the program calls a stored
procedure in our SMS, which processes these bounced back logs with pre-defined business
rules. For the pilot project, the stored procedure compares the bounced back logs to see if
there is any email that matches with the email sent out from our sending email program. If
we find one, the procedure inserts a contact record for R and then codes the sample line for R
with the specified result code.

 60

• 4th step: For the pilot study, we did not implement re-send efforts if the module finds a

bounced back email sent from our program. However, with the Army STARRS Study, we
considered very comprehensive business rules regarding whether we should trigger another
email from our Send Email module if we have a second email address for the R (and the first
email bounced back). Manual review of cases that did bounce back was also an option,
which would include allowing the production management staff to update email addresses
and flag a case for resend of the invites/reminders.

2.3 Monitor and Control Sample Status
The basic concept is to monitor and track the current status (result code) of the sample at any point in time
so that managers can make proper managerial decisions. Since our SMS has full functionalities in this
regard, we do not need to make extensive revisions for addition of BlaiseIS sample. What is specific to
BlaiseIS is to define another layer of business rules that will drive the BlaiseIS survey, for example, what
result codes can be linked with what actions. For instance, if we code out certain sample, the portal will
block logins for those sample. Or if we have a diary or journal kind of project, we will track the progress
and then route R to correct sequenced journal from the portal.

2.4 Manage and Integrate Contact Efforts on the Sample Line
A lot of web survey projects will still involve phone calls and human tracking efforts like in-person visits
or mail communication. Respondents might call in to report problems, opt out of the study, inquire about
project details, or even update contact information such as emails, contact address, etc. Our SMS has full
functionalities for this part. What we added for BlaiseIS is the logging of the email contact attempts (both
outbound attempts such as invites and reminders, and inbound attempts from bounced back emails).
These contact attempts can be integrated with contact attempts from the phone or in-person follow-ups.
For some projects, the data collected from these contacts might get (pre-) loaded into the web survey itself
(such as confirming if the contact information is correct).

2.5 Reporting
Since our SMS database has integrated the up-to-date tracking of the survey status, contact records, and
other BlaiseIS paradata, we are able to set up reporting for the following.

• The cases that have been completed.
• The cases that have been started and aborted.
• Reports showing more detailed information about our sample from the BlaiseIS paradata such

as the last question answered, total time in survey, the number of survey logins and break-
offs, the browser used, etc.

• The contact efforts for the sample including counts of how many emails were sent out, emails
that bounced back, human calling efforts, paper communication, etc.

3. Vision
We propose to use a Portal framework for BlaiseIS surveys. Every R will go into the BlaiseIS world
through a common or specific portal. The logon action will interact with the SMS database, route R to
correct BlaiseIS Survey Page and track completion status. The integration of BlaiseIS paradata into SMS
will facilitate very efficient managerial monitoring and reporting. A lot of managerial functions such as
sending emails, checking for bounced back emails and tracking of contact efforts can be integrated into
the SMS database.

 61

4. Challenges
Although our pilot using SMS with BlaiseIS was implemented with much success, some challenges were
considered as we consider further use.

4.1 Portal concept
The portal concept/framework is not just one or a few web pages; it is a framework that is to wrap the
BlaiseIS surveys for sample management purpose. How to design this portal will depend on the
complexity of the relationship between the sample and the surveys.

In most cases, we will have one survey for one sample line. We might have multiple surveys activated
for the same sample line. Or we could have multiple system entry points that will need access one
survey. For example, we invite R to take a web survey, then for follow-up efforts, we might call R and
help R to take a survey. This involves mode change on one survey. Ideally this portal concept should be
able to handle the variety of operation.

4.2 Cross browser compatibility and consistency
The second challenge is a technical issue. It seems to us that BlaiseIS needs to be tested with a variety of
browsers. For instance, we found the behaviors of users pressing browser back/forward buttons are
different in different browsers. Since it is extremely hard to control and dictate the browser type when
we launch a web survey, to have consistency and compatibility across major browsers will be crucial. As
we have learned in a few projects with web surveys, browsers on PDA device have been ever
increasingly brought up by R.

 62

4.3 Mixed Mode Sample Management
As we began development of sample management for BlaiseIS, it was with the vision of using as part of
mixed mode data collection. As the scope of work changed, our pilot did not include mixed mode sample
data collection. Initially we were planning mixed mode data that would be a sequential mode switch from
web to phone, not simultaneous. Issues considered included whether we would use a modified version of
the BlaiseIS survey or Blaise for decentralized phone follow-up after non-response, how to modify our
sample management system to provide feedback to interviewers about the status of the web data
collection, and how a mode switch would work when R provided a partial web survey. Developed to be
expandable, one of our next steps will be to pilot our BlaiseIS sample management system for a mixed
mode data collection project.

 63

Features of Case Management in CAI Systems

Vesa Kuusela, Social Survey Unit, Statistics Finland and
CMS working group set by the Blaise Corporate License Users’ Board (BCLUB)

1. Introduction

A Case Management System (CMS) is a central part in all data collection systems which are based on
Computer Assisted Interviewing (CAI). In general, case management here means procedures and
arrangements for handling sample points1. This definition presupposes that a sample with adequate
contact information is drawn prior to the actual data collection. This excludes for example RDD sampling
methods and quota sampling. This definition also excludes other tasks in survey undertaking, such as the
installation of surveys (questionnaires and supporting files) and monitoring of data collection. However,
these functions are needed in a CAPI system. Especially, the up-to-date monitoring of fieldwork is an
essential task in supervision. Figure 1 shows schematically other relevant parts of a CAPI system and
their linking.

Technically data collection modes differ considerably from each other, but even more they differ in how
data collection is organised in practice. The fundamental division is between the modes of administration:
Face-to-face interviewing (CAPI) and telephone interviewing (CATI) are interviewer-administered modes
while web interviewing (CAWI) is a self-administered mode. Especially, in self-administered mode the
case management is inherently different from that in interviewer-administered modes. Occasionally, it has
been has been desired to establish a CMS that would handle all data collection modes. This paper
analyses the typical requirements for a CMS in order to define a universal kernel.

Data collection with CAPI requires a field interviewer organisation which covers sufficiently the region
where selected households (sample points) may reside. Interviewers work with laptop computers (in stand
alone mode) and they have an arrangement to communicate electronically with the office. The size of a
field organisation is determined by the size of country (or the area from where data are collected), time
table of data collection, the number of languages, and the actual field organisation. A field organisation
may be centralised in the sense that supervising and management is done in one place only, or the
organisation may be partly or completely decentralised. A CMS has to comply with the field organisation
and with the requirements given for data collection.

In CATI mode, data collection is carried out by a centralised system. Interviewers are working in one or
more CATI centres and their work-stations are connected to a network and a file server. The central part
of a CATI system is an application called Call Scheduler (CS). The CS feeds cases from the sample file to
available interviewers (actually to work-stations) and maintains appointments and management
information.

In CAWI, no interviewers are needed. Respondents have to be invited to open the questionnaire and
answer the questions. The central component in CAWI survey is the computer system accessible via the
Internet, in which the sample is loaded prior to data collection. Case management tasks are inherently
different from CATI or CAPI. Within the technical system there may be some tasks resembling case
management but they are excluded here.

1 Case management is called sample management in some occasions.

 64

Applicability of different data collection modes depends essentially on the data provided by the sample
file. In many cases, a sample is drawn from an address register or from a database from a previous census.
In this case, the sample point is an address but it is not known whether it is inhabited or who is living in it.
In some countries, the address may be to a block of flats and one flat may include several households. In
this case, the final stage of sampling is carried out by interviewers according to given rules.

Some countries have well updated registers of population and households. Samples from such registers
pin point exactly the person or the household to be interviewed. In addition, in some countries there are
registers for telephone numbers which can be used for sampling or it is possible to find telephone
numbers for persons sampled from the population register. Obviously, email addresses are not available in
public databases so that they could not be included in the sample data.

In multi wave surveys, the information about a sample point available before the first wave and later in
the subsequent waves may differ considerably. Therefore, also the case managements may be organised
differently.

2. Case management in different data collection modes
Because of their technical and organisational dissimilarities, the different modes of CAI set rather
different requirements on how CMS should be arranged. Also the possibilities to design the CMS vary
considerably between modes.

2.1. CMS in CAPI
The field organisation for CAPI has to be geographically organised because interviewers have to visit the
selected households. The average distance between interviewers’ homes and potential respondents has to
be reasonable in order to keep the travelling costs reasonable. Because of the disperse nature of the
organisation, the case management system for CAPI is far more complex than in other modes. In addition,
the field organisation partly determines the production process in CAPI surveys.

Characteristic features of the data collection are that all interviewers work with stand-alone laptop
computers; they have dedicated samples, i.e. the total sample is exhaustively divided between
interviewers and the sample file for each interviewer includes only his or her sample points; interviewers
organise their work and make appointments on their own; and they return cases, both completed and non-
responses, within the given time limits. This work process introduces three critical tasks for the CMS:
case assignment, delivery of sample files to appropriate interviewers, and receipt of completed interviews
from interviewers. A special problem in the CAPI case management is how reassignments or case
transfers are handled. The reassignment of a case is needed when the interviewer to whom the case was
assigned first is not able to carry out the interview. In this case, the case information has to be moved
from one interviewer’s laptop to the new one.

The interviewer workforce for CAPI can be organised in several different ways and this organisation
determines how the case management can be organised. Obviously, the personnel organisation is a more
decisive factor than any other part of the production process and therefore, the case management system
has to be adapted to it - not vice-versa. Changes in personnel organisation are difficult and slow and they
are avoided if other solutions are possible.

From the perspective of CMS, the important question is how supervising is arranged. A major difference
between field organisations is whether the supervisors work in one place (centralized organisation) or at
regional offices (decentralized organisation). In some cases, the regional organisations are extensive and
very strong. The regional offices may even have more influence on survey undertaking than the central
office, which may have only a co-ordinating role. On the other hand, in some organisations all

 65

management and supervision is done in one place. Often there are firm historical reasons behind the
existing organisation.

Despite the fact that the organisation of the interviewer workforce varies, the technical part of the CAPI
system includes always some essential parts as show in the Figure 1. The schematic display refers to an
automatic system, but the same tasks appear also in a completely manual system.

An automated CAPI information system includes three different user interfaces: two for supervisors and
one for interviewers. All user interfaces include case management, but its roles differ because the tasks in
different phase of a survey are different.

In the interviewers’ interface, the case management application passes the sample information to the CAI
application (such as Blaise DEP), and transports the interview data and changes in sample information to
a place from where it will be transmitted during a telecommunications session (or by other means of
transmission). The architecture of the CMS is an important factor in how case management is performed
on interviewers’ laptops. The solutions can be divided into two major classes: database based systems and
object based systems. In a database based system the completed interviews are stored in a database which
is transferred to the office system as one file; in object based system each interview is stored in a separate
file and the separate files, “objects”, are transferred from interviewers’ laptops to the office system. The
object based system requires a specific application on both ends to handle the objects adequately, but this
architecture makes the case management technically fairly straight forward and sturdy.

In the supervisors’ interface, the tasks serving outgoing and incoming activities differ essentially also in
what comes to case management. In the outgoing part, the most important task is case assignments for
interviewers. If it is automated, it requires some sort of a database application which connects respondents
to interviewers using geographical information. Therefore, there has to exist a database which includes
information on interviewers’ whereabouts.

Figure 1: A schematic display of CAPI information system
and tasks related to the survey undertaking.

 66

In the interface for handling of the incoming data, the most important part of the case management is the
process that assembles data sent by different interviewers to a single data file. Another important part is
the application that processes changed contact (sample) data in multi wave surveys, such as the LFS.

A necessary part of a CAPI information system is the communications system which is often a
telecommunications system. Typically, CAPI interviewers’ communication system is not active all the
time. Instead, interviewers contact the central facility at a given frequency .The frequency of
communication may vary considerably between organisations. Probably, the most common arrangement
is that interviewers open telecommunications system once a day, but the frequency may range from
several times a day to once a week or even once in a month. In some countries interviewers do not have
communications facilities at their homes. Instead, they have to visit the regional offices to send and
receive data.

A communication system is a central part of the CMS and its features partly determine the structure of the
CMS. For telecommunications, a CAPI information system requires a telecommunications server that
handles the traffic between interviewers and the office. There are several technically different systems in
use and obviously they are all built in-house. The most difficult task, however, is to design the
communications protocol: how each interviewer receives his or her data once and only once and how
interviewers’ data are received safely. This protocol is intimately connected to the CMS.

In CAPI surveys, interviewers seek out the responding households using the information they have in the
sample file and using their knowledge of the local circumstances. Occasionally the knowledge of local
circumstances is the most helpful asset. It is necessary that to some level the case assignment is based on
geographical information to keep the distances between interviewers’ residences and respondents’ homes
reasonable.

In some cases, the need for a CAPI arises from the fact that only the whereabouts of the sampling unit
(e.g. address of the sampled household) is known, but not who the respondents are or whether the
dwelling is inhabited at all. CATI and CAWI are out of the question in such cases. This situation occurs
frequently when a sample is drawn from an address register or in connection with area sampling. This
situation may also arise if the sampling frame is inadequately updated.

CAPI sets some stringent requirements for the sample information: The locations of sampling units or
households’ (respondents’) addresses are necessary. Names of household members and telephone
numbers are not necessary for CMS, but they facilitate interviewers work in setting appointments.

2.1.1. A common CMS kernel for CAPI systems?
The CAI software packages do not include a ready-made CMS. Considering the facilities that have been
incorporated for CATI management, it should not be unreasonable to expect some survey or case
management facilities to be provided for CAPI. Especially, it would be important for smaller
organisations that don't have existing facilities for survey operations. Wensing (2009) presented an
example of a CMS for small organisations.

Is it possible to find a common kernel for an automatic CMS? A common kernel requires a definition of a
standard CAPI system. The CMS is inherently related to installation of the technical environment for
CAPI. Obviously, it has to have separate solutions for the central parts: case assignment, CMS within
interviewer’s laptop and assembly of a single data file from the received interviewers’ files. In addition,
an automated CMS cannot be completely detached from the communications systems.

 67

Obviously, the installations of the CMS within interviewer’s laptop do not vary too much. For that part a
simple solution serving the basic needs is fairly straightforward. It does not solve the total needs but it
would help small organisations in the beginning.

Case assignment is at the core of the CMS and it depends essentially on the information available about
sample points. In some countries case assignment is partly manual because available information on
sample points is not sufficient for an automatic system. For automatic case assignment, it is necessary that
there is a sample file that contains respondent information, and a database containing interviewer
information. Both databases have to include a field (or fields) that are used to connect a respondent to an
interviewer. This field can be called an Enumeration Area Code (EAC). In CAPI it has to be based on
geographical information, such as postal area code. The structure of the EAC can be hierarchical and
consequently the case assignment can be done in two or more phases. In interviewers database the EA
codes have to be unique for each interviewer and the codes have to cover completely and exhaustively the
geographical area to be surveyed to end up with proper case assignment.

If no Enumeration Area Code is available, automatic case assignment is not possible and it must be done
manually or semi-manually. The Appendix contains a description on how case assignment is done in
some organisations.

The end results of case assignment are the sample files dedicated to each interviewer. The files will be
delivered to the proper interviewer. Delivery of the files is closely related to the communications
arrangements.

2.2. Case management in CATI surveys
A CATI system is typically a centralised facility running in one place (or several places) with
interviewers using (desktop) work stations that are connected to a computer network and a file server(s).
The sample file is handled by a file server and a program and the cases are not dedicated to specific
interviewers. An application called Call Scheduler manages the sample. In contrast to a CAPI system, in
CATI there is no case assignment in the same sense and there is no need for sample file delivery.
Completed interviews are stored automatically in the database and case status is updated automatically.
Because there are no dedicated samples there are no case transfers in the same sense as in CAPI. Similar
situations may arise if cases should be transferred from one group of interviewers to another group (e.g.
between language groups) but usually CATI systems include tools for supervisors to perform the transfer
easily.

A major difference to CAPI is that interviewers working in a CATI centre do not actively organise their
own work. Cases are automatically assigned by the Call Scheduler and interviewers are not able to - and
supervisors do not need to - influence the process. The Call Scheduler manages the sample by feeding
new cases to interviewers according to predefined rules, and maintains the statuses of cases. The Call
Scheduler also manages appointments and interviewers have only limited possibilities to influence the
process. If manual operations are needed in case management, it is a task solely for supervisors.

In a CATI survey, it is necessary to know respondents’ telephone numbers and preferably also their
names. Postal addresses (or email addresses) are needed if advance letters will be sent but it is not
necessary for CMS.

2.3. Case management in CAWI surveys
Data collection by CAWI does not involve interviewers and consequently there is no case management in
the same sense as in CATI and CAPI. Especially, there is no need for case assignment, which is the most
demanding task in CAPI.

 68

In a CAWI survey, case management includes installation of the survey on a web server including the
arrangements for the authentication of respondents; publication of the survey, i.e. the announcement of
the address of the server and login information for respondents, accompanied with the presentation of the
survey; follow-up of accumulation of responses; and sending reminders to non-respondents.

In a CAWI survey it is difficult to know the status of cases during the survey because respondents answer
at different rates. Even though the answer has not been stored in the server by the given date it does not
mean that the respondent is not going to answer later. It is a characteristic feature of a self-administered
survey that the collection of data has to be stopped at some stage although answers are still arriving. In
interviewer-administered surveys the schedule of data collection is set before the survey begins and the
status of each sample point is known.

In a CAWI survey it is necessary to know respondents’ names and postal addresses or their email
addresses.

3. General case management system for mixed mode surveys
In a mixed mode survey, at least two different data collection modes are used simultaneously or in
succession for data collection. For example, data collection starts as a web survey (CAWI) and in the next
phase respondents who have not answered are called (CATI) or interviewers visit those respondents
whose telephone number is not known (CAPI). Another example may be a CAPI survey in which a
refusing respondent is offered a possibility to answer via the web. In multi-wave surveys, different modes
are frequently used in different waves, but strictly speaking, they are not mixed mode surveys.

The possibility to carry out a mixed-mode survey depends on the information that is available on the
sampling units. More information is needed if all modes should be possible because all modes require
different contact information. In cross-sectional surveys this may pose a problem. In a multi-wave survey
it is possible to add contact information after the first contact and maybe also to settle the mode of the
next interview.

Installation of automated case management for a mixed mode survey is not straight forward because the
tasks of CMS are inherently different in CAPI, CATI and CAWI. It is difficult to find common factors in
them. Even the interviewer-administered modes, CAPI and CATI, differ essentially from each other in
this respect. In addition, the information available on the sample points determines what is possible. For
example, if a telephone number is not available, CATI is out of the question; or if there is no adequate
address available for respondents, CAWI is not possible.

Obviously the automated case management for mixed mode surveys would require a management server
in which a daemon process handles contact information and passes cases from one mode to another. Each
mode has a separate CMS incorporating its typical features. A case can be active only in one CMS at a
time. Each separate CMS has to know the status of each case. Status includes also information about in
which system the case is active. When the status of a case changes, the new status should be made known
in each CMS. A technical difficulty is posed by the fact that unlike in CATI and CAWI, in CAPI the
connection to interviewers’ applications is not continuous. Moving cases from or to CAPI interviewers’
workstations is delayed and the length of the delay is not known. In addition, moving cases in or out of
interviewer’s laptop requires consent from the interviewer.

4. Conclusions
Each data collection mode has its characteristics which set different requirements for case management.
In addition, case management may be an important factor behind the efficiency of the data collection
system. It is a danger that if case management systems of different data collection modes are forced in a
single system the efficiency of data collection in all modes will be compromised.

 69

In a CATI system, the well functioning call scheduler is an important factor behind the efficient data
collection. Technically, it would be possible to install a CAPI system with direct access to case
management at the office using new wireless telecommunications facilities - even a system similar to a
typical call scheduler. However, it is difficult to see any benefits in a system like that. Cases to be
interviewed face-to-face have to be directed to interviewers who are living close to the respondents. This,
in turn, leads to dedicated samples and the call scheduler does not add efficiency. Probably it would make
data collection less efficient.

The design of a common CMS for mixed mode surveys is not straightforward. It is technically
challenging, but not too difficult. It is another question whether it is possible to find a common kernel,
which all organisations could apply. Probably all organisation who have collected data by CATI and
CAPI for many years have a working case management system of their own, which they presumably will
use and develop in the future. A common kernel for a CAPI CMS would be most useful for new (and
probably small) organisations that are starting computer assisted data collection.

References
Wensing, F. (2009). Development of Survey and Case Management facilities for organisations with
minimal survey infrastructure. In Essays on Blaise 2009. Proceedings of the 12th Users’ conference, Riga,
Latvia. (Also at http://ibuc2009.blaiseusers.org/papers/2c.pdf)

http://ibuc2009.blaiseusers.org/papers/2c.pdf

 70

Appendix:

CAPI case assignment in some countries

INSEE (France)
In France, case management is done in two phases:
- Phase one: an automatic pre-assignment is done centrally, based on a database containing the area for
each interviewer that he/she covers, and the survey that he/she is interested in (this database is updated
once a year). This is done by the method unit.
- Phase two: regional offices check the case assignments and can change what they want. The tool for
manual re-assignment is unfit for large assignment. This work is done by the interviewers' supervisors.

ONS (United Kingdom)
At ONS, the sample is drawn using the sampling system and stored on a pre-defined table, which contains
all sorts of geographical information about the location of each case.

Cases are aggregated into quotas of work for interviewers. This is usually done as part of the sampling so
either we select clustered samples from postcode sectors (with a fixed number of addresses selected per
postcode sector), or, for unclustered designs, we pre-define a geography and see how selected cases fall
within it (producing a variable number of addresses per quota of work).

There is a separate allocation system for assigning quotas to field interviewers. This is de-centralised, the
allocation to interviewers is performed manually by field managers, based on the information they have
about availability.

Once the allocation is finalised, IT packages the individual cases into case objects, and scatters them to
interviewers along with the relevant questionnaire object. We have systems for creating the case and
questionnaire objects, and a separate system which places the objects into the correct mailbox, based on
the allocations. When the interviewer connects to the Office, the objects are automatically downloaded
onto the laptops ready for manual installation by the case management software.

Interviewers work off-line, and need to connect to the Office to transmit completed cases. Casebook zips
up the completed case objects and places them in a specific location on the interviewer’s laptops. When
the interviewer connects, all objects in that location are picked up by the Gather systems.

Statistics Canada
SC has an in-house interviewer messaging system that allows messages to be passed up and down the
reporting hierarchy. Interviewers can only send/receive these messages when they dial in. Interviewers
work off-line and transmissions are usually once per day.

Case assignment is manual. For ongoing surveys, where the sample units come back periodically, the
previous cycle's assignment information is used as the starting point, and is manually reviewed and
revised.

For new samples, the data collection managers in the regions look at the geography information and
manually assign the sample to the appropriate interviewer. Generally, the basic information about where
the sample is being selected is provided in advance so that hiring decisions can be made

 71

The actual assignment planning activity (assigning cases to interviewers) does not occur until the sample
is loaded into the case management database and made available to the managers in the regions.

Statistics Netherlands (SN)
Interviewers work off-line. They have a communications-system on the laptop for connection with the
office. When an interviewer connects to SN, the cases (addresses) are automatically downloaded onto
his/her laptop. Interviewers connect to SN on a daily basis. At the end of a survey, interviewers return
interviews (questionnaires) to SN together with logistic information.

The sample is drawn by a sampling system. The sample includes information about some (background)
aspects of the respondents. The sample is then loaded into the system. If respondents have an actual
phone number, they will be interviewed by phone (CATI), otherwise (for respondents without actual
phone numbers) a face-to-face interview (CAPI) will be held.

Respondents are first allocated to field interviewers automatically by the system. Region Data Collection
Managers (all 13 regions have own data collection manager) can make some changes manually in the
allocation. They can assign manually the sample to the appropriate interviewer. When the allocation is
finalised, addresses are dedicated centrally to each interviewer.

Statistics Norway
The interviewers work off-line from their homes but at least once a day they connect to the office.

A sample is drawn by a separate sampling system and imported into the CMS. The sample is drawn
according to our geographic cluster plan (interviewers are located in pre-sampled clusters). The case
assignment is done automatically according to the geographic clusters and postcodes. If some cluster is
without interviewer (due to illness or vacancy), the field managers do the re-assignment partly manually.

After the case assignment process, cases are prepared for transfer by zipping each in a file. When an
interviewer connects to central office he/she reaches his/her own homepage which shows workload and
progress, distributed on the different surveys. From the homepage the interviewer starts data transfer.
During this process questionnaires and cases are copied out to the interviewer's laptops and completed
cases are sent back to the office. The zipped files are unzipped automatically and interviewers find the
new cases in the case list. By Statistic Norway the assignments the manual reassignment work, and re-
assignments (e.g. in case of illness, slow progress etc.) are time consuming.

Statistics Finland
Case assignment is done centrally and automatically. Each CAPI interviewer collects data on a specified
geographical area. The areas are defined using zip codes (postal codes). Technically, the case assignment
is done simply by assigning the interviewer code on each record in sample file by a merge procedure
based on the zip code. Supervisors do some refinement on the assignments based on interviewer’s
workload or temporary leaves.

In the earlier version of the CMS, the sample file was divided in parts so that at the end there was a
dedicated sample file for each interviewer. In the current system the whole sample file is sent to each
interviewer and the interviewers’ interfaces produces a view into the sample file with only the specific
interviewers’ cases.

 72

Case assignment is still based on postal area codes but now the cases for an interviewer are given in a
small file that includes only the interviewer code and sampling unit ID (separately for each survey). This
file is sent to each interviewer with the total sample file and it is used in the CSM in interviewer’s laptop
to create the view into the sample. Cases are transferred from one interviewer to another simply by
changing the information in this case assignment file. All installations in interviewer laptop take place
automatically in the laptop.

Completed cases are returned to the central office automatically when interviewer opens the
telecommunications system which takes place usually once a day.

Some other countries
In previous Eastern Block countries the arrangement in survey work is close to the organisation in France.
Most of the practical work is done in the regional offices. Automation of survey data collection is still
under way but in most cases the plan is to use regional offices. In few countries (e.g. Latvia), the system
is centralized. In those countries where CAPI is in use, case assignment is semi-automatic.

 73

Management of CAPI and CATI at the Labor Force Survey
Zipora Radian and Michal Nir, Israel Central Bureau of Statistics

1. Introduction

The Labor Force Survey (LFS) in Israel is a quarterly survey that tracks fluctuations in the Israeli labor
force, its size, and its various characteristics.

The LFS is a panel survey comprised of 12,000 dwellings, which are surveyed four times over a period of
one and a half years.

To this end, households are interviewed twice through CAPI and twice through CATI.

Most of the cases in the first and forth waves are interviewed through CAPI, and most of the cases in the
second and third waves are interviewed through CATI.

There are special cases in which there is a need to change the data collection mode during the
investigation period of the same wave.

In the past, in cases where CAPI was problematic, cases were converted to a phone interview according to
CAPI procedure. The field interviewers were allowed to conduct these interviews using their home phone.
After reexamination of the process, a decision was made to introduce a new practice, where such cases
are reassigned to the Data Collection Center using the CATI management system.

This paper presents the overall case management which made it feasible to change the mode of
investigation in a short period of time. The focus will be on the process employed during the first wave of
the survey.

We will discuss the considerations for using CAPI or CATI during the same wave. We will also describe
the different steps and activities that were taken by the interviewer, the CAPI manager, and the system as
a whole, in order to change the mode of investigation from CAPI to CATI.

2. The computerized data collection system in LFS

Computerizing the data collection system of LFS began in 1999. First, telephone interviews which were
conducted during the second and third wave were moved to the Blaise CATI management system, which
was conducted from the Data Collection Center located in Jerusalem. The transition to CAPI mode for the
first and the fourth waves, as well as the overall management system for both modes, was completed in
2008.

2.1 Data collection facilities

The system is able to combine several tools, and by doing so to enhance their efficiency of use. This is
done as follows:

The questionnaire is written using Blaise 4.6.

The interviewer's management on the laptop computer is written in Maniplus.

The CAPI and CATI supervisor management system is written using .Net.

 74

Management of CATI interviewing is done by Blaise CATI Management.

The questionnaire data is stored in the Blaise database, and the survey management data is stored in an
SQL2005 server.

The overall management system is written in .Net, combining Blaise and .Net in two ways: from data
entry program (Dep) to .Net and from .Net to Dep. (For more details see: Har & Luskin, 2009).

2.2 Main functions of the Survey Management System

The survey management system allows:

• Assignment of cases for mode of interviewing in accordance with predetermined criteria, such as the
wave number.

• Assignment of cases to interviewers by CAPI supervisor.

• Transmission of data.

• Keeping track of non-response cases and contact trials.

• Moving cases from CAPI to CATI and vise versa.

• Managing the response status for each case.

• Producing follow-up reports on response rates and outputs.

3. Field work process in LFS

3.1 General

The sample drawn each year is divided into four panels, each allocated to the field work, one after the
other.

Each panel is investigated four times according to the following pattern: The first quarter of the
investigation (wave no 1), the following quarter (wave no 2) a break of two quarters and two more
investigations in the following two quarters (wave 3 and 4 respectively) that are parallel to those of the
first two investigations.

The survey is carried out continuously each and every week for the entire three months of the
investigation period of each wave. Each week about 1/13 of the households included in the survey are
interviewed.

The entire period devoted to the investigation of each case is one pre-determined week, plus three
additional weeks which are allocated for unresolved cases (a total of four weeks).

3.2 Data collection methods

The investigations are conducted in two major methods: face to face interviewing using CAPI is
conducted in the first and the fourth waves, telephone interviewing using CATI is conducted in the
second and the third waves.

 75

Although face to face interviewing is the most expensive method for data collection, it is essential to use
it in the first wave for the following reasons:

• Correct identification of the sample unit (the dwelling).

• Exclusion of ineligible cases, such as unoccupied or non-residential dwellings.

• Finding solutions to tracing problems.

• The need to verify personal demographic data through personal documents such as identification
cards.

• Reducing refusals to cooperate by using personal contact and reassuring respondents as to the
importance of the survey.

• Developing rapport with respondents improves cooperation in future contacts during the next wave.

The fourth wave is conducted by CAPI because it includes an income survey and there is a need to
present supporting documentation, like salary slips, and financial reports.

The second and the third waves are conducted by CATI in order to save costs. The cost of one case
conducted through CATI is about 13 percent of that of CAPI.

While each wave has a preplanned mode, there are special cases in which an additional mode is required
in order to maximize response rates. Following are some of the reasons for using the different
investigation modes:

In waves conducted by face to face interviewing: limited number of interviewers, lack of time,
remoteness and security problems makes it impossible to send interviewers in some cases. These cases are
transferred to phone interviewing.

In waves conducted by telephone interviewing: At times, personal visits are needed because there's a
lack of correct phone number.

4. Data collection procedure before transition

4.1 The collection process

Steps taken at the first wave start at the overall management system, continue to the management system
of the CAPI supervisor, and than to the management system of the field interviewer using his/her laptop.

This is done as follows:

• Assignment of all cases in the first wave to three different regional centers;

• CAPI supervisor assigns a workload of about 12 cases to each interviewer;

• CAPI interviewer makes personal visits to his assigned cases;

• Data of each visit is recorded in the Blaise questionnaire on the laptop;

 76

• The interviewer indicates all the non-response cases that require supervisor intervention;

• CAPI interviewer transmits data each night through his home telephone line;

• According to supervisor's guidance and authorization, the field interviewer makes more contact
attempts to selected non-response cases, using his personal home phone;

• Completed cases are transferred to the main office for processing;

• At the end of the four weeks (section 3.1), non-response cases attain final status according to the
information provided by CAPI interviewers.

4.2 Disadvantages and advantages of phone attempts using the CAPI system

While most of the cases in the first wave are conducted face to face, the need to meet a tight schedule
sometimes requires the use of the telephone method. It was found that 18% of all cases in the first wave
were transferred to telephone interviewing.

When CAPI was first introduced to the LFS in 2008, when there was a need, a case was converted to a
phone interview according to CAPI procedure. As mentioned earlier, field interviewers were allowed to
conduct these interviews using their home phone.

4.2.1 Disadvantages

• The interviewer's main assignment is the personal visit; therefore s/he has only a limited amount of
time in which to make contact attempts by phone.

• Administrative details such as time invested and number of phone attempts are provided by the
interviewer. As such, they are less reliable than if they were automatically recorded.

• It is not possible to monitor the interviews in real time in order to assess their quality.

4.2.2 Advantages

• The CAPI interviewer is fully in charge of all efforts made to interview all assigned cases within the
allocated four weeks.

• Since the CAPI interviewer visits the dwelling in person, s/he has detailed information on the
dwelling and on the respondents. This information is very important for future further contacts.

5. Transition to the new procedure

The transition to the new process was encouraged mainly because of the disadvantages of the previous
procedure. Moreover, the use of an overall management system allowing a combination of CATI and
CAPI procedures has driven us to issue a new approach.

In April 2009 we introduced a new procedure, where non-response cases of the first wave were
reassigned to the Data Collection Center using the CATI management system.

 77

Interviewers working in the Data Collection Center were responsible for conducting telephone interviews
in the 2nd and 3rd waves of the LFS. The same interviewers are now also responsible for conducting
telephone interviews in the 1st wave.

5.1 Advantages of the new procedure

The CATI management system has several advantages which improve the efficiency of data collection
and the reliability of the data:

• The investigations are conducted from one Central Collection Center by a group of CATI
interviewers.

• The interviewers use an automatic call scheduler with an option for making appointments and
prioritizing urgent cases.

• Assigning special cases to appropriate interviewers, such as bilingual interviewers.

• Monitoring of the interviews by supervisors and giving immediate feedback in real time.

• The CATI management system tracks administrative information, including dates and times of
interviews, as well as the duration of each interview.

5.2 Disadvantages of the new procedure

• CAPI interviewers were previously used to have full responsibility for the process of making
contacts attempts and interviewing during the whole investigation period. In the new procedure,
responsibility for some of the cases is divided between CAPI interviewers and CATI interviewers.

• A second problem could arise concerning the information CAPI interviewers supply as to the contact
attempts.

5.3 Steps of the new procedure

Similarly to the previous procedure, all cases of the first wave are assigned to the regional centers, and
then assigned by the supervisor to each CAPI interviewer. Unlike the previous procedure, unresolved
cases in which it was decided not to make any more face to face contact attempts are transferred to the
CATI management system. This involves the following steps:

• Before transferring a case to the CATI management system, the CAPI supervisor verifies that there
is a valid telephone number in the questionnaire.

• In his management system the CAPI supervisor indicates the case as suitable to move to CATI.

• The overall management system creates new questionnaires for the above cases.

• The new questionnaires are included in the "day batch" created by the CATI supervisor and
delivered to the CATI interviewers.

5.4 Special considerations

When we redesigned the process special attention had been paid to certain factors:

 78

5.4.1 Keeping detailed information

The CAPI interviewer can record detailed information obtained during up to 8 visits.

For each visit s/he can record the date, the time of visit, the response status, the non-response reason and
remarks.

The remarks are very important for further attempts, especially when another interviewer will handle the
case, for example:

"I met only young children, the parents usually return after 8 pm."

"I met an old man who speaks only Russian."

All this information has to be fully recorded and available in the overall management system.

5.4.2 Using CAPI recorded information in CATI investigation:

The first screen of the CATI questionnaire was designed to include the latest remarks recorded by the
CAPI Interviewer. Also presented are the last reason for non-response recorded in the CAPI questionnaire
and the CAPI supervisor's remarks.

5.4.3 Time table consideration

Special attention is given to managing the case by CAPI interviewers within the first 2 weeks of the wave.
This is done so that, if necessary, enough time will be left in order to make the transfer to CATI for phone
attempts.

5.4.4 Final status

In non-response cases, the final status is determined by combining information from both CAPI and
CATI recorded details. For example:

If the CAPI interviewer recorded "language problem" on his last visit, and the result of all the calls in
CATI were "no answer", the final non-response reason will be "language problem" ("no answer" is
secondary to "language problem").

5.4.5 Monitoring tools

The monitoring tools after transition have to allow control on both CAPI and CATI systems. These
include:

• Lists containing all cases that have been relocated to CATI, the date of relocation and the current
status of the case.

• Tables containing the response rate of each mode.

• CATI history files which permit viewing the number of call attempts and the results.

These monitoring tools allow the Center office supervisors to check the case status and to avoid
duplication and missing cases.

 79

6. Summary of operating the new first wave procedure

Looking back, it seems that, altogether, the transition to the new procedure was successful.

Cases were transferred to CATI rapidly and efficiently, and CATI interviewers handled the cases
successfully and achieved a good rate of response. Most importantly, there were no "missing" cases or
duplicates.

However, some issues were problematic: adjusting to the new procedure was difficult on CAPI and CATI
interviewers and on their supervisors. CAPI interviewers found it difficult not to be allowed to complete
handling a case in which they have invested a lot of efforts. CATI interviewers complained that the
information transferred from CAPI was incomplete, and not presented in a user friendly way. Moreover,
they complained that they now had to deal with extra problematic cases.

7. Conclusions

Utilizing the new procedure successfully convinced us that our overall managing system is flexible
enough to adjust to the use of the new procedure in the LFS.

New means of training are to be designed to improve the cooperation between the CAPI and CATI
personnel. Also we are looking for better ways to present relevant information to the CATI interviewers.

8. Future plans

At the beginning of 2012 the LFS will change to be a monthly survey. The investigation period will be
shorter (two weeks instead of four), and there will be eight waves instead of four.

We intend to employ the new procedure of the first wave in the monthly survey. This will be done within
a new management system planed using Blaise 4.8, which will replace our current Blaise 4.6.

Reference

Shifra Har and Evgenia Luskin, Different Methods of Working with Blaise in the Israel Central Bureau of
Statistics, Proceeding of the 12 international Blaise Users Conference 2009, Riga, Latvia.

 80

BlaiseIS Paradata

Jason Ostergren and Youhong Liu, The University of Michigan

Paradata are interview data that are collected from supporting systems rather than the interview script
itself. They are used heavily by the Institute for Social Research at the University of Michigan for
processes like quality assurance, detection and fixing of problems, testing, instrument design and more.
This paper will examine our efforts to prepare paradata collection mechanisms for Blaise IS that will be
adequate to our needs at ISR. It will first cover page-level paradata, which are mostly handled server-
side. Then it will discuss sub-page-level paradata that are collected on the client side using javascript.

Blaise includes a feature called a journal to record events and user actions that occur during a web
interview. At the University of Michigan, we began to explore BlaiseIS earlier this year; as part of that
exploration, we needed to make sure we could capture the paradata we need. This paper will discuss how
the web journal can be implemented for paradata capture. We will discuss how to define a useful paradata
data structure. For some paradata capture, modifications can be made to the default style sheet and the
page handler ASP. For some other data, large text fields in the survey data model are used, so information
from the survey session data can be extracted. We will also talk about how different types of fields are
being processed and how to utilize the BOI database type and the type of partition used. Finally, we will
discuss the data, procedures and process required to output the journal data. What follows is a step by step
guide that illustrates how ISR has handled page-level paradata.

Capturing Page-Level Paradata

The purpose of paradata is for assessing data quality and for verification. Paradata are critical to project
staff for checking the survey contents and are also important for verification of programming accuracy.
For instance, the timing difference from one page to another indicates the time a respondent spent on a
page. If the average time on one page is too long or too short, then there is a potential problem with the
question text or answer categories on that page. Another example is the “Action” variable in the paradata
that keeps track of how respondents use the survey navigation buttons: Next, Previous and Submit. These
are very important user behaviors that can be used to evaluate a survey design. In the paradata, the
CurrentPageQuestions and CurrentPageAnswer are useful in two ways: first, they can be used to recover
the survey data in case the survey data is corrupt; second, they can be used to trace a user’s answers from
the beginning to the end. In the next section of the paper, all fields in the paradata are discussed in detail.

Step 1: Define a Journal Datamodel

The structure listed below shows the Journal datamodel for capturing page-level paradata that ISR has
adopted. Each field will be described in the following steps. Please note that in order to use the Journal,
the survey instrument must have a primary key.

 81

Datamodel Paradata

SECONDARY
 keyTimeStamp = PageStartTimeStamp
 keyPrimaryKeyValue = PrimaryKeyValue

keySession = SessionID

FIELDS
 PageStartTimeStamp : string[30]
 PrevPageTimeStamp : STRING[30]
 PrevPageLength : real
 SessionID : STRING[20]
 PrimaryKeyValue: STRING[200]
 vProjectID : string [40]
 Mode : STRING [10]
 ScreenSize : STRING [50]
 BrowserSize : STRING [50]
 JavascriptEnable: STRING [10]
 ConnectionSpeed : STRING [20]
 SurveyName : STRING[50]
 Browser : string[100]
 CurrentPageNo : INTEGER
 PrevPageNo : INTEGER
 VersionDate : string[20]
 VersionTime: string[20]
 Action : string [20]
 PrevPageQuestions : string[2048]
 PrevPageAnswers : OPen {H}
 CurrentPageQuestions : string[2048]
 CurrentPageAnswers : OPen
 SubmitStatus : String [20]
ENDMODEL

Step 2: Specify the Journal BMI file and data file

The second step is to specify the Journal description in the Interview Specification. Select the Server
Settings in the Specification and push the button in the Journal panel. Fill in the name of your prepared
datamodel for the Meta File. If you want to give a special name to the Journal database, specify this in the
Data File textbox. If no data file is specified, the sy
file name as the datamodel name.

You can also use a BOI file for the data file. In this case, you will need to specify the BOI before using it.
Journal BOI files will be discussed later.

82

Step 2: Specify the Journal BMI file and data file

The second step is to specify the Journal description in the Interview Specification. Select the Server
e Specification and push the button in the Journal panel. Fill in the name of your prepared

datamodel for the Meta File. If you want to give a special name to the Journal database, specify this in the
Data File textbox. If no data file is specified, the system will create a Blaise database that has the same

You can also use a BOI file for the data file. In this case, you will need to specify the BOI before using it.
Journal BOI files will be discussed later.

The second step is to specify the Journal description in the Interview Specification. Select the Server
e Specification and push the button in the Journal panel. Fill in the name of your prepared

datamodel for the Meta File. If you want to give a special name to the Journal database, specify this in the
stem will create a Blaise database that has the same

You can also use a BOI file for the data file. In this case, you will need to specify the BOI before using it.

 83

Step 3: Update survey ASP pages

In the survey ASP pages, the Blaise Journal component is used to insert records to the Journal database.
Most Journal database updates are within the Page Handler ASP page. Here is an explanation about how
the fields are updated:

a. SessionID – It is straightforward to get the sessionID:

Journal.Fields.Item("SessionID").Text = Session.SessionID

b. CurrentPageNo - Current Page number can be obtained from the BlaiseIS BlaiseISSessionState of the
Blaise Internet HTML/XML Generator Component:
• Set SessionState =

Server.CreateObject("BlHXG3A.BlaiseISSessionState")
• CurrentPageNo = SessionState.StoredPageIndex
• Journal.Fields.Item("CurrentPageNo").Text = CurrentPageNo

c. PrevPageNo – Previous Page Number can be obtained from a hidden variable in the form:
• PrevPageNo = cstr(Request.Form("spi"))
• Journal.Fields.Item("PrevPageNo").Text = PrevPageNo

d. Action – page actions are derived from the CurrentPageNo and PrevPageNo:

e. SubmitStatus – When the survey page is redirected to the Receipt page, the Submit Status is assigned
to “Completed”. For other actions, the status is empty.

Journal.Fields.Item("SubmitStatus").Text = "Completed"

 84

f. PrevPageQuestions and PrevPageAnswers – Obtaining the previous page questions and Previous

page answers requires changes to the Blaise default stylesheet.

1) In the XSL style sheet, first create the field name list. The format of the list is Form name and
Blaise field name: e.g, qu1:BLAge qu2:BLName. After the field name list is created, it is
then saved in a form hidden variable named Para.pagefieldnamelist.

2) In the Page Handler ASP, all Request.Form variables are examined. If a variable is matched
up with a form-hidden variable in Para.pagefieldnamelist, then the corresponding Blaise Field
name is extracted. The Request.Form variable’s value is also saved. It is possible that a
survey page contains more than one field, so the questions and answers are actually caret
(“^”) delimited strings: e.g. PrevPageQuestions = BLAge^BLName^ and PrevPageAnswers
=46^John Smith. The answers and questions are in the strings correspondingly, so it is very
easy to write a procedure to construct Name:Value pairs.

g. CurrentPageQuestions and CurrentPageAnswers: these two fields can be obtained from the

HandleRequest method of Blaise Page handler object:

h. ProjectID, VersionDate,VersionTime, Mode, SurveyName

survey data model. They are assigned fields, e.g. VersionDate := VersionDate := TODATE (2010, 07,
13). They can be extracted from

85

CurrentPageQuestions and CurrentPageAnswers: these two fields can be obtained from the
HandleRequest method of Blaise Page handler object:

ionTime, Mode, SurveyName – these are the special fields defined in the
survey data model. They are assigned fields, e.g. VersionDate := VersionDate := TODATE (2010, 07,
13). They can be extracted from GetReceiptInfo of the Blaise Page handler object:

CurrentPageQuestions and CurrentPageAnswers: these two fields can be obtained from the

these are the special fields defined in the

survey data model. They are assigned fields, e.g. VersionDate := VersionDate := TODATE (2010, 07,

i. ScreenSize, JavascriptEnable, ConnectionSpeed, BrowserSize
in the XSL page. Then the values can retrieved from Request.Form variables:

j. PageStartTimeStamp, PrevPageTimeStamp and

calcuations in combination with a session variable:

86

ScreenSize, JavascriptEnable, ConnectionSpeed, BrowserSize – these fields require adding Javascript
in the XSL page. Then the values can retrieved from Request.Form variables:

PageStartTimeStamp, PrevPageTimeStamp and PrevPageLength are obtained through time
calcuations in combination with a session variable:

these fields require adding Javascript

PrevPageLength are obtained through time

Step 4: Use BOI Database for Paradata:

BOI file usage
a. As with survey data, we choose to use the BOI data format to store paradata. In comparison to

standard Blaise data files, it has the advantage that data can be stored on a more secure location than
an internet server.

a. Data partition type – Flat no block has advantages for the Journal:

• It’s good for small datamodels like the Journal
• It allows stored procedures and other relational database tools to be used to manipulate

paradata directly

c. The code below is a sample query to extract data form the OLE DB database. Note that for string
lengths greater than 255 and open type fields, the data are locat
necessary to use sub queries to get those data.

87

Step 4: Use BOI Database for Paradata:

As with survey data, we choose to use the BOI data format to store paradata. In comparison to
andard Blaise data files, it has the advantage that data can be stored on a more secure location than

Flat no block has advantages for the Journal:
It’s good for small datamodels like the Journal

procedures and other relational database tools to be used to manipulate

The code below is a sample query to extract data form the OLE DB database. Note that for string
lengths greater than 255 and open type fields, the data are located in the para_Open table, so it is
necessary to use sub queries to get those data.

As with survey data, we choose to use the BOI data format to store paradata. In comparison to
andard Blaise data files, it has the advantage that data can be stored on a more secure location than

procedures and other relational database tools to be used to manipulate

The code below is a sample query to extract data form the OLE DB database. Note that for string
ed in the para_Open table, so it is

 88

Capturing Client-Side Paradata
The above discussion focuses on page-level paradata that are captured when a button is clicked to leave a
page. While that can provide useful information about time spent on an entire page or backtracking across
pages during an interview, it does not approach the level of granularity of a CATI audit trail which
captures keystrokes and mouse clicks. These sorts of details (“client-side paradata”) can be captured with
javascript while the respondent is inside the page and then saved by the same mechanism as the page-
level paradata when the interview advances. We will now discuss a scheme for modifying the default
Blaise IS javascript and xsl files to capture client-side paradata such as changing answers within a page,
keystrokes within an input box and scrolling.

When deciding how to implement client-side paradata, we paid particular attention to the footprint. We
wanted to minimize risk by changing as little as possible, especially since we had decided to try to
piggyback on existing Blaise IS xsl and javascript files. We also thought it was necessary to try to
minimize the size of the paradata collected because of bandwidth considerations. Although the paradata
were unlikely to be large enough to ever affect performance, the amount one could collect from each page
is almost unlimited in theory (scrolling, all keys…) and the quality of respondents’ connections are not
uniform.

The paradata of most interest for quality assurance and testing purposes are those that allow the
reconstruction of user input after the fact (for reproducing problems, mainly). What we want to see here
is the order in which user input occurred and focus changed. This information can help to reveal bugs of
various types or user friendliness problems. Because it is common that routing occurs between pages
rather than between questions on a page, the page-level paradata collected on the server side are usually
sufficient for this purpose. However, when there are scripts running on a page which may be affected by
the sequence of events, having access to the granularity afforded by client-side paradata could be very
important. Client-side paradata could also provide helpful clues about confusion or interactivity problems
on a page by recording repeated switching of answers or attempts to do something not handled in the
original design. Finally, client-side paradata could help reconstruct why big failures like missing data
occur. For example, in a web survey fielded in 2009 by the Health and Retirement Study (HRS) it was
found that on a page with a table where respondents were expected to select a radio button and then put an
answer in a corresponding text box, an unexpectedly high number of the boxes in the first row were
blank. If HRS had been collecting CSP at the time (which it was not) it would have made it easier to
determine the source of the problem and reconstruct lost data, if any. Strategies for collecting a
reasonable amount of paradata about which controls had click events and for collecting relevant
keystrokes will be discussed in detail below.

This same information could also prove useful for methodological purposes, particularly by pointing out
bad design decisions revealed in some of the ways described above. In addition, data about time between
various events, clicks on hyperlinks, or scrolling activity within the page is all potentially valuable.
Strategies for handling each of these types of paradata will also be discussed below.

The basic format we have chosen for this client-side paradata project is not dissimilar to audit trail data
that can be produced for Blaise surveys that use the DEP program. Each line indicates some sort of user-
initiated event and begins with some sort of timestamp. One key difference is that the times recorded are
elapsed times relative to previous events rather than absolute times. The main reason for this is that it
results in less data, but it also helps to highlight the fact that any absolute time recorded on a client
machine is less meaningful perhaps than one recorded in a call center in a CATI interview because the
settings on the respondents machine and the connection quality are outside of our control. This notation
owes its inception to Dirk Heerwegh's CSP project explained at this URL:
https://perswww.kuleuven.be/~u0034437/public/csp.htm. The remainder of the data on each line either

https://perswww.kuleuven.be/~u0034437/public/csp.htm

 89

provide identifying information about the field involved and its value after the event, or about something
like scrolling activity that occurred since the last event.

The client-side paradata mentioned above can be captured by adding a few functions and some function
calls to the following files used by Blaise IS: biEvtHan.js, biHTMLWebPage.xsl, biPagEvt.js, and
biStatus.js. A hidden input box must be added to the FormPane in the biHTMLWebPage.xsl, which can
collect the CSP for a page until it can be saved by the same means as the rest of the page-level paradata
when a page navigation button is pressed. The CSP is collected using four new functions we added to
biEvtHan.js (code provided at the end of the paper) that handles recording the paradata, keystrokes,
scrolling, and hyperlinks.

The recording function subtracts the time of the previous event from the current time to get the elapsed
time value and concatenates it into a line with the fieldname and value. If a scrolling event occurred since
the last event, it first writes the elapsed time at the last scroll event and whether the scrolling was
horizontal, vertical, or both. The recording function takes as arguments references to the HiddenStatus
control, the visible control, and also the value of the visible control (in the special case of a checkbox, the
value is constructed as follows: '#' + CheckBox.value + '=' + CheckBox.checked). The function gets the
Blaise fieldname from the .parentNode.id property of the HiddenStatus control. The value argument is
used directly, except in the case of keystrokes as described below. This function is called from the
following already-existing functions which are otherwise unchanged: OnClickRadioButton in
biEvtHan.js, and FillAnswer, OnChangeDropDown, and OnClickCheckBoxStatus in biStatus.js.

A function which acts as an intermediary when keystrokes are involved takes an event argument instead
of a value and converts .charCode or .keyCode using String.fromCharCode() for alphanumeric keys and a
switch statement to produce readable output for others, such as converting arrow keystroke codes to
“[LEFT]”, “[RIGHT]”, etc. The function also queues up keystrokes in the same control to be recorded as
paradata only when the focus changes. This is done by comparing both the .parentNode.id property of the
HiddenStatus control and the .name property of the visible control to determine whether focus has shifted.
The result is that most text answers will appear as a single line in the paradata rather than as multiple lines
with single keystrokes. This function is called with onkeyup events added to the xsl for input and textarea
controls in the following manner: <xsl:attribute name="onkeyup">processKey(this,
document.f.<xsl:value-of select="$Question/@ID"/>st, event);</xsl:attribute>. It then calls the
recording function when a set of keystrokes is complete.

The function that handles scroll events is responsible for setting two boolean values that indicate whether
horizontal or vertical scrolling occurred since the last recorded event. These values are used in the
recording function as described above. The function is simply called from an onscroll event attached to
the formpane div as follows: <xsl:attribute name="onscroll">scrollEvent(this)</xsl:attribute>. The
function just compares .scrollLeft and .scrollTop to their values at the previous onscroll event and sets the
two boolean values accordingly. It is possible to gather much more information than a pair of Boolean
values out of these functions. For example, it is possible to record the maximum extents of scrolling on
each axis between events, or even to attempt to distinguish separate scroll events. However, at this point,
our methodologists are mainly interested in whether scrolling occurred at all and on which axis.

A final function records hyperlink clicks on the page. The function itself is straightforward – it simply
records elapsed time and the url on a new line. At the moment, we are only collecting hyperlink clicks
associated with HelpImage, using a function call at the onclick event like this: <xsl:attribute
name="onclick">recordHyperlinkClick('<xsl:value-of select="$URL"/>');</xsl:attribute>.

 90

Conclusions
Overall, while taking into account the inherent difficulties presented by web surveys, the methods
described here would appear to allow us roughly parallel capabilities between CATI/CAPI and CAWI. It
may be some time before ISR begins to field enough Blaise IS surveys to start to refine these server- and
client-side paradata collection methods, but we anticipate that they will provide a strong foundation for us
going forward.

 91

Appendix: functions added to biEvtHan.js
var beginTime = new Date();
var lastField = '';
var lastName = '';
var scrollx = 0;
var scrolly = 0;
var endScroll = 0;
var scrollEventHoriz = false;
var scrollEventVert = false;

function processKey(AnswerField,HiddenStatus,e){
 var evt=window.event? event : e;
 var unicode=evt.charCode? evt.charCode : evt.keyCode;
 var key;
 switch(unicode)
 {
 case 8:
 key='[BACK]';
 break;
 case 9:
 key='[TAB]';
 break;
 case 13:
 key='[ENTR]';
 break;
 case 16:
 key='[SHFT]';
 break;
 case 17:
 key='[CTRL]';
 break;
 case 18:
 key='[ALT]';
 break;
 case 19:
 key='[PAUSE]';
 break;
 case 20:
 key='[CAPS]';
 break;
 case 27:
 key='[ESC]';
 break;
 case 33:
 key='[PGUP]';
 break;
 case 34:
 key='[PGDN]';
 break;
 case 35:
 key='[END]';

 92

 break;
 case 36:
 key='[HOME]';
 break;
 case 37:
 key='[LEFT]';
 break;
 case 38:
 key='[UP]';
 break;
 case 39:
 key='[RIGHT]';
 break;
 case 40:
 key='[DOWN]';
 break;
 case 45:
 key='[INS]';
 break;
 case 46:
 key='[DEL]';
 break;
 default:
 key=String.fromCharCode(unicode);
 }
 if(lastField==HiddenStatus.parentNode.id && lastName==AnswerField.name){
 document.f.paraKeyStrokeStr.value += key;
 }else{
 recordClientSideParadata(HiddenStatus,AnswerField,key);
 }

}

function recordClientSideParadata(hiddenRef,displayRef,responseValue){
 //roughly follows the format of Dirk Heerwegh's CSP JavaScript Version 2.0 for comparability
- see https://perswww.kuleuven.be/~u0034437/public/csp.htm
 var timeEvent = new Date();
 var timeLapse = timeEvent - beginTime;
 beginTime = timeEvent;
 if(scrollEventHoriz == true || scrollEventVert == true){
 document.f.paraKeyStrokeStr.value += '^t=' + endScroll + ':endScroll(' + "x=" +
scrollEventHoriz + ",y=" + scrollEventVert + ')';
 scrollEventHoriz = false;
 scrollEventVert = false;
 timeLapse -= endScroll;
 }
 document.f.paraKeyStrokeStr.value += '^t=' + timeLapse + ':' + hiddenRef.parentNode.id + '='
+ responseValue;
 lastField=hiddenRef.parentNode.id;
 lastName=displayRef.name;
}

https://perswww.kuleuven.be/~u0034437/public/csp.htm

 93

function scrollEvent(ref) {
 var timeEvent = new Date();
 var timeLapse = timeEvent - beginTime;
 endScroll = timeLapse;
 if(scrollx != ref.scrollLeft){
 scrollEventHoriz = true;
 scrollx=ref.scrollLeft;
 }
 if(scrolly != ref.scrollTop){
 scrollEventVert = true;
 scrolly=ref.scrollTop;
 }
}

function recordHyperlinkClick(url) {
 var timeEvent = new Date();
 var timeLapse = timeEvent - beginTime;
 beginTime = timeEvent;
 document.f.paraKeyStrokeStr.value += '^t=' + timeLapse + ':target=' + url;
 lastField = '';
 lastName = '';
}

 94

C3B: Exploiting The Numerous Possibilities Web Technology
Offers To Elevate Questions
Arnaud Wijnant/Maurice Martens - CentERdata, Tilburg University, the Netherlands

Abstract

BlaiseIS provides the possibility to administer questionnaires over the Internet. A next step would be to
exploit the numerous possibilities web technology offers to elevate questions, share data sources or create
extensive statistics like paradata. This can be achieved by creating special web applications that collect
data and return a set of answers to the Blaise engine based on the collected data. These web applications
are called custom questions.

A problem, however, is that the development of these custom questions requires different skills than
programming a questionnaire in Blaise. For this reason the Custom Questionnaire Control for Blaise
(C3B) was created. C3B is a mechanism which has two sides: one side which can be used by a
questionnaire designer to define custom questions in a BlaiseIS questionnaire, the other side can be used
by web developers to create a context-aware web application which can easily communicate with the
Blaise IS engine. C3B takes care of the mappings between these two sides.

The web developer is free to choose between different development platforms (like, for example, JAVA,
.NET, ASP or PHP), different techniques (like, for example, JavaScript, AJAX) and even different servers
where the custom question can run on.

The questionnaire designer can easily parameterize custom questions and share them within different
questionnaires, projects or even organizations.

At CentERdata, several C3B-compatible custom questions have been created. Examples of these custom
questions include question-to-speech, clicking and dragging images in a certain order and auto-
completion of open answers. The number of available custom questions can increase quickly since the
development of a custom question is not complicated and the web offers many possibilities.

1. Introduction

CentERdata is a research institute, specializing in online survey research. CentERdata is
affiliated with Tilburg University, the Netherlands. One of CentERdata's most important activities is to
carry out panel surveys through online panels: the CentERpanel and the LISS panel. Both panels consist
of several thousand households in the Netherlands. The members of those households complete
questionnaires on a regular basis, weekly or monthly.

CentERdata started using Blaise in 2000. We intended to do so for our online surveys as well, but had to
develop a software package to mold it to our needs: C2B (Weerman, 2001). With the recent
improvements and needs in web technology we decided that C2B does not meet our requirements any
more, and rather than redesigning C2B we decided to switch to BlaiseIS.

At CentERdata, we appreciate the advances BlaiseIS has made over the years. However, for our purposes
one key feature is still missing. Sometimes, an online experiment has to be carried out that involves some
advanced functionality, be it some javascript drag and drop experiment, a widget that tracks mouse
movements, a complex layout scheme or it should use extended media like movies or sound. We refer to
these enriched advanced applications as web technologies.

 95

Compared to Standard Blaise with C2B, BlaiseIS offers a more structured way of separating the
questionnaire definition and presentation of the questionnaire. However, only some basic Blaise question
types can be defined, which makes it impossible to have “advanced” questions without altering the
program code again. The decision was made to create a more generic way to include advanced questions
in BlaiseIS questionnaires. This was done by creating the Custom Questionnaire Control for Blaise
(C3B). The requirements for C3B are the following:

● Questionnaire designers should be able to include custom questions in a questionnaire without the
help of a programmer

● Programmers should be able to design web applications independent of BlaiseIS
● Custom questionnaires should be reusable
● No adjustment of the BlaiseIS code should be necessary to include a custom question

This paper describes how we managed to create C3B, the mechanism that managed to fulfill the
requirements. Also, some examples are given that show how C3B can be used to enrich BlaiseIS
questionnaires.

1.1 BlaiseIS Custom Questions

In Blaise it is possible to define question types like open questions, multiple choice questions and set-of
questions. BlaiseIS transforms these different question types to a suitable HTML form which enables
respondents to see a web page which looks similar to the DEP representation of a questionnaire.

On the Internet there are many more possibilities to create non-standard (custom) ways of asking
questions or gather information. Some examples are:

Interactive questions
Questions that give feedback to the respondent while the respondent answers a question. A good example
is auto completion. Auto completion tries to complete the text in an open answer box while the
respondent is typing.

Alternative user-input questions
Respondents can use other types of input mechanisms. For example, clicking on areas in an image to
answer a specific location on a map, dragging objects to locations on the screen or spoken question texts.

On other data source relying questions
Another type of custom question is a question where the user does not need to answer a question directly,
but the answer is derived from an external data source on the web. Examples are Social Media, Google
maps.

In this paper, we refer to all these types of questions as custom questions.

 96

1.2 Integrating custom questions in Blaise

Questionnaire designers should consider a C3B question as a box which can be plugged into a
questionnaire. The questionnaire designer should not need to know how a custom question is
programmed. He should only look at what input values are needed and what type of answer can be
expected from the C3B-question. In general, a C3B question can be modeled as in Figure 1.

Figure 1. High level model of a C3B question

This model enables the questionnaire designer to adapt C3B custom questions easily by changing the
input values. In addition, it enables the reuse of the same C3B custom question for several questionnaires
or several questions within a questionnaire.

For the web programmer a C3B question looks like Figure 2.

Figure 2. C3B from a web programmers’ perspective.

The input values in this model are the input values as they are defined in the questionnaire design.
Together with the output, the input values take care of the communication between the questionnaire and
the web application. The status variables are BlaiseIS specific status variables that will be created by the
C3B software (in association with BlaiseIS). The C3B component should return the values of these
variables at the end of the custom question. What happens between the start page and the final page is
completely up to the programmer (even if there is a page in between, it could also be possible that the
start page and final page are the same web page).

C3B Blaise Question

Input values Answers Custom Question

Input values

Status
variables

More
pages

Start
page

Final
page

Output

 97

2. The process

C3B is a component between BlaiseIS and web applications. The C3B component collects data from two
different sources and sends it to the web application:

1. Variables and values as defined in the questionnaire
2. Variables and values generated by the BlaiseIS engine

An example of the first type of variable is a question text. The questionnaire designer can define a
question text C3B variable and parameterize the custom question with a variable question text.

The second category contains interesting variables too. For example, the return page URL for the last
page in the custom question sequence. Or the variable names of the Blaise questions and what name
should be given to these variables upon the last postback action in the custom question.

An overview of how the different variables are combined with each other is shown in Figure 3.

Figure 3. The communication between the different C3B components

Questionnaire

Question A
Var1=“text”
Var2=”more text”

BlaiseIS engine

Runtime
variables

C3B Web Application

Answers

 98

The C3B web application is the part of the custom question that is programmed by a computer or web
programmer. There are some guidelines for the web application to become C3B compatible. These
guidelines mainly consist of variables that need to be passed on or changed during the custom question
web application. In Table 1, a list of these variables and what action should be done with them is
displayed.

Table 1. List of the C3B web application input variables
Input variable Action

sh Status variable needed for the output variable “sh”

lsi Status variable needed for the output variable “lsi”

pli Status variable needed for the output variable “pli”

spi Status variable needed for the output variable “spi”

aqi Status variable needed for the output variable “aqi”

cqi Status variable needed for the output variable “cqi”

KeyValue Status variable needed for the output variable “KeyValue”

InterviewID Status variable needed for the output variable “InterviewID”

Lmr Status variable needed for the output variable “Lmr”

statusvarnameX For x=1 to N do create an output variable that
is named ”statusvarnameX” and has the value ”statusvarvalueX”

statusvarvalueX See statusvarnameX

varnameX For x=1 to N do return value for Blaise variable “varblaiseVariableX” as output variable
named ”varnameX” the previous value for this variable is called ”varvalueX”

varvalueX See varnameX

varblaiseVariableX See varnameX

nextvarname This is the name of the “next button” to go to the next question in the questionnaire, for
example:
<input type=”submit” name=”nextvarname”>

previousvarname This is the name of the “previous button” to go to the previous question in the questionnaire,
for example:
<input type=”submit” name=”previousvarname”>

returnpage The URL of the page where the final page should submit the answers/variables to

These variables with their values will be passed to the C3B web application by a HTTP post-action. This
post-action is initialized by the browser of the respondent. Because the HTTP post-action is a very
general web mechanism, some flexibility is created for the programmer. Not only is the programmer free
to create the web application in the preferred web programming language (like, for example PHP, ASP,

 99

JAVA, .NET), but also the location of the web application is not restricted with C3B. Especially this last
advantage is useful to link a questionnaire to other data sources on the web.

One should however note that some browsers have their security options configured to display warnings
when a page posts to a different server.

A similar variable specification exists for the questionnaire designer. These variables are listed in Table 2.

Table 2. List of the C3B questionnaire output variables
Output variable Description

url The URL of the C3B web application start page

serveraddress The address of the server where this questionnaire will be loaded (NOTE: only necessary for
javascript disabled browsers)

[any other variable name] The questionnaire designer is free to define new variables, these will be posted as input
variables for the C3B web application

A special C3B construction can be used to specify these variables. This C3B construction looks like a
Blaise question of the type “string , empty”. But there are two differences:

1. The question text is preceded by “(customapplication)”
2. The question text contains the variables and values in the following form:

○ variablename1;value1;variablename2;value2;variablenameX;valueX;

In Figure 4 an example is given of how to specify these variables in a Blaise questionnaire. In this
example question v1 has the output variables and values specified as mentioned in Table 3.

Table 3. The C3B output variables and values used in the first question of the Figure 4 example
Output variable Value

url http://.../question.php

text Deliver meals in a nursing home

audionumber 161

 100

Figure 4. An example of a Blaise Questionnaire that uses C3B
DATAMODEL siwittest
LANGUAGES = NED "Nederlands"
PRIMARY
nohouse,
nomem
FIELDS
 nohouse: 0..100000
 nomem: 0..500000
v1 (customapplication)
"url;http://cdata4.uvt.nl/blaiseistest/question.php;text;Deliver meals
in a nursing home;audionumber;161;": string, empty
c1 (hidden) "Deliver meals in a nursing home" : string
v2 (customapplication)
"url;http://cdata4.uvt.nl/blaiseistest/question.php;text;Decorate
tables in a building;audionumber;178;": string, empty
c2 (hidden) "Decorate tables in a building" : string
v3 (customapplication)
"url;http://cdata4.uvt.nl/blaiseistest/question.php;text;Fix
computers;audionumber;189;": string, empty
c3 (hidden) "Fix computers" : string
LAYOUT
 AFTER c1 NEWPAGE
 AFTER c2 NEWPAGE
 AFTER c3 NEWPAGE
RULES
 nohouse.keep
 nomem.keep
 v1
 c1
 v2
 c2
 v3
 c3
ENDMODEL

http://cdata4.uvt.nl/blaiseistest/question.php
http://cdata4.uvt.nl/blaiseistest/question.php
http://cdata4.uvt.nl/blaiseistest/question.php

 101

Please note that several variables can be part of one C3B custom question. Blaise needs to know that
these variables belong to each other. This can be done by ensuring that all variables belonging to one C3B
custom question are on one page (by using the NEWPAGE command in the layout section of the
questionnaire).

3. Results

At CentERdata some C3B custom questions are already in use. It turned out that C3B is not only helpful
to create custom questions. We also found out that complex layouts of tables in questions are sometimes
easier to be generated by a C3B component than with the standard BlaiseIS functionality.

The number of variables within one C3B question varied from 1 to 16 (for example, the complex table
layout contained up to 16 questions to be filled in by the respondent).

Respondents did not encounter any problems when using questionnaires with C3B.

3.1 Example

A good example of what is possible in C3B is the job interests test. This is a questionnaire that is used to
advise students with some kind of a disability about what type of job would suit them best.

There are special requirements for the questionnaire since the group of respondents is not able to
complete a normal questionnaire. These requirements are:

● Since not all students can read, the question should be read out by the system and the answers
“like” and “don’t like” should be simple and clear images

● Since not all students understand what is meant by a profession, a question must be accompanied
by a picture that shows what is done in this profession

Together with a design team the interface as shown in Figure 5 was created and programmed in PHP and
Flash. Next to the visual interface the question text and answer categories are read out as soon as the
question is shown on the screen.

Figure 5. A screenshot of a C3B custom question

To create a questionnaire that uses several questions of this type, a questionnaire similar to the example
mentioned in Chapter 2 of this paper is used. The web programmers created a web application which used
two additional parameters:

● text: the text that must be shown for this question
● audio number: an identifier for both an image and audio

If both parameters are defined for a question, C3B and the web
the questionnaire designer the questionnaire is not different from a normal BlaiseIS questionnaire with the
exception that there are a few additional
be used.

3.2 Javascript examples

The C3B method has already been used in various advanced online questionnaire applications where it
helped visualising percentages. When asked about mathematical or economic concepts like chances or
percentages, respondents might not completely comprehend. To help them, several instrume
developed to provide a better intuitive presentation of these concepts.

102

A screenshot of a C3B custom question

To create a questionnaire that uses several questions of this type, a questionnaire similar to the example
hapter 2 of this paper is used. The web programmers created a web application which used

must be shown for this question
audio number: an identifier for both an image and audio file per question

meters are defined for a question, C3B and the web application take care of everything. For
the questionnaire designer the questionnaire is not different from a normal BlaiseIS questionnaire with the

additional variables that are used to define which C3B application should

used in various advanced online questionnaire applications where it
helped visualising percentages. When asked about mathematical or economic concepts like chances or

respondents might not completely comprehend. To help them, several instrume
developed to provide a better intuitive presentation of these concepts.

To create a questionnaire that uses several questions of this type, a questionnaire similar to the example
hapter 2 of this paper is used. The web programmers created a web application which used

application take care of everything. For
the questionnaire designer the questionnaire is not different from a normal BlaiseIS questionnaire with the

C3B application should

used in various advanced online questionnaire applications where it
helped visualising percentages. When asked about mathematical or economic concepts like chances or

respondents might not completely comprehend. To help them, several instruments were

 103

For example Figure 6 shows a screen that asks respondents to divide the persons in their social network
into income groups. A javascript application was developed that visualized percentages. The bars change
height when a respondent inserts integer values for each group.

Figure 6. A screenshot of a C3B custom question

Another example is a project where respondents were asked about chances of events happening in their
life, for example the chance of falling ill in the near future. To allow respondents to insert answers more
significantly a scale was developed. Respondents could drag on the complete scale and specify their
answers on the zoomed in window.

Figure 7. A screenshot of a C3B custom question

 104

Javascript can also be used to check respondents’ behavior. Respondents were asked to click on the red
square, once clicked, this square automatically changed into a blue circle. The respondent was asked what
happened. In the meantime, all mouse movements and clicks were recorded. This could be used to
monitor respondent behavior, but also to test interface design. In Figure 8 a respondent’s tracked mouse
locations (green) and clicks (blue) are displayed over the original screen.

Figure 8. A screenshot of a C3B custom question

Other javascript examples that were developed include changing interface styles for certain groups of
respondents, use of calendars, visual manipulation of graphs and puzzles.

3.3 Future development

There are several other new possibilities to create C3B custom questions. For example, social networks
contain lots of data about respondents. C3B could help web programmers to link Blaise questionnaires to
these data sources. Interface specifications are easier to be created, which makes it possible to create
questions that measure actions of a respondent. We could for example track how a puzzle or other
complex procedure was solved by a respondent. We can actually measure the respondent’s actions.

Sharing components is another advantage of C3B. Reuse of C3B questions is easy and does not need
involvement of a web programmer. If more projects use C3B in combination with BlaiseIS, a library of
several innovative ways of asking questions in a web questionnaire could be created.

We believe improvements are still possible on the C3B interface side. At this moment we still learn from
practice. For example the input and output variables can change or be expanded if questions need more

 105

context information. Currently we think about error states and error messages and what would be the best
way to provide them to the web application.

C3B is a new way of coping with web questionnaires which has lots of potential on both the improvement
of the mechanism and on the usage. Its mechanism of stepping out of Blaise and returning back to it gives
us the freedom to develop online questionnaires with the latest web based technologies without being
hampered by third party development.

4 References

Weerman, Bas, Internet interviewing using Blaise API, IBUC 2001

 106

Moving to Blaise IS
Peter Sparks and Gina-Qian Cheung, Survey Research Center, University of Michigan

1. Introduction
As the internet becomes ever more prominent the need to conduct web surveys increases. Blaise has had
internet support since 4.6, but Michigan has only recently started using Blaise IS in Blaise 4.8. This
paper will look at Michigan's experiences in implementing Blaise IS in their production environment, the
difficulties encountered and the solutions made. Topics covered include lessons learned in following
areas: written specifications, programming, server set up, data storage choices, case management,
paradata capture, data export, and remaining challenges.

2. Initial Project Requirements
The initial scope of a large multi-mode survey would require use of CATI, CAPI, and self-administered
web. The plan was for the survey content to change frequently as data collected and analyzed would help
refine the survey. Because of the rapid and constant change aspect of the study it was decided to use one
source code and prepare directives to produce the needed different datamodels needed for the different
modes. The goal was to minimize the logic flow and question content discrepancies that happen when
working across different instruments.

Another requirement was that data needed to be secure, and so the choice was to use Blaise's relative BOI
files via Datalink and store the actual data on a secure data server for the web mode. SQL Server 2008
was chosen as the database platform. It allowed for login management as well as ease of queries against
the tables, robustness of the data, and so forth.

Without a built-in case management system, our use of Blaise IS meant integration with an existing
system. We chose to integrate it with SurveyTrak (distributed phone interviewing) because of the built-in
reporting features. The ad hoc nature of web data collection lent itself better to CAPI than CATI.

Given the short time frame to actually implement this large and complex survey we wanted to use
existing utilities and reports whenever possible. To this end we made sure the data that was captured
could be exported to formats that our utilities already used.

The final requirement was to produce printed documentation that reflected the web survey itself, along
with similar documentation for the other modes.

3. Challenge - Written Specifications
Needless to say, even though we had a plan for starting such a project, there were pre-requirements that
we hadn't anticipated. Because of the years Michigan has spent developing and programming
CATI/CAPI surveys, we have solid guidelines for how to write specifications for a survey, and how to
program the survey in Blaise. However, we didn't have either for the web mode.

Hence, at the start of this process there were no written specifications, and no standards for programming
for Blaise IS. The areas to be developed for these specifications included:

• Allowable controls on the screen
• Placement of the controls
• Size, color, font of the controls and text

 107

• Background color
• Stem content and color
• Navigation behavior
• Menu items
• Buttons (placement, size, color, ...)
• Other actions (DK/RF, external lookup, consistency checks)

4. Challenge – Programming
Programming for web is very different than the effort involved for CATI/CAPI. The basic structure to the
datamodel remains the same, but all the look and feel changes because of the different mode. Decisions
were made tailored for the Michigan's data collection environment.

4.1 Global settings
We followed the method set by another survey package, Illume, to determine DK/RF actions. If a
question is skipped then that question is assumed to have an RF response. The DK option is only allowed
on particular questions and is shown explicitly. All questions are allowed to be EMPTY, whereas
CATI/CAPI most questions are the opposite.

4.2 Rules changes
The programming had to be tailored to include the additional auxfields used as stem text for pages with
grids. More of the items are presented in tables instead of just a single question at a time.

4.3 Question Text
The wording had to reflect a self-administered interview: layout, color, font, size, readability.

4.4 Multimedia
Multimedia could be an option (videos, sound), but the pilot survey done by Michigan, Sunflower, did not
use additional multimedia.

4.5 Modelib layouts
There is a complex interaction among the information contained in the question text, what layout is going
to be presented via the LAYOUT section, the actual layout itself in the modelib, how the screen in general
is going to look within the menu file, and the grouping mechanism. The modelib plays a critical role in
the appearance of the survey and takes more effort to use effectively than a comparable CATI/CAPI
survey. The challenge was to learn how to use all these pieces efficiently.

4.6 Menu files (panels, buttons, actions)
The menu has a complexity to its arrangement, and there was a learning curve to understand how the
pieces related. For example, the different panes on a page, and especially how to center text, place the
navigation buttons, color the different background areas, incorporate hyperlinks and text, and call
different functions from the menu.

4.7 ASP files
We needed deeper journal information (paradata), so that meant modification of the ASP files. We had to
modify pages to log into the survey, log additional information to the server, and other tasks.

4.8 Stylesheet customizations
We found that we needed to modify the default stylesheets in order to gain more control over the HTML
generated to make them more generic for different browsers. We found that by modifying some attributes

 108

within the stylesheet we could solve some scrolling problems, although others, such as table/cell border
outlines and centering, were still a problem.

4.9 Grouping (layout, field & label selection)
The grouping editor in the Blaise Internet Specifications file proved to be a challenge because of the
editor. We found that small changes in the question (code frames, renaming questions) could invalidate a
group and cause the grouping work to be redone.

4.10 Critical questions
Learning about client/server communication and when a question was required took additional time
during testing. On-screen fills, hiding/showing questions, and so forth require setting this for a question.
This is an additional step in the programming not present in CATI/CAPI.

5. Challenge – Servers
In order to deploy a Blaise IS survey, servers are involved. Blaise IS uses a minimum of three server
roles (rules, data, and web), and allows multiple rules and web servers but only one data server. The
arrangements can be one server or many physical servers. The entire set of server/service roles was a
challenge to set up.

5.1. Blaise IS Ports
Working with the computing support staff at Michigan, ports on different servers were opened until the
right combination worked with the firewalls we had in place. The typical symptom of a port not opened
is the utter lack of response when using the Internet Server Manager, or some other error when
connecting. This step took much more time than expected.

In addition, these ports need to be open for communication with the web server:

• Firewall (optional) should have the following ports open:
o 80 for http
o 443 for https (Secure Socket Layer) if desired

5.2. Blaise IS Services
The challenge was to set up these servers so they could communicate with each other through the Blaise
services (API, CATI, Survey Manager, Portal, Registry, Server Park, and Service Monitor). A good
reference of what services are needed for each server role is found in the Blaise Help: Control Centre -
Tools - Blaise Services - Type of Blaise services. The roles of Blaise services and ports are found in
"Requirements for conducting surveys."

We estimated that we eventually would need two data servers for the large project, but just used one
separate data server and one web/rules server for the Sunflower project.

Installation of the Blaise software was required in different locations: the developer's machine (internet
installation, full), the web server (API, Survey Manager, Portal, Server Park), the data server (API,
Survey Manager), and the rules server (API, Survey Manager). We did not install CATI on any of the
Blaise IS servers.

Users needed enough rights to get to the web server, but once there, the services on the server handled the
other communication details & access rights. Hence, the user could never have direct access to the data
because it was stored on the data server, and the data was transferred via the Blaise services.

 109

We had assumed that we would need to create our own relative BOI file -- but Blaise (4.8.1)
automatically creates the directory structure and copies the appropriate files to the data server, in addition
to the rules server. This took the guesswork out of the installation.

6. Challenge – Data Storage
The most obvious choice for a data storage format for Blaise IS would simply be to use a BDB format. It
would allow instant access to the data through use of existing utilities, and with use of a data server and
the implied relative BOI would remain secure behind a firewall. However, there are additional features of
SQL that were attractive that influence the choice.

6.1 Data Server
A separate data server was used to store the Blaise data apart from the web/rules server, and required
different user logins & ports opened.

6.2 Data Roots
Blaise allows definitions of additional directories to be stored in a list of data roots to be used with BOI
files. At the beginning of the process the need of data roots were unknown and somewhat confusing.

6.3 SQL backend
In preparation for the large study and knowing there was going to be heavy use of the database from both
users and analysts, Datalink with SQL was a logical choice over a BDB. Blaise inherently uses datalink,
and so setting up a BOI file for data use means the most flexibility in working with the data.

Using a SQL database also allowed us to use three different "databases" within the database: main
interview data, working data, and paradata. This kept management of the files tidy and secure.

6.4 BOI data structure (Stream, Flat No Blocks) - Datalink
We had to examine the different layouts available and choose a BOI format that worked for our needs.
Two different formats to the SQL database were chosen for this study: stream and "flat, no blocks." The
former was used for the main and working databases, while the latter was used for the paradata. The
stream format was chosen for its compactness and speed. It cannot be queried directly via SQL, but
through BOI files it can be easily exported to another format. The flat format was used for the paradata to
allow it to be queried as needed, and in fact the tables created were used to store timing information back
to the sample management system, SurveyTrak.

6.5 Minimize number of tables (Main, Working, Paradata)
To minimize the amount of overhead, each study published in Blaise IS was assigned a database within
SQL. This allowed all the associated tables (main, working, and paradata) to be placed in one area.
Although generic tables could have been chosen, we chose for this test to let the default configuration
remain.

6.6 Username/password login to tables
A study-specific login (username, password) to the SQL database was created. This provided an extra
level of security to the survey data. The original BOI file is password protected (via Blaise) to prevent
revealing the database login.

6.7 Datamodel changes/migration
We made plans for migrating the data during production if needed. From our testing it seemed like the
best plan would involve the following:

 110

1. Update the datamodels
2. Create new BOI files that match the updated datamodels
3. Suspend the survey
4. Run an OLEDB (old datamodel) to Blaise (old datamodel) to save the data
5. Delete the survey
6. Install the new survey
7. Run a Blaise (old datamodel) to OLEDB (new datamodel)
8. Start the new survey

6.8 Database “locks” – hangs
During development we encountered locks on the database. Although we never tracked down exactly the
cause, this seemed to be caused when we deleted/reinstalled a survey through the Survey Manager.

We found out that most often the process responsible for causing the lock was the Blaise API service
found on the data server. We tried a variety of ways to release the deadlock that stopped the survey from
responding, including rebooting the machine that was hosting the data server and reinstalling Blaise. We
found that by stopping and restarting (and sometimes killing and starting) the service we could regain
control. A simple solution of just waiting sometimes worked. We did find that once production began
and we stopped uninstalling the survey we experienced no other locks.

7. Challenge – Case Management
Blaise IS provides a great base for creating web surveys, but does not provide the management piece.
This includes the tracking and management of sample, status reports, and holding/releasing/preloading
cases into the system, as well as sending emails to respondents.

7.1 Existing system (CAPI) integration
SurveyTrak is the sample management system used for our decentralized interviewing system. It has,
throughout the years, had many management tools built into the system. We decided to use existing
features in SurveyTrak and add a few more functions outside of SurveyTrak.

7.2 Email jobs
Email is an important way to contact the respondents, but unfortunately Blaise IS does not provide a
system to do this. However, a new module was written to handle email jobs (see the conference paper,
"Blaise IS Sample Management."1).

7.3 Suspend and resume interviews
The respondent was required to log into the survey (after being provided the required information in an
email). Upon resuming an interview the respondent was taken back to the place they last suspended.

7.4 Reports
Blaise IS's Internet Manager provides very basic reports on the number of completes and the number of
times the survey has been accessed, but other reports needed to be customized. These were created in part
from the email utility, and others from integrating with SurveyTrak.

7.5 Daily updates to SurveyTrak
Since SurveyTrak was used to supply sample to the study and run reports, daily updates of paradata
information from the paradata table to SurveyTrak was needed. Information stored to SurveyTrak
included the time spent by the respondent in the interview, the last question answered, and the number of
resumes.

 111

Navigation Buttons

Question Grid

Contact info Survey Title

Logo

Stem text

8. Challenge – Paradata
We needed detailed journal information -- much more than the default Blaise IS journal:

Field Name Type Description
Date DATETYPE Date of the event
Time TIMETYPE Time of the event
PrimaryKeyValue STRING Primary key value of the interview
-- Blaise Help - Monitoring - Web journal for programmers

The datamodel that describes the journal can be extended within the datamodel, but we needed to store
information outside the interview. These fields were populated using the menu file via javascript and
ASP code. This is detailed in the conference paper, "Blaise IS Paradata."2 The data defined in the
paradata (journal) datamodel are stored in an SQL table using the Datalink "flat, no blocks" format.

9. Solution - Written Specifications
Although it would have been nice to have a lengthy time to research all the best web designs and
implement them fully within Blaise IS, time was always of the essence. That is, the "specs" were tailored
to the current need and limitations within Blaise IS as the instrument was being developed. There was
difficulty in determining the best method of describing the layout of a screen, and eventually a simple set
of markers in the spec document was used.

The markers described the start of a screen, and then the start of a grid or other structure. Any text that
appeared before the start of the grid would become "stem" text that required additional programming.

General layout elements, such as the logo, survey title, help reference, button navigation, background
color, highlight color, font size and font type, and so forth were initially chosen, but revised as the project
went forwards.

 112

Because web surveys are self-administered, close attention was paid to making the question text distinct
from the answer categories. In the above screenshot, the question text is in bold, instructions specific to
this page to the respondent are in italics, and the question category topics are in a normal font.

There are areas that have not been decided. These include the use of tables, lookup lists, and other user
controls (drop down lists, date and time pickers, custom controls, if ever to show DK/RF values, and so
forth). Therefore we expect the specifications to change as we become more versed in web studies.

10. Solution – Programming
Necessity is the mother of invention -- and that's no tall tale for entry into web survey programming. The
complexity of going into this area is about the same level of complexity as learning the CATI call
scheduler and setting up related systems.

A big necessity was simply learning about the different areas and how they related to one another. In
CATI this process seems fairly straight-forward, with the complexity coming from the INHERIT CATI
command and the call scheduler parameters (ignoring customizations to the system via manipula).
However, in Blaise IS, the diagram becomes more complex because there are so many interrelated parts.

Blaise Source Code
Global settings
Blocks with related content
LAYOUT (INTERNET)
Extra auxfields/.SHOW
Simplified RULES flow
INHERIT INTERNET

Menu file
Background colors
Entry borders
Button positions
Button actions
Panes
Images
Hyperlinks
ASP session variables
Fonts, styles, ...
Behaviors
Languages

Modelib
Internet layout
Border width style (none)
Directly influences grouping
Customized layouts needed for web

Blaise Internet Specifications
File locations
Languages
Data files
ASP
Files used
Preview mode
Grouping
Critical questions
Hidden questions
Stylesheet modifications

ASP Programming
Login
Journals (paradata)
Session variables
Customized pages
Script programming

Internet Manager
Servers - Rules, Data, Web
Remove, suspend, install survey
Setting up servers
Monitoring the survey

Services
Monitoring
Stopping/starting via Blaise/Windows

Datalink
BOI files to SQL database
One BOI file per datamodel

 113

10.1 Appearance Specs Required
Programming in the Blaise instrument is influenced by the layout of the web page, so realistically the
general layout of the survey needs to be specified first (and programmed in the menu file). The specific
design of each web page also needs to be determined early to help determine any "stem" text for the page,
as well as any needs for grouping questions (grid, table, amount/per, or other format).

10.2 "Stem" text
In order for question text to appear before a grid, an auxfield is created. It is placed in the rules with a
.SHOW attribute, and a layout that displays the question text only (via the modelib). In this example, the
questions in the grid are grouped together via the Blaise IS grouping editor and via the modelib, and the
NEWPAGE command is used start a new web page.

10.3 Menu modifications
One frustrating thing about working with the panel and placement of controls on the menus is that the
dialogs work with pixels, but realistically it's a proportion of available space (height and width) on a web
page. Placement of an item is relative to the widths of all the items.

We found that the background color of an object will carry through to the controls below it. So if a panel
is colored green, then all the things on the panel also get green unless it's reset.

FIELDS
 xA1 "@/@T@BIf you work primarily from a remote location or work at multiple locations,
 please answer the questions in this survey for the space you use @Umost often@U
 when working in the Perry Building.@B@T

 @/@/@T@BPlease indicate to what extent you agree or disagree with the following
 statements about how the office layout and your workspace affects your
 ability to work with your functional team (e.g., TSG, PDMG, DCO, etc.)
 and project work team(s) (e.g., HRS, PSID, NCS, etc.).@B@T

 @/@/@IIf a question does not apply to you, please mark ""Not Applicable"".@I" :

 TContinue

RULES
 xA1.SHOW
 A1a
 A1b
 A1c
 A1d
 A1e

LAYOUT (INTERNET)
 BEFORE xA1 NEWPAGE
 AT xA1 FIELDPANE QuestionTextOnly
 FROM A1a TO A1e FIELDPANE GroupTableQuestionTextLeft

mailto:T@BIf
mailto:often@U
mailto:Building.@B
mailto:T@BPlease
mailto:.@B
mailto:.@I

 114

We also recently added a variable to the menu for our internal CAI Testing Tool utility to have it work
with Blaise IS surveys. The use of this variable may be discussed in the paper, "BlaiseIS Paradata."2 An
earlier paper on the CTT was given in "CTT: CAI Testing Tool."3

10.4 Variables
Programming for a Blaise IS web page is more intensive than for CATI, and will carry more auxfields.
It's recommended that programmers use a standard naming convention for the additional auxfields, such
as xFieldname when its purpose is introduction text to a page.

10.5 Layouts
Blaise Internet requires a modelib specific for that mode. Within that
mode there will be a number of default field panes for internet. We found
it useful to customize a few additional fieldpanes.

One setting we universally did was to remove the dashed highlight around
the question text. This was accomplished by choosing a fieldpane, then
selecting "None" for the question select in the General group.

10.6 ASP - login & paradata
We modified the active server pages to provide a different login, and also to store survey data from the
interview back to the SurveyTrak database.

10.7 Grouping
Grouping in Blaise IS is a huge challenge, and becoming familiar with the editor does speed up the
process a little. Given the fragility of grouping (a change in the datamodel could make the programmer
redo the grouping) this should be one of the very last things done to a web survey. Make sure the survey
is solid, the logic and fills work, and the pages are correct, and then finally do the grouping.

We learned that what appears under the grouping editor is influenced by what is shown in the modelib
and what fields are in the datamodel. To work with a group in the editor, follow these steps:

1. Create the appropriate layouts in the modelib.
2. Make sure all the elements you want in the grouping editor are

visible in the modelib (or not)
3. Make sure the layout in the datamodel is correct
4. Prepare the datamodel
5. Define the group
6. Edit the group

We found saving our grouping often was beneficial.

Like the panel and positioning of controls in the menu editor, the placement
of items within a web page in the grouping editor is really based upon
percents. So if the page width is 2000 pixel, and a control is 500 wide (and your theoretical web page
width is 3000), the control will fill 1/4 of the web page, not 1/6. The elements in the group will also
expand to fill the data up to a point. So for editing all the groups eventually we came up with the
following method:

• Set the global height and width to 1.
• Set all border margins to 2.
• Set all category items to 50 wide.

 115

• Set all question text to 1150 wide.
• Space rows of items 25 apart (each is 25 high)
• Use the "move items" (right-click, choose "move items") to move a cluster of items at the same

time. In this picture, everything to the right and below will be moved to the right 50 pixels and
down 25 pixels.

• Be patient when moving items & undoing the moving of items (it can take time).
• Do use the multi-select with the control key. Change the attributes of multiple items at the same

time after using the multi select.

10.8 Stylesheets & HTML
We found that the stylesheets included in Blaise IS work well for Microsoft's Internet Explorer, but
generated html code that gave odd results in other browsers. Notably, in Firefox we found that not all the
gridlines would appear, in Chrome all the cells within the tables were centered, and similar problems in
other browsers. We did not fix this problem due to time constraints, but conjecture it is due to the
rendering of the html page from the stylesheet.

We also discovered that horizontal and vertical scroll bars would sometimes appear even though there
were no content to be shown. After investigating, we found that the generated html page consists of a
number of tables within each other, and the problem was caused by a calculated border width defined for
some of those tables. Replacing the calculation with a constant "1" solved the problem.

11. Solution – Servers
The intent was to have three physical servers, and add in additional rules servers as needed. However, we
ended up with three virtual servers that acted the same. Since our first project had such a small sample
we never really tested the load on the server itself, but we also did not notice any problems for running
the survey.

 116

In preparation for the large survey most personnel were being moved behind an additional firewall within
the Survey Research Operations. This caused a problem with just being able to access the web server: it
was behind the additional firewall, and users who wanted to test from outside the building could not. The
resolution was to have the users log in to the servers within SRO via VPN, and then they could access the
web site.

The computing support staff made sure that the communications that Blaise IS needed to talk among the
servers via the ports were done correctly, and the appropriate ports were opened.

It was confusing at first to learn where the files were placed when the Internet Manager deployed a
survey. We used Blaise 4.8.1 for our first survey data collection, and hadn't known that the when a
survey is deployed it gets copied to multiple servers, and found it best to let Blaise handle all the files via
the package (BIS) definition. We also found that Blaise 4.81 made relative BOI files automatically for
use with the data server we had set up.

12. Outcome – Data Storage
We had to find out which was better: Blaise BDB, SQL storing Blaise data, or both?

Not surprisingly, Blaise BDBs are very handy when using existing utilities. The processes are known for
retrieving data, running reports, and maintaining the databases. The downsides are typical -- multiple
files per datamodel, file locking problems and speed of access in shared mode, and the possibility of an
"oops" moment by deleting a file/moving a file using the file explorer. Placing the data in SQL tables did
protect against the downsides (not as likely to accidently delete data/corrupt the data, and won't restrict
access speed to the data), as well as provide more security to the data.

 117

The paradata (journal) information was stored in a "flat, no blocks" format that made it very easy to run
SQL queries and work with the data using stored procedures and C# utilities. The questionnaire data,
stored in the stream format, was used to minimize storage and increase access speed for the respondent.
So we had to still export the interview data into a BDB for analysis, but were still able to run basic
queries (i.e., number of completes/partials) against the SQL data.

We did find it easy to store all the related survey databases (main, working, and paradata) in the same
SQL database without the generic format. We created the tables by making the BOI files in the OLEDB
Workshop. After creating the main BOI, we edited a copy of the BOI to point to the Working database by
renaming the tables in the main. This created a new set of tables in the SQL database that referred to the
same main datamodel.

We never did fully resolve the problem of having the data server hang, but by the same token we did not
post a new survey during the data collection period. Therefore, the "survey locks" is still an outstanding
issue.

13. Solution – Case Management
A basic case management system was developed for the web mode that extended the functionality of
SurveyTrak. A list of email addresses and status were stored in a database, and an email module managed
the sending of invitations and reminders. Once the respondent began or finished an interview, that
information, along with a summary of the paradata, was stored in the SurveyTrak database. Managers
could run existing reports from SurveyTrak, or additional queries against the Blaise IS tables stored in the
SQL database. The email module was a major addition to the system, and the discussion of that system
can be found in reference (1).

There were relatively few problems in developing the stored procedures to store the Blaise IS paradata
and case status to the SurveyTrak tables. Those problems were more of the technical communication
methods needed rather than any system design issues.

14. Solution – Paradata
The details of the paradata (journal) information can be found in reference (2). The benefit of the
paradata was that it enabled managers and researchers to analyze respondent behavior down to the field
level on a page, and included their navigation actions. This is more detailed than the default journal file.

To achieve this required new standard, this included disabling the default journal, modifications to the
ASP code, a new standard datamodel for storing the data, and new SQL tables and stored procedures to
summarize and transfer the data.

 118

This doesn't have any visible affect on the respondent (i.e., no slowing down of the web page), and the
setup overhead is minimal now that the standards have been defined. The development did take some
effort.

15. Lessons learned
We learned the following.

• Standards before implementation
This is well known, but bears repeating. Without clear standards before implementation starts,
there will be much redoing and discarding of work, and ultimately will take more time and cause
more problems than tackling the standards up front.

When time is an issue, it's better to still agree to something and have it written down even though
that standard may not be perfect. The point is that there is a common document that everyone
uses, and the tendency is that without that document there are no standards.

• New systems require lead time

One reason we used virtual servers is because they were fast to implement using existing
hardware and we didn't have to order new servers. The downfall is that there are multiple
processes running on the same physical server, thus, overall, the virtual server cannot handle the
same load as a physical server.

Even so, setting up the servers required time to install software, assign users, roles, and groups,
and to make sure everything works. Technical glitches can easily delay the start of server use
until issues are resolved.

The case management system was actually designed and implemented while the survey
programming was being done. The last parts implemented were the data export and management
reports for the new system.

• Learning curve
Stepping into the Blaise IS world took a great deal of time because of the many components, and
required a broad set of skills to master. It was a task best handled a little at a time, but with a big
picture overview to help guide the process. A training class that gets down to the littlest details
would be helpful.

• Each area has its own challenges
This includes the datamodel source code, modelib, menu, internet specifications, BOI files, ASP,
stylesheets, SQL, SurveyTrak, services, servers, file locations, ports, and user rights. Each of
these had its own challenges, and it was best to concentrate on learning one part at a time.

16. Summary
The move into Blaise IS has not been without its challenges, but the journey has been worthwhile. Blaise
IS offers a rich environment to develop and deploy web surveys, but needs additional systems to
supplement the features that are in the internet package. A great deal of customization can be
accomplished within the system.

Michigan has greatly expanded their capabilities in the area of web surveys in Blaise, and is ready to
conduct additional surveys more efficiently. Future directions include resolving some outstanding issues

 119

that were discovered during this first foray: defining archiving procedures, correcting browser
incompatibilities, providing more SQL stored procedures for accessing the data, and updating testing tool
and the case management system and reports.

References
1Hueichun Peng and Lisa Wood, BlaiseIS Sample Management, IBUC 2010
2Jason Ostergren and Youhong Liu, BlaiseIS Paradata, IBUC 2010
3Mary Dascola, Genise Pattulo and Jeff Smith, CTT: CAI Testing Tool, IBUC 2007

 120

Challenges of Developing and Supporting Multimode Survey
Instruments
Leonard Hart, Scott Reid, and Erin Slyne, Mathematica Policy Research

Over the past decade, Statistics Netherlands’ Blaise survey software has evolved into the primary
data collection system used at Mathematica Policy Research because of its adaptability in meeting our
multimode survey instrument needs. Although computer-assisted telephone interviewing (CATI) and
computer-assisted data entry (CADE), also known as high-speed data entry, were the predominant modes
of computerized data collection early in the past decade, the introduction of computer-assisted web
interviewing (CAWI) and computer-assisted personal interviewing (CAPI) increased our need to find
ways to best integrate and leverage the advantages provided by using these other very distinct data
collection modes.

This paper reviews our experiences with multimode survey data collection and the challenges

inherent in working with instruments in single and multiple data collection software environments. We
will discuss supporting multiple web-based data collection systems in an ever-changing internet
environment and the effects they have on data collection. We will also describe the obstacles and
solutions involved in coding and maintaining a single Blaise instrument that handles multiple modes of
data collection in one central real-time Blaise database.

1. Background

1.1 Experience with multimode surveys

Over the years, Mathematica has conducted a growing number of multimode surveys. Currently, we
believe we are one of the few in our industry successfully deploying surveys that use one Blaise
instrument accessing in real-time one centralized Blaise database accepting data across distinct data
collection modes. Most of these surveys combine CATI and CAWI in real time; on a couple of
occasions, we have included CADE into the mix. We have also incorporated CAPI data collection
into a shared centralized database, but not on a real-time basis, although that is a future goal of ours.
Getting to the point of implementing single-instrument/multimode surveys did not happen overnight;
rather, it developed over a few years.

Paper-and-pencil methods of data collection have been around since before Mathematica’s inception
and are still used today to fulfill the needs of simple self-reporting surveys or quick in-person
observations. In spite of all the technological advances we have seen since our founding—namely,
the proliferation of personal computing; the ability to easily share data via internal and, later,
external networks; and the explosive growth of the internet—the paper survey still has its place as a
valuable data collection tool.

All the advantages of the computer-assisted interviewing (CAI) systems and software developed
over the years, which enable our industry to conduct computer-assisted telephone, in-person, and
internet-based surveys efficiently, would go beyond the scope of this paper. From the outset,
however, many organizations, including Mathematica, recognized the importance of incorporating
them into a data collection arsenal. When properly applied, CAI data collection systems that
implement CATI, CAPI, or CAWI instruments allow for greater accuracy of survey data, help speed
up the entire data collection process, reduce the burden on our respondents, and can lower overall
data collection costs. As these CAI systems and software became more robust, our capabilities to
apply them across multiple modes also increased. No longer were we tied to just one method of data

 121

collection. Having the capability to reach respondents in multiple ways enabled us to achieve high
response rates for our surveys, even as it has become increasingly difficult to contact respondents in
recent years using traditional methods.

CATI was used initially in a stand-alone mode for conducting instruments where utilizing the
capabilities of a CATI system to handle complex questionnaire logic and systematically handling and
delivering cases to respondents via a call scheduler were advantageous over the paper-and-pencil
methods of having an interviewer try to calculate complex logic on the fly or handling thousands of
paper contact sheets. CATI later became a tool used to supplement mail or in-person paper surveys,
by enabling us to follow up quickly with respondents who failed to self-report within the time
allotted for data collection.

CAPI’s introduction was very similar to that of CATI’s; it was initially used in a stand-alone mode
because of the computer assisted advantages it provided in handling complex logic and case delivery
over manual paper processes. Later CAPI was used to follow up on self-reported paper surveys or
CATI. A knock on the door and the ability of a field interviewer to collect the survey data easily via
a CAPI instrument and then be able to transmit that data back to a central office works extremely
well when dealing with a universe of respondents who could be difficult to reach by telephone.

As the internet became a more widely accepted communication tool in society, CAWI began to grow
as a valuable data collection method. CAWI was first used at Mathematica in a stand-alone mode on
surveys in which the entire sampling universe had the capability to participate via the internet. It then
grew into a multimode option used to supplement other data collection efforts. In multimode data
collection, CAWI was first used as an alternative method of gaining respondent cooperation. For
example, as a final follow-up to a CATI data collection, respondents were told they could self-report
their data via an internet-based instrument and would not be burdened with a potentially lengthy
telephone interview or the inconvenience of scheduling that interview. Over the years, this trend has
reversed, because nearly all of our multimode surveys that use CAWI start data collection in this
mode. CAWI is often the first option available to a respondent, although CATI is used only as a
follow-up. As we have seen on several of our annual or longitudinal surveys, these methods have
grown increasingly popular with our respondents; for these studies, CAWI is becoming a dominant
mode of data collection. Another potential benefit of offering respondents a CAWI option is in the
cost savings that projects see when you decrease the number of mailings, in-person visits, or
telephone contacts you have to make to gain the cooperation of the respondent.

Over the years, we have conducted many multimode surveys. Surveys of which we are most proud
include the 2003 National Survey of Recent College Graduates (NSRCG), which was the first real-
time, one Blaise instrument with a centralized Blaise database, CATI/CAWI/CADE survey we
conducted; the 2008 NSRCG, which was the first survey in which we collected CATI/CAWI and
CADE data via one Blaise instrument and a central database using Blaise IS; the National Survey of
Substance Abuse Treatment Services (N-SSATS), in which we have collected data using CATI,
CADE, and CAWI instruments for the past ten data collection cycles and have seen the internet-
based mode grow to be the predominant mode chosen by our respondents; and the Ewing Marion
Kauffman Foundation’s Kauffman Firm Survey, which is now entering its fifth follow-up round and
has been able to track a cohort of new businesses successfully via both CATI and CAWI data
collection.

 122

1.2 CAI software used

Mathematica has used several CAI systems over the years to support our data collection efforts. We
currently use Blaise for our CATI and CAPI studies, Viking Software Solutions Viking Data Entry
system for CADE, and different products for web surveys.

We have tried using Blaise for CADE on a several surveys and had some success. However, due to
the additional labor involved in programming for the specific requirements of a data entry
instrument, while also making it work with the needs of a CATI, CAPI, or CAWI instrument, as well
as our client’s needs to have data double key verified, we have found it is easier and more cost-
efficient to use the Viking system to meet our high-speed data entry needs.

For CAWI studies, we use three different systems, based on the capabilities of each package and
how it best addresses particular survey requirements.

Blaise IS is the CAWI system we rely on for the studies in which we determine using one
instrument, with one real-time centralized database supporting multiple modes (usually CAWI and
CATI) with extremely similar instrument specifications, works best for our data collection needs.

ObjectPlanet, Inc.’s Opinio system is used for internet-based instruments that are short (in number of
questions presented and the overall time to complete the survey) and simple in content (for example,
simple skip patterns, simple question designs, and no grids or complex tables). A nonprogrammer
can easily set up the screens and basic skips available in this system, which makes it cost-effective
for very straightforward web surveys.

Mathematica’s homegrown WebSurv system, which is an ASP.NET front-end/SQL back-end
application, is used for CAWI studies in which we have an extremely specialized data collection
need that Opinio or Blaise IS cannot easily meet. Using WebSurv can occasionally give us increased
web page design flexibility over our other systems. Another advantage is that most of the instrument
set up can be done by junior-level staff from outside the Information Systems department.

2. Support Issues

2.1 Web dominates

Based on our extensive experience supporting different modes of data collection, including CATI,
CAPI, CADE, and CAWI, we have found that CAWI requires the most user and programming
support. Much of this has to do with CAWI being the “new kid on the block” and with the learning
curve for both programmers and respondents in dealing with a new and ever changing technology.

For this reason, we are concentrating on CAWI, but we will also discuss how other modes might be
affected. CAWI support is different from the other modes of data collection because we cannot
control the respondent environment as we can for an internal user’s environment. As with other
modes, CAWI surveys will have traditional support issues (such as logic errors or internal system
issues). However, CAWI surveys open up a whole new area that we cannot control: the user desktop.
We discuss some of these CAWI-specific issues next.

 123

2.2 Authentication processes

Making sure the correct respondent accesses your CAWI instrument properly is as important as the
data collection efforts of the instrument itself. Respondents must feel confident of the security of
their data being transmitted, especially when it is sensitive or personally identifiable. How a
respondent views the capabilities of your authentication process is the equivalent of making a guest
feel welcome when entering your home. Because we use three CAWI systems, getting them all to
meet our security needs, as well as representing Mathematica web systems as a “welcome place” to
participate in a survey, can be a challenge.

Although Blaise out of the box offers some basic authentication solutions, we felt we needed
increased security, the ability to integrate the authentication process into other systems, and greater
customization than it offered. Therefore, we decided to utilize Full Content Protection (FCP) using
ASP.NET. FCP forces a user to be validated when the user requests any content from the web
application. Because the FCP authentication process we use for Blaise instruments closely replicates
the process used by our WebSurv system and is also written as an ASP.NET application, we have a
greater pool of programmers available who are familiar with ASP.NET applications. Because of the
similarities of the two systems, we were also able to standardize the feel or the authentication process
across both and build common standards for our login and password combinations.

Opinio’s authentication process is proprietary and less customizable than FCP for Blaise or
WebSurv. User authentication is optional with Opinio, as you can create surveys available to the
general public; however, this is not an option we would choose to implement. You can assign user
names and passwords to particular respondents. However, because of the proprietary nature of
Opinio, it requires staff to learn a second set of requirements for creating and maintaining a study’s
list of web respondents. We investigated using the FCP authentication piece we use for Blaise CAWI
instruments, but found it to be much more cost-effective to use the authentication piece provided by
Opinio itself. Ideally, we would find it most beneficial if we could come up with one authentication
system that we could use across all three of our products.

2.3 Multiple types of web browsers

According to the Net Applications Browser Market Share report for the period ending July 2010, the
top five types of browsers in use worldwide are Microsoft’s Internet Explorer (60.74 percent),
Mozilla’s Firefox (22.91 percent), Google’s Chrome (7.16 percent), Apple’s Safari (5.09 percent),
and Opera Software’s Opera Browser (2.45 percent) (http://marketshare.hitslink.com/browser-
market-share.aspx?qprid=0). This list covers 98.35 percent of all the browsers in use, but that still
leaves 1.65 percent of the internet population using alternate, unsupported, or even obsolete
browsers. Factor into that the number of versions of the top five browsers available and you can see
that it would be nearly impossible to provide a comprehensive list of browsers potential respondents
could use on one of our CAWI surveys.

For the most part, our three CAWI tools have been able to handle the preponderance of the browsers
in use; however, as they say about the stock market, “Past performance is no indication of future
returns.” When we first started supporting CAWI instruments, we did come across situations in
which a question would display one way in one browser and a different way in the others. However,
as CAWI use grew and the tools available became more robust, these differences have become less
problematic.

We are seeing an increase in the number of respondents using mobile or handheld devices, and there
is a growing concern that our current web design standards might have to be adjusted further as this

http://marketshare.hitslink.com/browser-

 124

segment of the browser marketplace increases. The Net Applications Browser Market Share report
for July 2010 shows that handheld or mobile browsers make up 2.2 percent of the market, up from
0.98 percent in October 2009 (http://www.netmarketshare.com/report.aspx?qprid=61).

The internet is an ever-changing environment, and our mantra for the past decade when working
with CAWI instruments has been “Keep it simple.” Although it is possible to do many exciting and
flashy things within an internet instrument, you have to make sure that almost any respondent can
properly view the page you are presenting and that you are not introducing any bias into your
questionnaire design because of browser behaviors.

2.4 Synchronization and merging of data between disparate systems

Getting disparate data collection tools to work together smoothly for a single questionnaire can be a
challenge. The data is more than likely stored in either a proprietary format or database, and the data
variables and values probably will be completely different for each because of the unavoidable
idiosyncrasies of each system.

The first challenge we encountered when using disparate systems for the same instrument was trying
to prevent duplication of data between the different modes of data collection. Although you would
hope that the data between the systems would be identical, we found that is not always the case,
especially on institutional or establishment surveys in which two people could be reporting for the
same entity. For example, in the early rounds of data collection for a facilities study, a particular
facility might have completed a mail survey that was marked as received in our sample management
system (SMS) before being passed to data entry staff to input into the Viking data entry system the
same day a telephone interviewer contacted the facility to complete the survey via the Blaise CATI
instrument. Meanwhile, someone else at the same facility might have logged into the WebSurv
CAWI instrument the same day and completed the survey there. Because there were differences in
the data collected in each instrument, additional calls to the facility would have been needed to
determine which mode of data collected was the one we wanted to keep.

One way we cut down on the discrepancies between the systems was to increase the number of real-
time updates between the systems being implemented. For example, as soon as a mail survey was
marked as received in our SMS database, the login for the web survey was disabled in the WebSurv
system and the case status there was adjusted accordingly. For CATI, if the case was delivered by the
Blaise call scheduler, or if selected for manual dialing by a CATI interviewer, a call was made to the
SMS database which pulled the status into Blaise and let the interviewer know that a call was not
necessary and upon closing the case it would be then statused as mail received in Blaise and no
further dialing attempts would be necessary.

Because WebSurv and the SMS data are both SQL databases, the triggers and stored procedures used
to make the updates between those systems were relatively straightforward; however, we had to
develop a process to share data between the Blaise and SMS database, which in turn would update
the WebSurv database. We developed a Dynamic-link library to use as an interface. The Blaise
instrument (or the SMS database) can use this interface to pass data between these systems.

The other challenge we encountered involved merging and processing the survey data between these
systems. Because each system collects and outputs (or allows you to access) its data in its own
format, there needed to be a way to “crosswalk” the data into one common format. The biggest
problem is that any mistake in the crosswalking leads to errors in your final data and the eventual
analysis. When dealing with disparate systems, we have tried as much as possible to name the
variables the same in each system, make sure we ask the questions in the instruments in the same

http://www.netmarketshare.com/report.aspx?qprid=61

 125

format, and make the answer categories or data types the same. By keeping the modes as common as
possible, there is less chance of the data not lining up when combined via SAS processes.

Because of these challenges, we are strongly considering implementing Datalink on a future project,
so all the survey-related data will be stored in a common SQL format, and the communication and
updates between these systems should be handled easily. More important, this is why we try to use
one Blaise instrument with one central real-time database when we have a multimode need.

2.5 Around-the-clock support

Multimode surveys have support needs on varying levels and timelines. For the most part, pencil and
paper and the software to enter the data recorded on hard-copy instruments are the easiest to support
technically and have least urgency when requests come to programmers, as there is no respondent
waiting for a solution. Supporting CATI and CAPI is a little more challenging than CADE, because
you have the interaction with your respondents to contend with; however, having the interviewer as
part of the process can reduce the urgency when problems do arise. The CATI or CAPI field
interviewer can easily explain to the respondent the issue we might be encountering and negotiate a
time when we can continue the survey.

When it comes to CAWI, the level of support needed and the urgency factor increase. The CAWI
instrument itself is the main point of communication between you as an organization and the
respondent. Because the internet never sleeps, keeping CAWI respondents happy becomes a 24 hour
a day, seven day a week, 365 (or 366) day a year proposition. Because problems with CAWI surveys
can pop up anywhere, they can be the hardest to diagnose and fix. For example, if a respondent
cannot access your survey, the problem could be anything from an Internet Service Provider (ISP)
issue, the connection to our web servers having gone down, the web server itself having failed, an
internal network issue, or a programming error putting the survey into an unstable state.

When CAWI was a data collection tool newly available to Mathematica, we encountered support
issues relating to browsers, internet connections, software, and user errors; compounding these issues
was that this was a new technology for end users and for us. Over time, survey support staff have
gained more experience supporting CAWI instruments, and they now triage calls and emails. Before,
programmers had to become involved in every CAWI issue. Now, survey staff can check that a
respondent’s browser is functioning properly or that the respondent can reach other sites besides our
survey’s site, which helps determine if the problem is on the respondent’s end or ours. In addition,
respondents are becoming more internet savvy and can address items such as connectivity. Also, web
survey packages have gotten better at addressing some issues, and we have built new features into
our supporting tools to address certain inefficiencies.

2.6 CAWI instrument troubleshooting

No matter how much instrument testing you do, occasionally a programming bug will get into the
real world and create problems for your survey. One of the biggest support challenges is trying to
determine what exactly a CAWI respondent is doing when that problem occurred.

Unlike a pencil-and-paper survey, in which the respondents will occasionally leave comments in the
margins if a question is not clear, or a CATI or CAPI survey, in which a programmer can extract an
accurate description of the problem from the interviewer, communicating with CAWI respondents is
much more difficult. They may choose to tell us nothing and just complain about not being able to
complete the survey, or, if you are lucky enough to secure their cooperation in triaging the issue,
they might not remember or have recorded exactly what they were doing when the instrument

 126

problem occurred. However, there is hope in trying to determine what CAWI respondents are doing
when problems arise and information is limited. Occasionally, you can glean information from some
of the web server logs, but one of the best tools available to the CAWI instrument programmer is a
web audit trail.

With Opinio surveys, tracking respondent movements and issues that arise from those movements is
less of a problem, as the logic in these surveys is less complex than what is found in our homegrown
WebSurv system or in Blaise Internet instruments. In WebSurv, it is possible to trace the path a
respondent takes through the survey. The system tracks the web page from which the respondent
submitted data and exactly when the respondent submitted that data. The system also determines if
the respondent changed the data initially submitted by backing it up on his or her own or if the
instrument itself put the respondent at an incorrect point in the survey.

Trying to implement CAWI Blaise audit trails has been a hit-or-miss proposition. For the initial
Blaise surveys we hosted, we used a third-party piece of software called C2B (“CentERdata to
Blaise”), developed by CentERdata at the University of Tilburg. C2B provided the interface between
PHP (an open-source server-side scripting language) and our Blaise instruments. As part of the C2B
system, we could capture detailed audit trails that showed us the movement and data changes
respondents made. This proved to be a valuable tool in finding the programming equivalent of a
needle in a hay stack when trying to resolve programming bugs. When we switched from C2B to
Blaise Internet several years ago, we hoped the journaling feature built into Blaise would provide us
with the same level of detail we had with C2B. However, we have been unable to replicate that
success using the Blaise IS journal without customizing it greatly for each project. We hope this is
something that Statistics Netherlands can improve upon in future versions of Blaise, as it is an
important tool to have at our disposal.

3. Blaise Single Instrument for Multiple Modes

Using a single Blaise instrument for surveys conducted for multiple modes has advantages and
disadvantages. Perhaps the biggest advantage is the ability to maintain the data in one centralized
database. Because there is no need for special programming to synchronize different databases, data
management is easier to handle.

The major drawback of this type of single-instrument design comes from the complexity of our

surveys, which have occasionally challenged the capabilities of Blaise IS. Complexities have
included handling multiple arrays of survey data, addressing complicated edit checks that involve
calculations using fields spanning the entire survey, sporadic issues with question display in various
browsers, CATI management not recognizing web activity, incorrect delivery of cases in the day
batch, and problems displaying Blaise tables.

Statistics Netherlands works with us continuously to improve Blaise IS and has provided us

with periodic updates or workarounds to resolve most of these deficiencies. Updates have included
solutions for browser display issues and complex table displays; in some instances, however, we still
have to write additional code to overcome issues. In spite of these issues, using a single instrument
for conducting a multiple-mode survey is the method we have chosen more than any of the others, as
the advantages have easily outnumbered the disadvantages.

With all modes needed for a survey residing in the same instrument, multimode surveys require

less redundant questionnaire programming. For most of the questions we encounter, one field can be

 127

declared for all modes. For those questions that need to be presented or asked differently in each
mode, we used Blaise’s multilanguage capabilities and declared each mode as a separate language
(see code example 5.1 for a CATI/CAWI example).

Because the logic path (the Blaise rules) and text fills are usually identical for multiple modes,

redundant code is eliminated. However, if the logic or text displayed is specified differently for each
mode, then separate IF statements and question variables are needed in the RULES section to handle
the differences for each mode (see code example 5.2).

Fields in Blaise group tables, which use only enumerated types and have question header text in

CAWI, although needing introductory questions in CATI, can be shared by using two separate
LAYOUT sections (see code example 5.3). These separate layout sections are declared in the mode
library individually for each mode. Although the planning and actual programming in doing this can
be more involved and time-consuming for the instrument programmer, the benefits of sharing fields
and coding just one instrument outweigh the cost of the complexity.

Writing the instrument code for a single Blaise instrument to be conducted in multiple modes

can complicate your programming efforts, particularly when the survey is complex and includes
tables, which we use often in collecting fields with different data types. Because the programming
requirements often differ between modes, challenges arise when coding to accommodate all the
modes involved. Sharing frequently means compromising; although we were able to avoid trading
off capabilities most of the time, there were instances in which we had to write superfluous code or
forgo a request due to increased programming costs—for example, a multimode survey instrument
that requires CATI to allow for nonresponse options, but not in CAWI. Because one field cannot
have different field attributes, we had to write redundant edit checks in CATI for every field shared
with CAWI (see code example 5.4). This inability to declare different attributes for each mode
within a field particularly causes problems when programming tables. The don’t know and refusal
options in CATI interfere with the table display in CAWI. The solution involved creating two
separate tables, one for each mode, so they could display properly in a web browser and be asked in
the manner needed by a CATI interviewer. Because we had to allow for a respondent possibly to
transition between modes, as the instrument could be started in one mode and then be prompted to
finish in the other (usually starting in CAWI and finishing in CATI), we occasionally had to assign
the collected value from one mode into the other mode’s field so it would then be on path and
available as part of that mode’s rules. Creating two separate instances of the same question can
compromise data integrity if this is not carefully programmed and then tested (see code example
5.5).

Although the flexibility to switch easily between modes is powerful, it is not always reliable.

We have experienced difficulties, including delayed day batch updates and case management issues.
For example, we sometimes have inadvertently called a respondent to interview just after that
respondent had completed the survey in CAWI because the CATI day batch had not yet refreshed to
reflect that the case had been completed and should not be delivered to a CATI interviewer. To solve
this problem, we developed a Maniplus program, scheduled to run every 15 minutes during
interviewing hours, that updates the day batch if necessary. However, when accessing a case via
CAWI, the CATI management block is not updated; as a result, the call scheduler is still not
completely up to date.

An additional advantage to using a single Blaise instrument with one centralized database for

surveys conducted in CATI, CAWI, and CADE modes is in its case-locking capabilities. CAWI
respondents, CATI interviewers and CADE staff rarely encounter this feature when accessing data in
their respective data collection modes. For example, when a CATI interviewer talks to a respondent

 128

on the telephone, the respondent is unlikely to log into the web survey at the same time. This feature
is important, however, on surveys in which different respondents might have to complete different
sections of the same survey. An example would be a survey of businesses in which we ask questions
about financial records and how the business is managed. In this situation, different staff from within
the business might have to address certain questionnaire sections based on their knowledge and
expertise. However, we would not want more than one respondent to access the same instrument in
CATI or CAWI mode at the same time, because one could potentially change the other’s data. One
minor issue we have noticed with Blaise in this multimode, one database concept is when a CATI
interviewer, CAWI respondent, or programmer has to access the case again immediately after
exiting. Occasionally they might be presented with an error message that the case is not available,
when it actually should be. The message is presented because it can take from a few seconds to
several minutes to clear the lock. The delay does not cause issues often, so this is not a deal breaker
for us using the single instrument in this way.

4. Conclusion

4.1 Mathematica successes with multimode

Mathematica has conducted multimode surveys successfully for many years. It wasn’t until the

past six years, however, that we have been able to use a single real-time database containing both
multimode CATI and CAWI surveys. Previously, like any other survey organization, Mathematica
had one database for each mode, then either used a complex procedure to combine the data at the
end of the data collection or tried to move data from one database into another while interviewing
was active. Either process was time-consuming, expensive, and introduced the possibility of errors in
the final data because of all the procedures moving survey information around.

By moving to a single real-time database multimode CATI and CAWI survey, Mathematica has

successfully reduced the total development cost for these types of multimode surveys. By
eliminating the steps moving data from one database to another, we have reduced costs and
eliminated possible errors in the data movement between systems.

Moving in this direction did introduce new survey management issues that had to be addressed,

however. For example, suppose you start data collection by calling a respondent and getting partway
through the interview, then set up an appointment to complete the interview later. Before the
appointment is delivered in the call scheduler for telephone interviewing, the respondent responds to
the survey by CAWI but still does not complete it. Do you keep the original appointment that was
set, do you delete the appointment, do you have the case go back into the normal pool for calling, or
do you adjust the appointment to a later date hoping the respondent will complete the survey by
CAWI so a call back won’t be necessary? Another example: you want your respondents to respond
by CAWI so you can lower your interviewing labor costs by not having to pay for telephone
interviewer time. If the respondent doesn’t finish the case by CAWI, how do you then manage
calling the person for a follow-up?

Another beneficial aspect of using one database and one instrument for both CATI and CAWI

is that it decreases the instrument development time. In theory, creating one instrument should save
development time and labor costs, because you do not have to write two different instruments. One
might think this would cut your development cost in half because you are writing just one
instrument. In reality, however, you probably will save only about 30 percent in development costs.
This is primarily because of the complexity introduced due to mode differences, which take longer to
program. For example, it is not always possible to design a question that can be displayed to a CAWI

 129

respondent or asked by a CATI interviewer in a similar manner. On the other hand, if you do have to
make a change to the code, you might see additional savings because you are programming just one
instrument for both CATI and CAWI. The changes would be in one instrument, whereas previously,
if you made a change in one instrument for a particular mode, you would have to make that change
in the other.

From our survey division’s perspective, having one database that is maintained in a real-time

environment offers better reporting of the data they collect, which translates into better management
of the survey and decreases the overall costs. Reports available to the project are up to date and
available anytime they have to be reviewed. In contrast, in the past, reports were normally created
after some data combination process occurred and were prone to logic or crosswalking errors. Due to
the cost and possible programming logic in combining of data, reports were basically a snapshot
picture from a particular moment, whereas with one database it is much easier to create an up-to-the-
minute report. Another benefit of having all the data in one location is that it enables us to write a
reporting process only once, instead of possibly writing a report for one mode’s database and then
needing a secondary report process for the other’s database.

We have conducted a few surveys in which we have done CATI/CAWI/CADE in one

instrument, one database, all in real time. However, due to limitations of using Blaise as a high-
speed data entry program, we have not had as much success as we would have liked. Although
Blaise can do data entry, it is not very cost-efficient, cannot do double key entry verification without
a lot of tricks and/or additional programming code, and cannot keep statistics on the error rates of the
data entry staff. In addition, the extra coding increases the complexity of the instrument and adds
greatly to the programming cost. We have found it easier and cheaper to use specialized software
designed for high-speed data entry than trying to incorporate this mode into our Blaise real-time, one
database concept. We will continue to look at Blaise as a high-speed data entry application if some
fundamental changes happen (for example, native double key verification). As a side note, we have
discussed moving to a relational database for back-end data storage, and this might allow our high-
speed data entry package to write directly to the same relational database.

We have had some success with Blaise writing to a relational database, but not using the Blaise

Datalink application. The product we developed uses the Blaise API and allows a Blaise instrument
to write to its native database while also writing to a relational database. We have used this product,
called SQL2Blaise, on multimode surveys in which Blaise is used for CATI and we use our in-house
web product called WebSurv. We have thought about expanding the use of SQL2Blaise, but we will
wait for additional testing of Datalink in Blaise 4.8.2 before making a final decision.

4.2 Future of Blaise and multimode surveys at Mathematica

Building upon the success we have had with multimode using one instrument for CATI and

CAWI, and one database accessed in real time, we would like to begin to include CAPI in this
design. Our ultimate goal is one instrument, one database accessed in real time for CATI, CAWI,
and CAPI. We have tested this concept in a nonproduction environment with great success, but in
the United States wireless broadband coverage is still a strong limiting factor. Coverage continues to
increase, but there are still vast sections within the United States where wireless broadband doesn’t
work efficiently or you have to use multiple carriers to cover the areas in which you are
interviewing, which increases the costs for your project. We envision this being an invaluable
solution to meeting multimode data collection needs efficiently in the future, but it is still a few years
away. However, when we do reach this point, it will raise some interesting questions. Should the
CAPI instrument be another version of the CATI instrument or should it be a CAWI instrument
shared by all modes? Testing and client preferences will probably determine the final resolution on

 130

that issue, and there is no definite opinion in either direction. Also, if you are in the field doing real-
time CAPI and writing data directly to a centralized database at the home office, what happens if the
broadband connection goes down? The latest version of the .NET framework might offer some
possible solutions if the connection back to the office cannot be made to store the data locally and
when the connection returns a process in the background could upload the data from a laptop back to
your central database. We feel we are getting closer to moving in this direction for real-time
multimode CAPI surveys, but we think we are still a few years from this becoming a reality.

Because of the cost of producing a Blaise IS instrument compared with our other CAWI

systems, we hope the next generation of Blaise (Blaise NG) will be a lot easier and more flexible to
use for developing and deploying instruments. For this to happen, the designer portion of the system
must be very easy to use (possibly to the point where a nonprogrammer could design the basic
survey) and must easily address possible mode differences without creating additional fields or
tricky coding to overcome these difficulties.

There has been a push in recent years toward unimode instruments, in which all modes are

designed with commonality in mind. If unimode instruments do move into the forefront, that could
help address the problems of differently designed questions for different modes. We are still left with
the problem that field attributes could be different for certain modes, but, hopefully, Blaise NG will
also address that.

Finally, we believe multimode with one programmed instrument and one real-time centralized

database is here to stay. There are several systems already on the market that attempt to do this, but
typically they cannot handle the complex surveys we conduct at Mathematica. We hope Blaise NG
will continue to build upon this concept, while making it easier to create instruments without the
additional code needed to handle mode differences and improving its ability to create CAWI screen
layouts. Having seen some early beta versions of Blaise NG, it looks as if Statistics Netherlands is
addressing the cumbersome process of making changes in various locations to get a screen to display
across multiple modes and in various internet browsers.

 131

5. Code Examples

5.1 Example of using Blaise’s language utility to declare each mode as a separate
language

A2
 ENG "What is the correct business name?"

 WEB "@BV2. Please enter the business name.@B@/" : STRING[50]

5.2 Example of using IF statements to specify different paths between modes

IF (A5a=NonOwner) THEN
 IF (piModeOfProcessing = CATI_) THEN
 A5a_NonOwner
 ELSEIF (piModeOfProcessing = WEB_) THEN
 A5New
 ENDIF

ENDIF

5.3 Example of using two separate LAYOUT sections, one for each mode

AUXFIELDS
 Label
 WEB "@BF3. Equity investment is money received @U in return for
 some portion of ownership@U, and it is another way to fund
 business expenses.
 During calendar year 2009, did the business obtain @Bequity
 financing@B from any of the following sources?@B
 @/@/@I@OPlease indicate Yes or No for each item.@I@O"
 ENG “Equity investment”
 : STRING[30], EMPTY

RULES
...

LAYOUT
 BEFORE Label NEWPAGE
LAYOUT (Internet)
 BEFORE Label NEWPAGE
 AT Label FIELDPANE BISQuextextOnly

5.4 Example of redundant edit checks due to the inability to declare different

attributes for each mode within a field

F3f
IF piModeOfProcessing = CATI_ THEN
 F3f <> EMPTY "You must answer."
ENDIF
F3g
IF piModeOfProcessing = CATI_ THEN
 F3g <> EMPTY "You must answer."
ENDIF

mailto:name.@B
mailto:ownership@U
mailto:financing@B
mailto:I@OPlease
mailto:item.@I

 132

5.5 Example of storing the collected value into the other mode’s field

FOR I := 1 TO 9 DO
 IF piModeOfProcessing = CATI_ THEN
 C1CATI[I](aItem[I], aLetter)
 C1[I].C1 := C1CATI[I].C1
 C1[I].C2 := C1CATI[I].C2
 C1[I].C3 := C1CATI[I].C3
 ELSE
 C1[I](aItem[I], aLetter)
 C1CATI[I].C1 := C1[I].C1
 C1CATI[I].C2 := C1[I].C2
 C1CATI[I].C3 := C1[I].C3
 ENDIF
 ENDIF
ENDDO

 133

Impressions of Basil
Kathleen O’Reagan, Richard Frey and Karen Robbins, Westat

1. Introduction
Basil is an alternative data entry program for Blaise questionnaires, specifically designed to handle self
interviewing situations. Since Basil combines the strength of the Blaise rules engine with the flexibility
of Maniplus, which allows programmers of Basil to create tailor-made applications, we have been testing
the use of these capabilities for process and workflow management. This paper describes the overall
functional requirements, the design and subsequent coding techniques used, including the integration of
Maniplus, Basil and SQL Server, and lessons learned when incorporating Basil in a tracing system
project.

2. Tracing System Requirements

2.1 General Tracing Systems
In most long term surveys, losing track of some participants is inevitable. Tracing is the process of
locating participants who can no longer be contacted using any of the location information on record. A
variety of tracing methods and sources of location information are used in an attempt to find a participant.
Information gathering sources and methods include phone numbers, emails, letters, relatives, friends,
coworkers, neighbors, schools, community organizations, places of worship, directory assistance, and
government offices such as voter registration, taxation, department of motor vehicles, and social services.
Most of these sources can be researched simultaneously to locate the participant in a quick and effective
manner. Timely tracing is a key component in continued data collection. When the participant has been
located, all the data on record will be confirmed and updated in the study’s survey management system.
The SMS will also contain the historical records of the participant since joining the study.

Tracing systems can be can be made more intricate with the addition of a case management component to
include supervisor review, roles and permissions to access functions and data, status codes milestones
and reporting. For the purposes of this paper, we are addressing the data collection and verification
activities of a tracing system to show how Basil is used.

2.2 Westat Tracing System
The functional requirement of a tracing system is to obtain location information about the participant.
The Westat Survey Management System (SMS) contains the participant’s name, physical and mailing
addresses, email address, home, work, and cell phone numbers, and the name, address, phone and email
of contacts who would know how to reach the participant in case their phone number or address changed
during the course of the study. Tracers have a wide variety of sources to use to produce leads to the
missing participant. When the participant is successfully located, they will be asked to review and update
their information on record.

In the Westat Tracing Logical Flow (Figure 1), the Westat SMS Workflow issues assignments to the
interviewer to conduct a survey at the participant’s residence, to the Telephone Research Center (TRC) to
make a followup call to the participant’s home, work, or cell phone, and to send letters to the
participant’s physical , mailing, and email addresses .

 134

Figure 1. Westat Tracing Logical Flow

The tracing task of the Westat Tracing Logical Flow begins when the participant is not located.
Responses from the workflow assignments signal that part of the information on record may no longer be
correct. The interviewer might have discovered the participant’s address on file is vacant. The TRC could
have received a ‘disconnected’ message when they call one of the provided phone numbers. From the
mail contact source, the letters or email could have been returned as not deliverable. With this recognition
of having incorrect data for a participant, the complete record of that missing participant, their personal
information and their contacts’ information, is passed from the SMS to the Tracing Database.

The tracer conducts the search for the participant in stages. First, the tracer tries to locate the participant
using the various phone numbers, addresses and email that they provided. If the participant was not
found, attempts to reach each contact reference provided by the participant will be made by phone, mail
and email.

When the tracer has exhausted all the location means provided by the participant and still has not located
the participant, tracing focus shifts to investigating external sources. These sources are less cost efficient
and are therefore used last due to their history of yielding lower results. Examples of external sources
include directory assistance, post office, field tracing, internet searching, community outreach and
government offices such as the Social Security Administration, Department of Motor Vehicles, and social
services, and local businesses for instance credit card companies.

Whenever the tracer is successful in reaching the participant, the tracer reviews and updates all of the
participant’s new location information and the participant’s contact references information. At study
specified intervals, the SMS will retrieve this verified update information and add it to the SMS database.

 135

3. Using Basil for the Westat Tracing System
Blaise components, Basil, Manipula, and the relational database storage capabilities offered by Blaise
Datalink, were incorporated into the latest prototype of Westat’s Tracing System. This system allows for
the tracing of missing participants using a variety of location sources, reporting and processing options. It
includes a set of core capabilities and can be customized to meet the needs of specific project application
requirements.

3.1 Tracing System Capabilities
At a minimum, the tracing system needed to provide core project requirements allowing for the inclusion
of missing participant location information, the management of tracers, the tracking of location changes,
and the ability to work external sources within the system.

The tracing functional requirements were matched against the Blaise components and implemented based
on the amount of time the user was using the interface. For instance, adding or assigning a tracer is
usually done once, therefore, using the DEP to add a tracer and give permissions did not require the
sophisticated look and feel Basil would provide to the user interface.

Figure 2 shows the functional tracing requirements and the Blaise component used to implement the
requirement.

Functional Requirement Blaise Component
Controlling system Manipula
Assign a tracer to a missing participant Manipula and DEP
Add a tracer Manipula and DEP
Delete a tracer Manipula and DEP
Add a participant to the tracing system Manipula and Datalink
Add a contact for the participant Basil application and Datalink
Participant Tracing Information Sheet Basil application and Datalink
Contact Tracing Information Sheet Basil application and Datalink
External Source Work Sheet Basil application and Datalink

Radio buttons, check boxes, and buttons
Basil input controls which trigger execution of a
Maniplus procedure

Figure 2. Tracing Requirements

For the remainder of this paper, we will focus on the actions that use Basil as the basis for collecting and
verifying location information. These include the verification of participant (P-TIS) and contact (C-TIS)
information, and the searching of external sources.

The first screen viewed in the Westat Tracing System is shown in Figure 3. This is the main menu screen
controlled by the Manipula setup, TracingStratup2. From this Manipula setup, the supervisor manages the
tasks of adding a tracer to or deleting a tracer from the system, assigning a tracer to find a particular
participant, and adding a missing participant to the system.

 136

Figure 3. Manipula Setup for Tracing Participants

Tracing and location verification of the missing participant using the information of record utilizes the
buttons P-TIS (Participant Tracing Information Sheet), C-TIS (Contact Tracing Information Sheet) and
Add Contact.

If the participant and contact reference information on file hasn’t led to locating the participant, then the
the Manipula procedure launched by the External Source button will provide other means to locate the
participant.

3.2 Basil, Manipula and Manipula Extensions
As mentioned in the paper’s introduction Basil is an alternative data entry program for Blaise
questionnaires, specifically designed to handle self-interviewing situations. Basil combines the strength of
the Blaise rules engine with the flexibility of Maniplus. It allows for a layout with a diverse variety of
field types. It can readily provide on a single screen one of a large variety of different types of standard
data collection input forms. Within the context provided by the screen, users can enter the requested
information in whatever order works for them. Moreover, users can take advantage of available buttons
to launch an event associated with one or more inputted values.

The Manipula setting that allows for the communication between Basil and Manipula is Interchange.
Interchange allows work directly on the record from the calling process, in this instance Basil. This is
only possible when the data model of the calling process is the same as the data model used in the
Manipula setup. Generally, this is done by using the reserved word VAR in the USES section of the
Manipula setup. Each Basil application identifies the Manipula setups, the datamodel and the update file
in the Application section in the Basil datamodel.

 137

Basil relies heavily on the usage of Manipula functions, methods and instruction extensions. The
extensions are used in building procedures to enhance Basil controls. In the Westat Tracing application
there are two Manipula setups. The one named Generic is found in the Blaise Samples from the Blaise
installation. This setup contains generalized procedures for writing to an audit trail, error handling,
printing, and exiting the questionnaire. The other setup is TracingProcedures in which procedures and
dialogues specific to the tracing application are located. Specific procedures include those to handle
button controls for dialing telephone numbers, collecting new address information and launching Basil
pages. The Application section code in each Basil datamodel identifies each setup as follows:

BASIL "<application title='Westat Participant Tracing System'
 width=950 minimumwidth=800 Height=850 clientheight=825
 resource='Generic.dll'
 icon='BLAISE' sizeable=true fontface='Microsoft Sans Serif' fontsize=8
 fontcolor=#663300 color=#FFFFEF
 setups='TracingProcedures.msu /KdmGeneric=TracingTIS
 /NufGeneric=TracingTIS;
 Generic.msu /KdmGeneric=TracingTIS /NufGeneric=TracingTIS'
 oncreate='Generic.Initialisation'
 onclosequery='Generic.StopQuestionnaire'
 onhelp=blaise:exec('Generic.chm')
 onrangecheckerror='Generic.RangeCheckError'
 ongeneralerror='Generic.GeneralError'
 singleinstance=true>
 <panel left=0 align=client>
 <panel top=0 align=client color=#FFFFEF>
 <content-area horizontalscrollbar=false verticalscrollbar=true>
 </panel>
 </panel>
 </application>”

3.2.1 How Basil Was Used
On the Participant Tracing Information Sheet (Figure 4), you see a number of fields defined as a Blaise or
user defined type according to Blaise syntax. They are each displayed as a label, input box or button using
Basil layout controls.

 138

Figure 4. Participant Tracing Information Sheet

These controls are defined in the question text of the field similar to the way multimedia instructions are
used in a Blaise multimedia instrument. The following code snippet shows the definition of the First
Name field:

FirstName
 BASIL "<question span=5>
 <label left=25 width=100 topmargin=5 text='First Name: '>
 <label left=120 width=100 topmargin=5 text='%TIS.FirstName '>
 </question>"
 : STRING[20]

The FirstName field is defined as a string. Basil code uses two label controls. The first is used to display
the label text ‘First Name:’. The second label control is used to display the current value of FirstName as
indicated by the Basil fill string % symbol followed by the fully qualified field name. In the Rules,
FirstName uses the .SHOW method.

The question attribute, span=5, indicates, the next five questions, including FirstName are to be grouped
horizontally on one line.

The input box is used to hold any update made by the tracer to the FirstName field. The code for this field
is below:

 139

auxFirstName
 BASIL "<question>
 <input $auxAuxFieldPos>
 </question>"
 : STRING[20]

You’ll notice the input control is followed by $auxAuxFieldPos. This is an AUXFIELD that holds the
formatting of the input box. The $ is a fill string symbol. The following field assignment in the Rules
section establishes the location, width, color and the 3D look.

auxAuxFieldPos := 'left=380 top=5 width=200 height=18 focusedcolor=#CCFFFF ctl3d=true'

The auxAuxFieldPos field is used for each name, telephone and email input box. Since we wanted each
input box to display in a single column, using the fill string, auxAuxFieldPos, all the formatting attributes
of each input box control were set the same.

The telephone input box has a mask to guide the entry of the telephone number. To display a mask the
editmask attribute was added to the telephone input control.

<input $auxAuxFieldPos editmask='(999)999-9999' >

The last field of the First Name line is FirstNameDateLastAction. This field has the DATETYPE type and
a Basil label control.

FirstNameDateLastAction
 BASIL"<question>
 <label topmargin=5 $auxDateLastAction
 text='%tis.FirstNameDateLastAction '>
 </question>"
 : DATETYPE

When the FirstName is updated, this field is also updated with the SYSDATE function. The Rules
method is a .SHOW.

The last control to be discussed on the P-TIS screen is the button control on each telephone line. The
button for the Best Phone is associated with the field named BestPhoneWhy which has the user defined
type typPhoneStatus. The phone statuses include response, busy, no answer, answering machine,
disconnected, no contact, dial and appointment.

BestPhoneWhy
 BASIL"<question>
 <button top=15 $auxDialButton
 caption='%tis.BestPhoneWhy'
 onclick='TracingProcedures.procUpdateDialStatus(""%tis.BestPhone"","
 "BestPhone"",""^TName"")'>
 </question>"
 : typPhoneStatus

The button control for this field uses the attributes, caption and onclick. The caption is the text that is
displayed on the button and for this implementation uses the category code of the typPhoneStatus. At
startup, the field is set to Dial. The onclick attribute indicates the Maniplus procedure that is to be called
when the button is clicked. In this case the procedure, procUpdateDialStatus in theTracingProcedures
setup is called.

 140

Figure 5. Contact Tracing Information Sheet

The Contact Tracing Information Sheet, as show in Figure 5, uses the same Basil instrument as the P-TIS
and is stored in the same database. To differentiate between the participant and a contact, the primary key
includes a contact number. A contact number of zero identifies the participant, any number greater is
considered a contact.

In the P-TIS and C-TIS, an AUXFIELD is used to display the column headings.

EventLabel
 BASIL "<question>
 <line left=10 top=3 width=975 height=1 color=black>
 <label left=25 top=7 width=100 height=30 text='^PartConTitle Data'>
 <label left=280 top=7 width=100 height=30 text='Verify
Update'>
 <label left=380 top=7 width=100 height=30 text='Update'>
 <label left=650 top=7 width=200 height=30 text='Action
Result'>
 <label left=750 top=7 width=200 height=30 text='Date of
Action'>
 </question> “
 : STRING [1]

A separate label control was used for each heading in order to make it easier to align the headings with
the fields. The line control adds the line above the headings just to give visual separation between the title
information and the column headings.

 141

The display of the Relationship field and of only one address is determined by the Rules when evaluating
the ContactNumber. The Relationship field has the user defined enumerated type, typRelToParticipant.
The input attributes for this control include tfillorder and columns.

auxRelationship
 BASIL "<question>
 <input left=280 height=50 width=400 top=15 tfillorder=vertical columns=4>
 </question> "
 : typRelToParticipant

3.3.2 Interchange
Interchange and the Manipula extensions bring together a powerful combination allowing for real time
access to data presented in a truly customized format. In the tracing system, there is a requirement to use
external sources, such as directory assistance or the white pages, when all currently know sources have
been exhausted. The tracer would record the numbers obtained from the external source and begin calling
the numbers. We will use this requirement to show the relationship of Basil and Manipula.

Selecting the External Source button on the Select a Participant screen launches a Manipula dialogue ,
Figure 6, from which a tracer can select an external source.

Figure 6. Select External Source

It was decided that the recording of the telephone numbers would be in a separate Basil instrument. The
External Source Work Sheet was formatted to look like a popup and contained twelve rows for up to
twelve telephone numbers. The primary key was consistent with the P-TIS and the Tracing master
database, but also included a secondary key to identify the external source from which the telephone
numbers were received.

After the selection of a source, a simple EDIT function call is used to launch the External Source Work
Sheet instrument, Figure 7. This code follows:

auxResult := EDIT('TracingTWS /FTracingTWS /K' + auxTWSKey + ' /G /N ' +
 '/Q=ParticipantName=' + '"' + auxParticipant + '"' +
 ';tName=' + '"' + auxTName + '"',BASIL)

 142

Figure 7. External Source Work Sheet

After collecting telephone numbers from the external source, the tracers begin calling each number. They
will enter the telephone number and then select the Dial button for each number. The Maniplus procedure,
procDialPhone, is called from which a dialogue will display the number to call, predefined text and a call
result. See Figure 8. As can be seen from the following code, the DialNumber uses a button control to
call the procedure procDialPhone in the TracingProcedures Manipula setup:

DialNumber
 BASIL"<question>
 <button $auxDialButton

 caption='%TWS.ContactSummary[^pSubScript].DialNumber'
 onclick='TracingProcedures.procDialPhone

 143

 (""%TWS.ContactSummary[^pSubScript].Telephone"",""%TName"")'>
 </question>"
 : typPhoneStatus

Figure 8. Dial Screen

After the call has been made and a result selected, the procedure will then use Manipula extensions to
update the work sheet with the call result and the date. The Dial button will be changed to reflect the call
result and the date field will now contain the current date. See figure 9.

Figure 9. Updated Work Sheet

The procDialPhone procedure uses two simple Manipula extensions, ACTIVEFIELD and PUTVALUE
as the following code snippet shows.

 144

aFieldName := ACTIVEFIELD
ufGeneric.PUTVALUE(aFieldName,STR(typPhoneStatus))
ufGeneric.PUTVALUE(aFieldNameDate,DATETOSTR(SYSDATE,DDMMYY))

 Using the INTERCHANGE=SHARED Manipula setting allows for this communication (the transfer of
data) between the Manipula setup and the Basil instrument.

Further examination of the Button control of the Basil shows the prefix $ in front of an AUXFIELD used
for formatting and a % in front of the fully qualified field.

 <button $auxDialButton

caption='%TWS.ContactSummary[^pSubScript].DialNumber'

The Caption attribute of the DialNumber button is updated when the value of the DialNumber field from
the procDialPhone is updated. The % in front of the field name ensures the caption attribute is updated
with the current value of the field.

The standard Blaise fills (field names preceded by the ^ symbol) can be used but are evaluated during the
execution of the rules. In Basil there are two alternative fill symbols available: the $-fill and the %-fill.
They are both evaluated when Basil decides that they are needed and are both replaced by the value of the
indicated field at the moment of evaluating.

4 Relational Database Storage

4.1 Blaise Datalink
The Blaise Datalink facility allows the data used by a Blaise data model to actually be stored in a non-
Blaise format, such as Microsoft SQL Server, Oracle, or other relational databases. Datalink implements
this functionality using Microsoft’s OLE DB (Object Linking and Embedding, Database) technology.
This means that it is possible to implement Datalink for any data source for which an OLE DB driver
exists. As a practical matter, the type of Datalink system that we required is much easier to implement for
a subset of the most common relational data sources, for which Blaise takes into account the
characteristics of the particular data source, such as the maximum number of columns it can have in a
single table. Blaise does provide such support for SQL Server, which is the database we are using for our
tracing system.

4.2 Tracing History and Versioning
Management is always looking at how a tracer is progressing in the search for a missing participant. And
a big part of this is looking at what has been done to date. In the past Blaise instruments were written to
handle historical data as well as current data. This often posed challenges for developers. Using the
Datalink Versioning feature removes the need for an instrument to keep track of historical information
and uses the database to keep track.

We chose to use the Generic feature of Datalink with flat blocks and versioning as our MS SQL database
configuration. Flat blocks mean each block in our Basil tracing instruments will correspond to a table in
the SQL database. Generic allows for the sharing of tables across instruments. Instrument data is stored in
a centralized way in only a few predefined and fixed table structures. Versioning is used to store multiple
versions of a Basil record in the database. The versions are either current or historical. Each time a
changed record is written to the database, the previous record is marked as ‘historical’ and the new record
is inserted in the database and marked as ‘current’.

The tracing system had a requirement to view all participant and contact address changes. When using
Manipula to extract data or the Blaise Database viewer to inspect the data, only the current data is

 145

extracted or displayed. To get the historical records you need to use other tools like SQL report writers or
the Blaise Data Center. But each by itself is impractical in that they are not easily incorporated into the
tracing system.

An alternative is to use the OLE DB Tool Box to generate a Blaise datamodel based on a SQL view. In
this case a SQL view was created showing all the address changes for each participant or contact. Using
the OLE DB Tool Box and the SQL view as input, a Blaise datamodel and a corresponding Boi file were
generated. A Manipula lookup dialogue was then programmed to display the address history for each
participant or contact. This technique would be used to view other record changes such as name and
telephone numbers.

5. Conclusions

5.1 Lessons Learned
In the process of taking forms designed for a manual paper process and converting the process into
computer data entry system using Basil and SQL databases we learned the following:

• When designing the input screens we learned the importance of creating Auxfields for the
common formatting of Basil controls. For example, if you have a column of similar fields you
probably want them all to be vertically aligned. You would create an Auxfield with the common
attributes, such as, left, top, width etc. So in the Rules you would have:

auxColumnAlign := ‘left=10 width=100, top=15’

where auxColumnAlign would then be used by the control for each field in the column. Thus, any
changes are made in one place instead of in each control.

• The concept of a tracing system is different than the collection of survey data. Survey data are
essentially collected at one time from one source, whereas, the tracing system must allow for the
collection of disparate data at different times. Storing data in different Basil instruments allows
modularizing code for easy maintenance and testing.

• During the development phase use Blaise databases instead of a SQL database. Until the Basil
metadata is finalized there is no reason to do the extra work that would be involved in the
frequent regeneration of the Datalink files and SQL tables.

• At the same time you are designing the instrument you should be building in lockstep the
database load utilities. As you add/delete questions to the Basil instrument the load utilities
should be modified accordingly. Thus, in the case of the tracing system, when development is
finished the data sources for each participant are identified, the load utilities are up to date, and
are ready to go at the click of a button.

5.2 Summary
Our impressions of using Basil to build the Westat Participant Tracing System prototype are overall, very
good. Formatting the Basil instruments takes a little getting used to, but the ability to do your own
formatting can result in a rich and cleaner looking user interface. Basil also features free form data entry
and the ability to freely move from one module to another.

146

Large-Scale Survey Interviewing Following the 2008 WenChuan
Earthquake
Zhang Huafeng and Jon Pedersen, Fafo, Institute of Applied International Studies, Oslo, Norway

Introduction
The May 12, 2008 Wenchuan Earthquake was one of the most devastating earthquakes in recent years,
currently ranking as the seventh earthquake in terms of number of deaths caused since 1900 (U.S.
Geological Survey, 2008)1. The Chinese government launched a major rescue effort, and a reconstruction
plan — “The overall planning for post-Wenchuan earthquake restoration and reconstruction”
(Government of China, 2008)— was published on September 23, 2008. One of the inputs to the
reconstruction plan was the Post Wenchuan Earthquake Rapid Needs Assessment, a household and
community survey carried out in July 2008 in 3652 households. In order to assess the reconstruction, a
second survey was carried out one year later in July 2009 in the same communities covering 4014
households.

Both surveys were large-scale computer-assisted personal interviewing (CAPI) surveys. The surveys had
their overriding purpose to assist the Chinese government on the provincial and national level in early and
mid-term recovery planning. Especially the first survey operated on a very strict timeline as data were
required for the development of the General Plan. The use of sub-notebook computer aided interviewing
was essential for completing the surveys within strict timelines. Nevertheless, several challenges were
also noted during the surveys.

The purpose of the present paper is to discuss some of the advantages and limitations of applying
computer aided interviewing in the large-scale Rapid Needs Assessment survey and the subsequent
Reconstruction Survey.

Advantages of the computer aided interviewing with Blaise

Description and choice of CAPI with Blaise
To provide the data for the Chinese government in the early reconstruction plan, the Post Wenchuan
Earthquake Rapid Needs Assessment Survey had to be finished quickly. The go-ahead for the survey was
given as late as June 20th, while the government asked that the initial report from the survey should be
delivered by the 15th of July, 2008 in order for it to be used. At the same time, as the basic household data
needed for sampling were not available from the provincial government, much time was needed for
obtaining the data needed compiling a data frame. Therefore, there were severe limitations on the time
that could be spent on the data collection, cleaning and analysis.

Computer-assisted interviewing undoubtedly benefitted the data collection. During the field work, each
interviewer was equipped with an Asus Eee-pc sub-notebook (“net-book”) computer running Windows
XP and using Blaise 4.8 as a computer aided interviewing data entry tool (Statistics Netherlands, 2002).
Computer aided interviewing was on the whole very successful. It saved the time needed for data entry,
and perhaps most importantly the computer aided interviewing allowed for continuous tabulation and
quality control while the survey was on-going. Moreover, as the data were sent from the field every day,

1 The six earthquakes with higher death tolls are the 1976 Tangshan (China), the 2010 Haiti, the 2004 Sumatra (the

Asian Tsunami), the 1920 Haiyuan, Ningxia (China), the 1923 Kanto (Japan) and the 1948 Ashgabat

(Turkmenistan) (U.S. Geological Survey, 2010).

147

the source code for the production of the tabulation report could be developed as the survey progressed,
taking account of real data. This made possible the production of a report before the deadline.
Several different options for building the CAPI data entry applications, such as availability of software,
the type of the hardware being used and the characteristics of the survey, were considered. The Blaise
system had been used by the team for several previous PAPI surveys for data entry purposes; and
therefore the interface and programming of the Blaise system was familiar to the team. Even though this
was the first time the team used Blaise on a CAPI survey, the previous experiences benefitted the
development of the instruments in the limited time available. As computers running standard Windows
XP were used, standard Blaise could be used. Given that the data entry, especially for the first survey, had
to be completed very quickly, the fact that a Blaise programmer can produce data entry without having to
do detail formatting of data entry forms was also an important consideration. Furthermore, other
researchers have reported that Blaise could be a useful and powerful environment not only for normal
data entry applications but also for CAPI data entry applications (Rosemary Crocker, 1999).

Advantages compared to PDAs:
An alternative to using net-book computers would have been to use PDAs. These have successfully been
employed in many small and large surveys, including in emergency situations (Pedersen, 2010). In
general, available software for PDAs was at the time either cumbersome or difficult to use, expensive or
too simple to handle a complex questionnaire. The cumbersome category includes software that supports
more generalized data base systems, such as Handbase2. The expensive category included CSPRO-X, the
commercial version of CSPRO. A free version of the CSPRO data entry system has since been released
with implementation for PDAs. The too simple category includes software such as Pendragon
Forms3 that does not handle hierarchical files well.

The surveys in question had a relatively complex set of questionnaires, with sections for households,
individual household members and a randomly selected person in the household. The survey covered the
issues such as housing, infrastructure, basic demographic information, health situation, and mortality
during earthquake, employment before and after the earthquake, household economic activities, economic
support received, social network, and migration. One randomly selected member in the household was
interviewed on their psychological health after the earthquake, participation in the rescue activities, trust
in persons and institutions, attitudes to various forms of assistance, satisfaction with services and
assistances. Even though there are apparent physical disadvantages with lap-tops, such as comparatively
low battery life, heavier machine and so on, there are advantages of lap-tops over PDAs. The large screen
and normal keyboard enables a friendly user interface. In particular, the larger screen of a net-book makes
it possible to present more contextual information to the interviewer than what is possible on a PDA.
While open-ended questions and qualitative interviews are nearly impossible with PDAs, this is not the
case with the lap-tops. Formerly, PDAs had a definite price advantage over fully fledged computers. With
the advent of net-books, this is no longer the case.

A final reason for choosing net-books rather than PDAs was that net-books, running vanilla Windows-XP
are much better supported in the internet user community than PDAs. The same is true for Blaise,
compared to PDA based software, perhaps with the exception of CSPRO.

Dramatically reduced the time needed for a survey:
The ability to collect high-quality data while dramatically reducing the time from collection to analysis
could prove extremely critical in early stages of a humanitarian emergency. One apparent advantage of a
computer-assisted survey is that neither paper questionnaire transportation nor data entry after the field

2 http://www.ddhsoftware.com/handbase.html

3 http://pendragon-software.com

http://www.ddhsoftware.com/handbase.html
http://pendragon-software.com

148

work is needed. Substantial parts of the work for data entry, data consistency checks and data cleaning
were incorporated with the interviewing. The use of CAPI reduced the time needed for data cleaning, thus
making more time available for data analysis.

The automatic skip and logical branching by the Blaise instrument not only improve the quality of the
data, but also reduce the interview time (D. Forster, 1991). Even though we did not formally test how
much time was saved by computer during the interview, there was evidence indicating that it did reduce
the interview time. During the pilot, experienced researchers used paper questionnaires and reported that
it took on average an hour to complete one interview. However, in the first field practice during the
training, most trainees managed to complete the interview in less than an hour.

Even though a computer-assisted survey increases the technical requirements of the field work operation,
it simplifies survey management. Paper questionnaire management and questionnaire transportation are
not needed. The need for field editing is also reduced, as almost all the logical errors have been controlled
by the data entry application during the interview. This will be discussed later.
All these features have contributed to a quick and high quality survey. The field work of the survey
formally started on 7th July 2007, and the data from 2739 (75%) households were collected by 14th, July.
Figure 1 shows the progress of the field work, and the first initial report was submitted to the Chinese
government on 15th, July 2008. It would have been impossible if CAPI had not been used for the
interviews.

Figure 1 Field work in the Post Wenchuan Earthquake Rapid Needs Assessment Survey

Technical benefits and advantages:
Several features of Blaise were found to be beneficial in facilitating the interviews during the field work.
Interviewers navigated the lengthy survey much more easily on the electronic questionnaire. The Blaise
questionnaire displays one question at a time, and only advances to the next question once the current
question is answered. The Blaise data entry application keeps automatic track of which question should be
answered next. Automatic routing also made it impossible to inadvertently skip a question, or ask a
question which should have been skipped. CAPI eliminated most skipping errors, and is also reduced the
missing errors (Norman M. Bradburn, 1991). The program could also limit response choices on
subsequent questions depending on answers to prior questions, thereby avoiding the long listings of
answer choices. In addition, the data entry application always interprets the logical branching correctly,
without any effort on the part of the interviewer. For example, when some questions are only designed for

0

100

200

300

400

500

600
Initial report cut‐off

Completed interviews

Sampledbut not completed interviews

149

a specific age-group, Blaise can be designed to automatically show the questions only when the person in
question is eligible.
A well designed Blaise program also performs internal consistency checks. Such checks include range
checks and consistency checks. Range checks compare the given response to the range of possible
responses. Consistency checks are more complicated checks, which analyze the internal consistency of
several responses. In the case of surveys that use paper questionnaires, internal validity checks have to be
conducted at the data cleaning stage that usually follows the data collection stage. Then when errors are
detected, they can often only be recoded to a missing data code because it is no longer possible to ask the
respondents what they really meant. However, a computer-assisted survey provides an opportunity to
carry out range checks and consistency checks when the data are entered, and forces the interviewers to
stop and check their mistakes. These factors are likely to eliminate many of the most common data entry
errors and missing data. With a paper questionnaire, survey administrators have to spend much time
training the interviewers on how to reduce data entry error, and a field editor is usually needed to detect
these errors in the field. Therefore, using CAPI saves a lot effort in training and field editing, and yields
higher quality data. The computer-assisted survey has a significantly lower overall error rate and it also
significantly reduces the inter-individual variability in the data accuracy when compared to the paper
version survey time (D. Forster, 1991).

Another advantage of CAPI is that it can improve random selection of respondents within the household.
Both the Sichuan surveys included a questionnaire targeting a randomly selected adult household member
about his/her psychological status, attitudes and opinions. In a normal PAPI (Pencil-and-paper
interviewing) survey, after the information for all the household members is collected, the interviewer
selects one member based on some predetermined random procedure, such as a Kish table or the
household member who had a birthday most recently. If the interviewer strictly follows the instructions,
there will be no selection bias. However, interviewers tend to select household members who are at home
so as to avoid extra effort to find the selected member, and may also have preferences with regard to age
and gender. CAPI makes it possible to design the program so that one household member is selected by
the program randomly. It not only saves lots of effort by the interviewer to follow the instructions for
selection, but also reduces the potential bias during the random selection.

Quality assurance during field work:
With paper questionnaires, some days or weeks are normally required to enter and clean data before the
survey managers can evaluate the quality of the field work. In many cases, it might be already too late if
serious problems are found. Without the data entry phase, the computer-assisted survey makes it possible
to carry out rapid data analysis and quality control every day right after the field work. The result of initial
data analysis and feedback on the performance of each interview team and each interviewer could be sent
back to the field in time, so that the quality could be improved to the largest extent possible. It turned out
to be extremely useful especially in the early stage of the field work.
A benefit of CAPI systems is that they generally allows information about the interview process itself to
be recorded. This can be used both to monitor the behavior of the interviewers and to gain data on how
individual questions work – for example if a question normally takes much more time than others to
complete. The audit system of Blaise is extremely extensive, - a main problem with it is that it easily
drowns one in data,

There are other potential benefits which might improve survey quality when using CAPI. Notes and the
interviewer manual can be incorporated into the Blaise data entry program. It was not done in the need
assessment survey due to the limitation on the time for the application development; however it would be
useful for the interviewers to be able to search for help any time they want. It would also be possible to
exploit other capabilities of the computer such as recording sound, thus enabling direct storage of the
verbal interview itself. This might be of help in resolving inconsistencies detected during data analysis or
cleaning.

150

Limitations of computer aided interviewing with Blaise
Hardware limitation and challenges in the field:
One of the main constraints with lap-tops when we carried out the first survey in 2008 was the limited
time of operation on a single battery charge. In some areas seriously hit by earthquake, the electricity
supply had been destroyed. At that time the best battery for the Asus Eee-pc sub-notebook we could
obtain only allowed three hours of operation. Although every interviewer was equipped with a spare
battery, this was not enough for an eight-hour working day. Therefore some interviewers were forced to
use paper questionnaires towards the end of the day. However, even in 2008 the areas not supplied by the
electricity were not very common so the limited battery capacity did not become a major problem. In
cases where both batteries were out of power and no electricity could be had from the household, the
interviewer would use the paper questionnaires, and enter the data at night when they could charge the
lap-top. However, this constraint with CAPI should disappear with the improvement of technology. In
fact, it is quite possible today to get net-books with a much longer battery life than what we could get in
2008.

Yet another challenge of CAPI is data loss due to hardware failures or human error in using the computers.
Therefore extra work with data management and equipment maintenance is needed during the field work.
In the Sichuan surveys, the program was set to automatically save every minute. Each team was instructed
to copy the data to the supervisors’ USB, and the data were sent by email to the headquarters every day.
After the data were sent to the headquarters, copies of all the data were still kept on interviewers’ lap-tops
and supervisors’ USB during the whole field work, therefore the loss of data in any one source would not
be a catastrophe. Before the start of the survey equipment maintenance was one of the worries of the
survey team. One technician was available at all times by phone in case a technical problem arose. All the
interviewers always carried a few paper questionnaires in case the lap-top crashed. Only one lap-top of
the 80 in use crashed in the first survey, and was replaced by the vendor immediately. In the second
survey two lap-tops crashed during interviews, and paper questionnaires were used that day. Possible
crashes were planned for, so the crashed net-book was replaced within the day. In neither of the surveys
were any data lost due to technical problems with the computers.

Screen readability presented a problem in the field, particularly in bright sunlight. After the first survey,
feedback from the interviewers was that the font chosen for display was so small that they had difficulty
in reading the screen. This was then improved in the second survey. Standard Blaise is flexible in altering
the font size and characteristics for different part of the questionnaire, and increasing the font size helped
to some extent. However, the Asus Eee-pc sub-notebook only has an 8’ inch screen, and to increase the
font size caused some questions to require more than one page to show all answer categories. The
interviewers found this not only inconvenient during the field work, but were unsurprisingly also prone to
forget the invisible answer categories.

Programming challenges
Due to the time limitations on the surveys, the Blaise data entry application had to be developed and
tested in parallel with the development of the questionnaire. This required good organization and
cooperation between the programmer and the questionnaire designer. After the first draft of the
questionnaire was sent to the programmer, the questionnaire administrator started to log all subsequent
changes. When part of the program was ready, it was given to all the team members every day for testing.
In both surveys, when the questionnaire was finalized, the data entry system was ready for the training.
Nevertheless, some errors were also found by the trainees during the training.

While one would like to have the CAPI program completely correct by the time the field period begins, it
is likely that some bugs will show up during the actual field interviewing even with the most rigorous
testing beforehand. This is of course also a sad fact of life as regards pencil-and-paper interviewing
questionnaires. The possibility of correcting errors after the field period begins is relatively small with
CAPI, but, not impossible. Fortunately, the errors are normally detected in the early stage of the field

151

work. When the field work started, the teams were sent to the same area in the first two days and they
spent the first two nights in the same place, so that it was possible for the program to be updated when
errors were found. In the first survey, a problem was only found on the first day of the field work and the
program was modified and updated on all the 80 computers in the field. The strict rules that Blaise
enforces for changing the data entry application when data have been entered are actually quite beneficial
here, because it forces the data entry programmers to ensure that compatibility of data files are taken
seriously and that changes are implemented in a controlled manner.

Mis-keying errors
Even with all the benefits CAPI has provided to improve the data quality, we found that the mis-keying
errors during interviewing do exist and are not easily detected. As mentioned before, the Blaise data entry
application made internal validity checks through the whole interviews. Some mis-keying problems can
be partly solved when the out-of-range data or inconsistencies are detected. However, many mis-keying
errors cannot be detected with internal validity checks, as they constitute logical answers. In PAPI
surveys, such errors are also inevitable during field work and the data entry phase. Unfortunately, there is
little data that can be used to compare the occurrence of mis-keying errors between CAPI and PAPI.
However, with carefully designed data entry, such as double entry, it is possible to minimize the mis-
keying errors during the data entry stage in PAPI surveys. Thus, while the CAPI method has the
advantages of integrating several survey steps into one single activity, it also has its disadvantage of
introducing more undetectable keying-errors during the field work. The second Sichuan survey used the
same sample as the first survey, down to the household level, thus creating a panel. This made it possible
to find out the mis-keying errors which were not easily detectable when just considering a single survey.
The second survey in most respects followed the design of the previous survey. The questionnaire was
changed somewhat, in that the questions that most directly related to the immediate consequences of the
disaster was removed, and questions relating to the reconstruction were added. The exception for this was
households living in camps, where a new sample was drawn. Camp inhabitants could not be followed
from one survey to the next because some camps had not been established at the time of the first survey,
and many of those that had been constructed had already been dismantled by the time of the second.
Figure 2 Field work in the Reconstruction Survey

The data from the rapid needs assessment survey and the following reconstruction survey indicated that
the interviewers committed more mis-keying errors when they were under pressure. The first survey was
carried out two months after the earthquake. To provide data following the government planning schedule,
the first survey followed an extremely strict timeline. There were only six and a half days’ for field work

152

before the initial report, with 75 percent of the data collected; and the team spent another three extra days
after the initial report to finish the remaining interviews. In the first stage before the initial report, the
team completed on average 365 interviews per day; and in the second stage, on average 304 interviews
per day. In 2009, the second reconstruction survey took place July 17 to August 2, 2009. Figure 2 shows
the field work progress for the second survey. With the same number of 80 interviewers, the team
completed on average 243 interviews per day.

Partly due to the exceptional migration after the earthquake, and partly because the panel was not planned
when the first survey was carried out, it was a challenge to revisit the households interviewed in the first
survey. When the data from the two surveys were matched, household members’ basic information was
also manually checked to confirm the match. In all, 2030 households and 6433 people were matched.
However, the inconsistencies of the household members’ gender, age, residency status and etc. between
the two surveys indicated that there were mis-keying errors during the field work. The mis-keys of age
could not easily be corrected, while gender and residency status often could be corrected with the
assistance of other information in the survey. People’s name, relationship with household head and other
information were combined to manually correct people’s gender and residency status. When no
information could support people’s gender and residency status, random imputation was applied, but this
was only used in a few cases. Around 90 cases (1.4%) were found to have mis-typed gender, and 86 cases
(1.3%) have mis-typed residency status in the first survey; while (0.5%) mis-typed gender and 24 (0.4%)
mis-typed residency status in the second survey. Apparently, there were more mis-keying errors in the
first survey.

When interviewers have to concentrate on both interviewing and data entry, especially when they are
under pressure (for example because of reluctant respondents), mis-keys are probably more frequent than
with the traditional Pencil-and-Paper Interviews. Extra work in the program design had to be done in
order to avoid errors.

Strategies for avoiding errors depend to some extent on how the interviewers use the computer. If the
keyboard is used, then the mis-keys can probably be minimized by assigning values a bit farther away
from each other for the questions such as gender or “yes/no” questions, i.e. assigning 0 and 1, instead of 1
and 2. If the mouse is used, increasing the font size and adding extra space between the answers may
reduce the errors. Finally, auto-skip in Blaise is often used for the data entry with PAPI, so as to avoid
extra typing. However, auto-skip with CAPI probably introduces more mis-keying errors, since
interviewers have less chance to double check what was typed.

Mis-keying of large numbers
Apart from the general mis-keying errors, mis-keying of large numbers was found to be especially
common and may seriously affect data quality. Normally, there is no easy way to identify such mis-
keying errors, as long as the data are in the reasonable range. However, during training we found that the
CAPI facilitated the test on the performance of the trainees, and helped pin-point the weak parts where
most errors were found. We had a mock interview between the trainees and the trainer during training,
and at the same time all the trainees were supposed to enter the interview into their computers. After the
mock interview, all the data were gathered and analyzed. It took very little time to find out the
performance of each interviewer and the common problems. One of them was the problem in entering
large values correctly. A very high percent of the trainees have mistyped the values of income, fees and
cost (table 1). It turned out that the errors were not only due to the mis-keys but also due to the
misunderstanding of the reported unit. As table 1 indicates, the mis-keys are far from random – rather
they introduce a definite downward bias for large numbers and an upward bias for small numbers.
Furthermore, the mis-keys of the large values occur more frequently than other questions; and the
outcome of the mis-keying affects the data much more seriously than other questions.

153

Table 1 Mis-keying errors found during the training1

Percentage of trainees
who answered correctly

Correct
answer
(Yuan)

Mean of all the
answers
(Yuan)

Family business income 62.3 % 120,000 86,589
Living assistance from government 81.8 % 2,700 8,400
Personal income in the past one year 79.5 % 14,400 20,209
Annual salary in the past one year 77.6 % 120,000 99,342
Current monthly salary 96.1 % 10,000 9,776
School fee in the past one year 61.0 % 5,000 5,319

1 The table was calculated based on 76 trainees

Although erroneous entry of large numbers is also a problem for many PAPI surveys, with CAPI surveys,
extra safe guards may be added to reduce the impact. When the problem was identified during the
interviewer training, the data entry system was revised, so that a warning box showed up after each such
large value entered, and the large value was translated into values in Chinese character to be confirmed
(for example, 10,000 was translated into ten thousand in Chinese). Although it adds extra work for the
interviewers to double check the value they enter, it is worthwhile because it helps reduce the risk of
mistyping.

154

Conclusion
Blaise turned out to be an effective tool for developing data entry applications rapidly for CAPI use in
emergency settings. The CAPI approach eliminated the lag between field work and reporting. This was
essential for the policy use of especially the first Sichuan survey. Net books served as an excellent
platform as they are lighter than ordinary laptops and easier to use and more versatile than PDAs. The
ease by which they can be programmed using standard data entry software such as Blaise was a major
point in their favor.

The flexibility of the Blaise data entry programming language and the automatic handling of screen lay-
out in the Blaise data entry module made concurrent questionnaire development and data entry
programming possible. For ordinary surveys concurrent development is best avoided, but for time pressed
settings, such as those of the first earthquake survey, it is unavoidable. Rather than be a hindrance, the
strict version and type control on the data structure inherent in Blaise facilitated the rapid development.

155

Bibliography

D. Forster, R. H. (1991). Evaluation of a computerized field data collection system for health surveys.

Bulletin of the World Health Organization 69 (1) , 107-111.

Government of China. (2008). The overall planning for post-Wenchian Earthquake Restoration and

Reconstruction. Beijing: Planning Group of Post-Wenchuan Earthquake Restoration and Reconstruction

of the Earthquake Relief Headquarters under the State Council.

Norman M. Bradburn, M. R. (1991). A Comparison of Computer-Assisted Personal Interviews (CAPI)

with Paper-and-Pencil Interviews (PAPI) in the National Longitudinal Survey of Youth. Presentation at

the annual meetings of the American Association for Public Opinion Research in Phoenix, Arizona .

Pedersen, J. (2010). The methodology and design of the post Wenchuan Earthquake Rapid Needs

Assessment . International Disaster Reduction Conference IDRC 2010. Davos, Switzerland.

Rosemary Crocker, R. E. (1999). Computer Assisted Personal Interviewing Solutions in Australia.

Australian Bureau of Statistics: ESCAP workshop on introduction of new technology to population data,

background paper for session 3.3.

Statistics Netherlands. (2002). Blaise Developer's Guide. Heerlen: Statistics Netherlands.

U.S. Geological Survey. (2008). Earthquakes with 1,000 or More Deaths since 1900. Hentet 12 2, 2008

fra U.S. Geological Survey Earthquake Hazards Program:

http://earthquake.usgs.gov/regional/world/world_deaths_sort.php

http://earthquake.usgs.gov/regional/world/world_deaths_sort.php

 156

Multi-Center Collaborative Survey Research with Blaise
Jim O’Reilly, Westat

1. Introduction
A number of important research projects using Blaise have been conducted as collaborations of
investigators. Some are structured group enterprises from the outset. Others arise when the original
researcher’s work is identified as valuable and applicable in other settings, and is then applied elsewhere.
Both models extend the reach of the research method in important ways.

This paper looks at six of these research projects primarily in terms of the research scope and application,
how the collaboration was structured, and any special Blaise aspects of the work. Our goal is primarily to
make the members of the Blaise community aware of the broad range of collaborative research using
Blaise.

2. World Mental Health-Composite International Diagnostic Interview
The WMH-CIDI is the most widely used Blaise application in collaborative research. The survey is
designed “to obtain valid information about the prevalence and correlates of mental disorders in the
general population, unmet need for treatment of mental disorders, treatment adequacy among patients in
treatment for mental disorders, and the societal burden of mental disorders.” (Kessler & Ǖstün, 2004)

The CIDI survey instrument is made up of a screening module and 40 sections covering diagnoses,
functioning, treatment, risk factors, socio-demographic correlates and methodological factors. Kessler &
Ǖstün (2004) describe in depth the instrument’s background, components, validity assessments,
methodological research, diagnostic sections and assessments of risk factors, consequences and treatment.

A central issue with psychiatric diagnostic survey instruments conducted by interviewers who are not
clinicians is the validity of the diagnostic assessments. Kessler & Ǖstün describe the major
methodological problems--question comprehension, task comprehension, motivation, and the ability to
answer accurately--and adaptations of the survey instrument and interviewer training to address them.

The large-scale, cross-national implementation of CIDI was directed by the WMH Survey Initiative
centered at the University of Michigan’s Institute of Social Research. A key challenge was how to
reconcile “research traditions of individual countries, which vary widely in methodological rigor” and a
“one-size-fits-all methodology that naively imposes the same procedures and protocols across all
countries and cultures” (Pennell et al., 2008).

Pennell and colleagues describe the WMH-CIDI collaboration based on the experience of the 17 countries
that had finished data collection and processing by early 2007. They discuss design and methodological
considerations, development of the CAPI and PAPI versions, pre-testing, interviewer recruitment and
training, field structure and implementation, interviewer effects and interview privacy, field supervision
and quality control, and data preparation.

There were four major revisions of the baseline English interview schedule from 1999 to 2007,
necessitating the implementation of a “comprehensive set of version control procedures to allow for
comparisons across countries” (Pennell et al., 2008 p. 37). Each country adapted the English version to
add country-specific content.

The core Blaise CIDI instrument was developed by Karl Dinkelman of ISR. A few years ago, Dr. Ronald
Kessler, the lead investigator of the overall CIDI research enterprise, moved from Michigan to Harvard

 157

Medical School, and the responsibility for maintenance and development of the ongoing Blaise CIDI
work also shifted from ISR to Harvard (Chardoul & Pennell, 2010).

Alison Hoffnagle (2010) manages the CIDI’s continuing development and maintenance at Harvard
Medical School. Hoffnagle said version control and monitoring changes and modifications of the baseline
English CIDE are key activities. Among the changes is greater modularization to allow investigators who
are interested in certain elements to select and implement only those sections. As well, changes are
underway to CIDI to include the latest DSM and ISM disease and related health problem diagnoses.
Harvard also developed a household listing application for laptop case management for a study in China
and now provides it to all CIDI users.

CIDI training centers have been funded in Netherlands and Spain, and those groups update the Dutch and
Spanish versions of the current standard CIDI. Older versions of CIDI in a number of other languages are
still available from Harvard and Michigan. Also, arrangements can be made with Harvard to support
translation and application of CIDE in other languages and countries. Two such efforts are currently
going on in Poland and Saudi Arabia. The Saudi version involves extensive modifications of the core
instrument. Harvard is designing and programming the English version while a team in Saudi focuses on
the Arabic translation (Hoffnagle, 2010).

Michigan's CIDI Training and Reference Center offers a summer CIDI training course for principal
investigators, study managers, and data analysts, and at other times a three-day CAPI training course is
offered (Chardoul & Pennell, 2010). The number of follow-on CIDI research projects is approximately 40
in North America.

3. PRISM
PRISM, the Psychiatric Research Interview for Substance and Mental Disorders, is also a psychiatric
epidemiology survey. It is focused on psychiatric diagnosis when subjects/patients drink heavily or use
drugs. The PRISM assesses DSM-IV disorders and differentiates primary disorders, substance-induced
disorders and the expected effects of intoxication and withdrawal (PRISM, 2010).

The PRISM method was developed by Dr. Deborah Hasin of Columbia University and the New York
State Psychiatric Institute. Chistina Aivadyan has been responsible for Blaise development and related
activities of PRISM. Aivadyan said that originally PRISM was a paper instrument with an average
interview time of about two hours. Interviewers had difficulty executing the challenging instrument in
PAPI without significant errors (Aivadyan, 2010).

Dr. Hasin used Blaise successfully for a study in Israel conducted in Hebrew and Russian—“Alcohol in
Israel: Genetic and Environmental Effects”. This lead to the decision to use Blaise to computerize
PRISM. Several years were spent programming and testing the PRISM-CV (computerized version). In the
last year, a certified version has been released, training has been conducted, and the PRISM has been
distributed to users—to US and international medical and academic research centers. Many of these
organizations had been using the PAPI PRISM.

The gains from using computer-assisted interviewing and Blaise are the familiar ones—complex
branching, modularity, error minimization and correction, more standard interviewing techniques, and
superior data quality. Average interviewing time dropped to 70 minutes compared to PAPI (Aivadyan,
2010).

The ability to modularize the survey has enabled clinical researcher to apply just key sections related to
diagnostic measures for screening purposes.

 158

PRISM-CV is in English. Versions in Spanish (Castilian) and Norwegian are being developed by groups
in Spain and Norway.

Dr. Hasin’s team at New York State Psychiatric Institute has developed the supporting materials and
processes to enable other research teams to apply PRISM. These include a Users Guide, Training Manual,
training course, and certification process.

Development is continuing in a number of areas: integration of DSM-5 changes as they come out, and a
number of significant measurement and methodological studies of PRISM and other research approaches
to substance abuse and psychiatric disorders (Aivadyan, 2010).

4. Collaborative Study of the Genetics of Alcoholism (COGA)
COGA is a national collaborative study addressing the familial transmission of alcoholism and identifying
susceptibility genes using genetic linkage. COGA includes nine different centers where data collection,
analysis, and storage take place. The study has been supported since 1989 by the National Institute on
Alcohol Abuse and Alcoholism (NIAAA) and the National Institute on Drug Abuse (NIDA).

The COGA web site describes the study: “The COGA investigators, in the course of carrying out their
own genetic linkage studies of alcoholism, have assembled a collection of >300 extended families densely
affected by alcoholism, consisting collectively of >3000 individuals. They have collected extensive
clinical, neuropsychological, electrophysiological, biochemical, and genetic data, and established a
repository of immortalized cell lines from these individuals, to serve as a permanent source of DNA for
genetic studies. In order to promote the most rapid possible progress in identifying genes influencing
vulnerability to alcoholism, NIAAA is supporting COGA's distribution of these data and biomaterials to
qualified investigators in the broader scientific community.” (NIAAA, 2010)

Interviewing and testing of COGA families is conducted at six university centers: SUNY Downstate
Medical Center in Brooklyn NY, University of Connecticut, Indiana University, University of Iowa,
University of California in San Diego, and Washington University in St. Louis. The scope and scale of
COGA necessitates a complex data management system. Washington University is the overall data
management and repository coordinating center (Washington University St Louis, 2010).

Nan Rochberg (2010) has done virtually all Blaise programming for the COGA project, as well as
converting the Blaise interviews into SAS datasets, and publishing and maintaining the compiled datasets.
She developed the diagnostic algorithms for the interviews and is responsible for many coordinating data
issues. Rochberg is currently in the process of modifying one of the COGA interviews for use by a group
at the University California, San Diego (Rochberg, 2010).

Blaise was chosen when it was time to move the interviewing to CAI more than ten years ago because the
university had already used it successfully in a similar study of the genetics of nicotine dependence.

Data collection takes place in clinical and research settings. As a family study, people are first ascertained
for eligibility in a clinical setting, then interviewed in a research space. It starts with someone in a hospital
or other treatment facility for alcoholism. There are a clear set of rules on enrollment, particular family
structure and the number of siblings in a family. As a prospective study, it looks at children and
adolescents up to age 25 and asks questions about many other psychological disorders.

The Blaise instruments include an adult interview, two versions of the child interview with many as five
children, and a family history. There are 3500 to 4000 variables per case.

The COGA project website lists more than 225 scientific publications based on the study.

 159

5. Automated Multiple-Pass Method
The Automated Multiple-Pass Method (AMPM) was developed by the USDA Food Surveys Research
Group for their dietary survey. It collects 24-hour dietary recalls for the US National Health and Nutrition
Examination Survey. During the interview, individuals recall the foods and beverages that were
consumed the day before the interview. Details about each food and beverage are collected along with a
description of the amount consumed, the time of day the food was eaten, the name of the eating occasion,
and where the food was obtained.

The structure of the AMPM system is described by Anderson and Steinfeldt (2004). From the AMPM
Blaise database, the intake data are extracted, reorganized, automatically coded, and reformatted by the
Post Interview Processing System (PIPS) to be used by the computer-assisted food coding and dietary
data processing system (Survey Net). Trained food coders use Survey Net to search the Food and Nutrient
Database for Dietary Studies (FNDDS) to code foods and amounts reported during the AMPM dietary
recall interview. Government agencies and other researchers use the final data to examine nutrition and
food safety issues affecting the US population.

Figure 1. AMPM Data System

The Blaise instrument has more than 2,500 questions and more than 21,000 responses. “The capability of
the AMPM Blaise instrument to ask only pertinent questions and collect all the necessary details for a
particular food is a critical feature for implementing automated coding.”

With its proven ability to collect, organize and code dietary information, the AMPM application and the
supporting food coding database and PIPS and Survey Net system have attracted significant interest from
other researchers.

Alanna J. Moshfegh (2010), research leader of the USDA Food Surveys Research Group, said the system
was developed for internal use and when others began requesting access to it “we took the philosophy
driven by limited resources that if others could use it as it was, we would be happy to enter into
appropriate agreements for that. But we would not program or adjust it in any way for that kind of use.
With that said, it has been used by other organizations.”

Moshfegh said they try to be clear to those inquiring about the system that it’s not something you can
simply download by email or run on a thumb-drive. Rather, significant investment is required to
realistically implement the system—an IT specialist, at least 100 interviewers, three to four days of
training at the USDA, and a signed agreement. A number of outside organizations have conducted
research using AMPM, as shown below.

 160

Table 1. Research by external organizations conducted using AMPM
Collaborators Project/Study Status
Statistics Canada Canadian Community Health Survey Completed

National Center for Health
Statistics,

Westat

National Health and Nutrition
Examination Survey (NHANES)

Ongoing

National Institute on Aging,

National Institutes of Health

Healthy Aging in Neighborhoods of
Diversity Across the Life Span
(HANDLS); 20 years duration

Ongoing,
Longitudinal
study

University of Maryland School of
Medicine,

Johns Hopkins University
Bloomberg School of Public Health

Mothers in the Special Supplemental
Nutrition Program for Women, Infants,
and Children (WIC) Program in Baltimore,
Maryland

Completed

Food and Nutrition Service, USDA School Nutrition Dietary Assessment
Study-III (SNDA III)

Completed

National Cancer Institute,

Westat

Food Attitudes and Behaviors Survey Completed

National Cancer Institute,

National Institutes of Health

Automated Self-Administered 24-Hour
Recall (ASA24) adapted AMPM format
and design for use of ASA24

Ongoing

Pennington Biomedical Research
Center

Preventing Obesity Using Novel Dietary
Strategies (POUNDS LOST) intervention
study

Completed

Environmental Protection Agency,

Colville Confederated Tribes,

Westat

Upper Columbia River Tribal Use and
Consumption Survey

Ongoing

Research Triangle Institute
International

Healthy Eating and Active Living in
TRICARE Households (HEALTH)
Intervention Study for the Department of
Defense

 Completed

University of Maryland School of
Medicine

Toddlers Overweight Prevention Study
(TOPS). Conducted with WIC
participants

Completed

University of Vermont Relationship between television viewing
and eating

Completed

6. Pathways to Desistance
Pathways to Desistance is a longitudinal study of serious adolescent offenders as they transition from
adolescence into early adulthood. Beginning in 2000 1,354 adjudicated youths from the juvenile and adult
court systems in Maricopa County (Phoenix), Arizona and Philadelphia County, Pennsylvania were
enrolled. The 14- to 18-year-old youths were predominantly found guilty of felonies, along with some
non-felony sexual assault or weapons offenses.

Each was followed for a period of seven years past enrollment, with a baseline interview plus followup
interviews every six months for three years and annually thru the seventh year. The study provides a

 161

comprehensive picture of life changes in a wide array of areas over the course of this time. The study was
designed to:

• Identify distinct initial pathways out of juvenile justice system involvement and the
characteristics of the adolescents who progress along each of these pathways.

• Describe the role of social context and developmental changes in promoting desistance or
continuation of antisocial behavior.

• Compare the effects of sanctions and selected interventions in altering progression along the
pathways out of juvenile justice system involvement (University of Pittsburgh Medical Center,
2010).

The University of Pittsburgh is the project coordinating center. Blaise instruments were developed there
and distributed to the collaborating organizations—Temple University in Philadelphia and Arizona State
University in Phoenix. Data collection ended in April of this year and analysis and interpretation of the
research is now underway. A total of 20,000 interviews were completed, including 19,000 subject
interviews. The study has been described as the “largest longitudinal study of serious adolescent offenders
ever done” (University of Pittsburgh Medical Center, 2010).

Carol Schubert, the study coordinator, said important findings from the study have already been
published, with more to come based on the entire body of data. The sponsors and researchers believe “it
should have a fairly significant impact on the field” (Schubert, 2010).

7. SHARE - Survey of Health, Ageing and Retirement in Europe
The Survey of Health, Ageing and Retirement in Europe (SHARE) is a multidisciplinary and cross-
national panel database of microdata on health, socio-economic status and social and family networks of
more than 45,000 individuals aged 50 or over. SHARE is designed to “deliver truly comparable data, so
we can reliably study how differences in cultures, living conditions and policy approaches shape the
quality of life of Europeans just before and after retirement.”. (Börsch-Supan and Jürges, 2005). Data
collected include variables on health, bio-markers, psychology, economics, and social support. Twelve
countries participated in Wave 1 (2004). Others countries were added in 2006/7 and 2008/9.

Coordinated centrally at the Mannheim Research Institute for the Economics of Aging (MEA), SHARE is
harmonized with the U.S. Health and Retirement Study (HRS) and the English Longitudinal Study of
Ageing (ELSA). CentERdata of Tilburg in the Netherlands partnered in day-to-day management of the
project as well as having primary responsibility for the development of the Blaise survey instrument and a
number of related systems, most importantly the Language Management Utility and the Case
Management System.

The LMU language translation system provides a comprehensive platform to support the translation of the
generic English-language Blaise instrument into other languages. As well, the system generates the new
language version of the Blaise survey application. A full discussion of the system was presented at the
2009 Blaise Users Conference (Martens et al, 2009).

Also at the 2009 conference, Alek Amin et al. (2009) and colleagues described the use and extension of
the LMU system to translate and generate a single Blaise questionnaire in 10 languages (English, Arabic,
Bengali, Cantonese, Gujarati, Punjabi (Gurmukhi script), Punjabi (Urdu script), Somali. Urdu, and
Welsh) for the UK Household Longitudinal Study.

 162

In a recent discussion, Maurice Martens (2010) described developments with LMU since the last
conference. The multi-Blaise generator process has been further refined and used in other settings,
including the SHARE Wave 4 multi-language instruments for Latvia, Luxemburg, and Switzerland. “We
have some structures that set some boundaries on how you should break up your questionnaire, and use
some special identifiers to define questions and know where answer types are etc. But if you keep to those
rules then the multi-Blaise generator will work.” Martens said.

8. Conclusion
This review highlights the broad range of significant collaborative research supported by Blaise. These
six studies vary widely in terms of content, design, research approach, and institutional and organizational
framework. But all successfully accomplish challenging and important research, and the Blaise software
system is at the core of the survey data collection effort for each of them.

Key aspects of Blaise including its object-oriented block structure, the rules engine, support of cross-
sectional and longitudinal designs, multiple languages, and integration into the overall survey process are
central elements of the Blaise system that enabled the development, maintenance, and implementation of
these surveys that have been so successful.

9. References
Aivadyan , Christina, 2010. Telephone Interview September 14, 2010.

Amin, Alerk , R. Boreham, M. Martens, & C. Miceli, 2009. “An End-to-End Solution for Using Unicode
with Blaise to Support Any Language”. 12th International Blaise Users Conference, Riga Latvia:
International Blaise Users Group.

Anderson, Ellen & Lois Steinfeldt, 2004. “ Blaise Instrument Design for Automated Food Coding”. 9th
International Blaise Users Conference, Gatineau Canada: International Blaise Users Group.

Börsch-Supan, Axel and Hendrik Jürges (eds), 2005, The Survey of Health, Ageing and Retirement in
Europe – methodology. Mannheim: Mannheim Research Institute for the Economics of Aging (MEA).

Chardoul, Stepanie & Beth-Ellen Pennell, 2010. Telephone interview September 17, 2010.

Hoffnagle, Alison (2010). Telephone interview September 15, 2010.

Kessler, Ronald C. & T. Bedirhan Ǖstün, 2004. “The World Mental Health (WMH) Survey Initiative
Version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI)”.
International Journal of Methods in Psychiatric Research, Volume 13, Number 2

Martens, M., Alerk Amin & Corrie Vis, 2009. “Managing Translations for Blaise Questionnaires ”. 12th
International Blaise Users Conference. Riga Latvia: International Blaise Users Group.

Marten 2010. Telephone Interview September September 24, 2010.

Moshfegh, Alanna J. 2010. Telephone Interview September 14, 2010.

NIAAA, 2010. “Collaborative Studies on Genetics of Alcoholism (COGA)”
http://www.niaaa.nih.gov/ResearchInformation/ExtramuralResearch/SharedResources/projcoga.htm#Bio
materials [accessed September 27, 2010]

http://www.niaaa.nih.gov/ResearchInformation/ExtramuralResearch/SharedResources/projcoga.htm#Bio

 163

Pennell et al., 2008. “Implementation of the World Mental Health Surveys”. In Kessler, R.C. & T.B.
Ǖstǖn (eds) , The WHO World Mental Health Surveys: Global Perspectives on the Epidemiology of
Mental Disorders. New York: Cambridge University Press.

Prism, 2010. “PRISM Semi-structured Diagnostic Interview” http://www.columbia.edu/~dsh2/prism/
[accessed September 27 2010]

Rochberg, Nan, 2010. Telephone Interview September 15, 2010.

Schubert, Carol. 2010. Telephone Interview September 22, 2010.

http://www.columbia.edu/~dsh2/prism/

 164

Centralizing the Mink Survey at the National Agricultural
Statistics Service

Roger Schou and Emily Caron, National Agricultural Statistics Service, USA

1. Introduction

The National Agricultural Statistics Service (NASS) is an agency of the United States Department of
Agriculture. NASS is responsible for collecting, editing, and summarizing agriculture data. We are the
sole agency for producing Agriculture Statistics for the United States.

NASS has had the unique challenge over the years of disseminating Blaise instruments across forty-four
field offices from our headquarters (HQ) location in Washington, DC. With the introduction of Blaise
4.81, we could begin the process of centralizing our instruments in order to create a seamless approach to
CATI and paper data collection and editing across the U.S. The first survey to undergo this
transformation was the Annual Mink Survey. But before we delve into the details of centralizing this
survey, let’s provide a little background about how we have handled Blaise surveys in the past.

2. The Old Days

Our older LAN-based Blaise instruments are invoked with a Visual Basic 6 menu system comprised of
numerous builds. Whenever a new instrument is created or an update is needed for an instrument or the
menus, a LAN Update is sent out to each affected field office (FO). LAN Updates generally consist of
zipped up files and a .bat file that, when run, will save the new files to the FO LANs. Someone with
administrative rights needs to be on hand to run these programs. Between the preparation, dissemination,
and the running of the LAN Updates at the FO level, much time and effort is spent on this process. It can
sometimes be the case that LAN Updates are run out of order which, depending on the nature of the
update, can cause problems.

Current LAN-based Blaise instruments at NASS use Blaise 4.80 and write to Blaise datasets. Since these
datasets are located on each FO LAN, HQ survey administrators are not easily able to view the progress
of a given survey. In order for collected data to be analyzed or summarized at the national level, it needs
to be read out of the Blaise dataset and sent by some means to a common location.

Over the years, NASS has expanded six of its FOs to act as Data Collection Centers (DCC). An FO
might require assistance with phoning due to having a particularly large sample or a small or even non-
existent phone interviewer staff, in which case they will put in a request to become a Client State (CS). A
DCC will be assigned to them and will take over the responsibility of phoning the CS’s sample. Working
in a decentralized environment means moving zipped up datasets between CSs and the DCCs and
depending on communication links being up in order to do so. Some of the surveys we conduct also
make use of Estimation Centers (EC) which requires more data movement.

Considering the need for real time national status reports, seamless data transfer and the agency’s overall
direction toward enterprise architecture, it was time to make a change.

 165

3. Centralized Mink Basics

In April 2010, NASS conducted its first survey in a centralized database. We chose the Annual Mink
Survey because of its small sample size (only 415), relatively long data collection time frame and
simplistic nature. It was also a good candidate because the data is collected and edited in only two states,
Wisconsin and Utah.

We started out using Blaise 4.82 build 1529 and stored the data directly into a MySQL database. In order
to maintain a common structure across all future centralized Blaise instruments, we used Generic BOI
files. The in-depth data partition type was selected and versioning was turned on.

4. Updated CASIC Menu and System Requirements

We created a Web-enabled menu in Visual Basic .NET which is used to invoke Blaise and Manipula and
manage the survey. Whereas our old VB6 menu was made up of numerous builds all working together,
the new menu is one build and can be updated on the fly without needing LAN Updates.

Certain settings are needed on user workstations in order to run the new CASIC menu and centralized
Blaise. Both the .NET Framework and MySQL driver must be installed. Eight Blaise DLLs must be
registered and an oledb.dbi file saved on the workstation. In addition, ODBC System data sources need
to be set up to provide connection information to MySQL. All of these system requirements were pushed
out to workstations in the FOs involved in the Mink Survey prior to the survey start date.

5. User Access

One of the first things the VB.NET code checks when a user attempts to access the new CASIC Menu is
whether or not the user has been granted access to it. We have accomplished this by assigning certain
fields in the Windows AD table for valid users. We are able to tell where they are located (FO Fips or
HQ), what their username and employee number are, and what role they have in the office (Statistician,
Stat Assistant, Supervisory Interviewer, Interviewer). As long as the corresponding AD fields have valid
entries, the user is granted access to the menu.

6. CASIC Tables

In addition to the eight standard Blaise tables that accompany Generic BOI files, we found the need to
create a few others: CASIC_SurveyInfo, CASIC_FAT and CASIC_Management.

The CASIC_SurveyInfo table is one of the first tables populated for a given survey. This table holds
critical information about each survey, such as survey code; year, month and day values; Blaise
instrument name; different survey type indicators; data collection dates and other useful information.
This table allows us to limit which surveys are visible to the user on our survey selection screen. Many
values from this table are passed as parameters into our menu and Blaise instruments so we can have each
of them react as needed.

The “FAT” in CASIC_FAT stands for FIPS Assignment Table. An interface was created within the new
CASIC Menu to allow HQ staff to interactively assign CSs to DCCs and ECs for each survey. Once these
assignments are created, the resulting data is populated into the CASIC_FAT table and the menu will
know which rights to provide to each FO. So if state A is having their data collected by state B (one of
the DCCs) and state C (an EC) is editing all of the data, the menu will react accordingly. Users in state B
will have access to menu buttons related to the call scheduler and data collection. Users in state C will

 166

have menu buttons connected to edit functionality. State A users (CS) will have a very small collection of
buttons in order to prepare their sample for initialize, read documentation and run certain reports. There
was a total of 21 FOs involved in the Mink Survey. Of that number, two played the role of both DCC and
EC which left 19 in the role of CS.

Originally we did not have the CASIC_Management table, but quickly realized it was a necessity. This is
a flat table containing many key Blaise fields on which we often need to sort or limit the datasets. These
fields are defined as indexes and used in RecordFilters in Manipula. Some examples of fields found in
this table are DCC_Fips, EC_Fips and Batch.

7. Directory Structure

The new structure for centralized surveys involves web, application and data servers. There are three
environments to each: Development, Beta and Production. CASIC Menu code is located on the web
servers, Blaise code resides on the application servers, and the MySQL databases are on the data servers.

We went back and forth on how to set up the directory structure for Blaise code on the application
servers. By the time the survey went live, we had determined we needed specific folders designated for
any FO playing the role of DCC or EC. In the case of Mink, that meant special directories for Utah and
Wisconsin which would house state-specific files such as CATI Specs, .IGL and those related to the
interviewer practice dataset (which we kept as a Blaise dataset). Since we found the instrument .BMI file
needs to be collocated with the .BTR, we also have copies of the instrument files in the FO folders.

A directory designated for HQ was created, as well. The purpose of this area is to gather files that FOs
have prepared for initialize (explained later), back up those files once they are processed, and to gather
any special reports or message files that are generated after HQ processes run.

The one external used for the Mink Survey contains the sample master and we decided to keep it as a
Blaise dataset. The external datamodel was required to be in the same folder as the instrument.

8. Division of Tasks

In older decentralized Blaise instruments, each FO involved in the survey would receive the instrument
from HQ and do all of the steps needed for sample initialize. In the new centralized Blaise, getting the
Blaise instrument ready to go requires actions from both the FO and HQ. Each FO that makes up the
survey sample will need to run what we call Initialize Preparation. This is a process that ensures all
pertinent files are in place and runs numerous checks against the FO’s sample to be sure it’s ready for
initialize. If there are any problems found, a report will be presented to the user so they can take action. If
no major problems are found, that FO’s sample will be queued up for initialize. The Mink sample
consisted of records from 21 different FOs, so each one of those states ran Initialize Preparation over the
course of a week.

As FOs were lining up, we ran a manual process in HQ to initialize the samples into the dataset. Utah and
Wisconsin were able to begin collecting and editing data as soon as at least one of their Client States’
samples was initialized. Having a centralized dataset gave those two main players the ability to run
important reports for their regions that were required to complete the survey, which was a big
improvement over the past method of manually sending the reports between FOs.

Special reports were created for HQ including a couple of different status reports, missing reports and an
initialize status report. Data readout for Mink was done at the HQ level on a daily basis. Records

 167

considered to be complete and clean from across the entire sample were read out to an ASCII file, which
was then picked up by the analysis and summary tool.

9. Issues We Encountered and Lessons Learned

Throughout data collection and editing, users reported CATI Service errors on a very regular basis.
While researching the problem, we were able to get them back up and running by simply downing the
service and bringing it back up but that, of course, was not a permanent solution. After speaking with
database experts in our agency and getting the advice of Statistics Netherlands staff, we changed some of
the ODBC settings on the different application servers. Coupling that with an updated Blaise software
version drastically reduced the number of CATI Service errors for the remainder of the survey period.

The performance (speed) of the Mink instrument as reported by FO users was not ideal. Originally, the
Blaise software was being accessed by the menu from the central application server. Partway through the
survey we decided to instead hit the software from the local FO LAN, and this helped to improve
performance. This was around the same time that we received an updated version of the software, which
also helped.

10. Future Plans

After wrapping up the Mink Survey, we knew we had lots more work to do before tackling a much more
complex survey. We also wanted to be sure a proper database failover was in place which was not the
case during Mink data collection.

Knowing that speed and performance would only decrease as samples and instrument complexity
increased caused us some worry. However, our agency has plans to convert all FOs to a virtual
environment by the summer of 2011. Preliminary tests of a virtualized FO using centralized Blaise have
looked promising, so we have high hopes that performance issues will be a thing of the past.
Virtualization should also eliminate the need for specialized workstation installs, as all setups, DLL
registration, and the like will be done on the virtual image.

Discussions are underway to develop an Extract, Transfer and Load (ETL) process to pull data from the
MySQL database (a transactional database) and populate it to the Work In Progress (WIP) database (an
analytical database). The WIP database will house data from all of our different data sources (CATI,
paper, our in-house WEB self-administered data collection (EDR), and our in-house small survey data
collection instruments (EDC)) and will be the one source of data for analysis and summary programs.

It is possible we will decide to turn versioning off for future surveys. There were far too many rows
being written to the dataset each time a record was touched, probably because we update a user stamp in
the instrument whenever anyone accesses a record. We might look into using the ETL process to create
an historic database off to the side including all iterations of the data, and thus keeping only the current
instance of the record in the main database. However we decide to handle it, we will want the ability to
easily access both the original and current instances of the data.

We will need to make use of UDL files, due to a security feature being put in place on the MySQL
databases in the not-so-distant future. A generic username and password to access the databases will be
stored in a separate dataset and the password will be changed every 30 days. We’re considering using
one shared, temporary UDL file for each survey which will use the current password.

 168

When more surveys are lined up for us to convert to centralized Blaise, we will start actively researching
CRON jobs to automatically run certain processes at night. These could include daybatch creation,
initialize, data readout (until the ETL is in place), and possibly some others.

A deployment timeline is currently in place which has the next converted survey going live in late 2010.
Our other regular surveys are slated for conversion through 2012, ordered according to increasing
complexity where possible.

 169

Management of Classification Lookup Files
Fred Wensing, Softscape Solutions, Australia

1. Introduction
A key aspect of data collection is the correct assignment of codes to represent text entries which are given
in the interview. Where the coding frame is structured or the list is long, classification is often done
through a lookup action on an external file.

When a survey spans a time period it is important that the systems are set up to handle the inevitable
updates to the classifications which result from new entries and other revisions.

This paper will discuss the management of classification lookup files, their creation, the application of
version control and the way that systems can be set up to manage the transition from one release to the
next.

2. Classification basics
This section describes the classification options available in the Blaise software. It is included here for the
sake of readers who may be unfamiliar with the options.

In the collection of statistical information it is usual to codify the data. This puts order and structure into
the presentation of results. In particular, it avoids the incidental alphabetical re-arrangement of data which
can occur to output presentation if data is stored as character strings.

Blaise supports various methods for the assignment of codes to the answers given in a survey:

• Enumerated field type

• Classify method (using a classification field type)

• Lookup from an external file using alphabetical search

• Lookup from an external file using trigram search

• Combinations of the above

Some details in this section of the paper draw on material in the Blaise Online Assistant and the Sample
code provided with the Blaise software. It is included here for completeness. Please consult the Blaise
Online Assistant for more comprehensive information.

2.1 Enumerated field type
The simplest and most common method of classification is the enumerated field type in which the
interviewer selects the relevant code, which relates directly to the answer given, from a category list
which is visible on the screen.

 170

The field definition itself holds the classification. For example, in the following field definition:

MarStat "What is your marital status?"
 / "Marital status"
 : (NevMarr "Never married"
 ,Married "Married"
 ,Divorced "Divorced"
 ,Widowed "Widowed"
)

The codes 1 to 4 are assigned for the four categories by default. A more explicit definition of the field
reveals the classification:

MarStat "What is your marital status?"
 / "Marital status"
 : (NevMarr (1) "Never married"
 ,Married (2) "Married"
 ,Divorced (3) "Divorced"
 ,Widowed (4) "Widowed"
)

When this question is encountered in the survey the list of categories shows on screen with relevant
codes:

 171

As you can see, by specifying the code number in the definition it is possible to assign a predetermined
number to each category. The numbers do not need to be sequential and may contain gaps as can be seen
in the following type definition for the response set of “Yes” (code 1) and “No” (code 5) which is often
used in CAPI surveys:

TYPE
 TyesNo =
 (Yes (1) "Yes"
 ,No (5) "No"
)

2.2 Classify method
Where the classification of an item involves a hierarchical code frame (For example: Occupation, Motor
vehicles or Commodities) then Blaise provides a CLASSIFY method which will bring up the hierarchical
code list for the operator to navigate through and select a corresponding entry.

To use this method it is firstly necessary to define the classification hierarchy to Blaise. This is done using
a Classification type in which all the levels, codes and labels are defined. Essentially the Classification
type is a series of nested enumerations.

An example of a hierarchical classification of motor vehicles is given in sample code provided with
Blaise and part of the classification (also shown in the Blaise Online Assistant) is reproduced here for
your information:

TYPE
 Automobiles = CLASSIFICATION
 LEVELS
 Make, Model, Body_Style
 HIERARCHY
 American_Motors (1) = (
 Rambler_or_American (1) "AMER Rambler/American" = (
 _2dr_Sedan_or_HT_or_Coupe (2) "2dr Sedan/HT/Coupe",
 _4dr_Sedan_or_H (4) "4dr Sedan/HT",
 Station_Wagon (6) "Station Wagon",
 unknown_or_other_style (88) "unknown") ,
...

An American Motors Rambler that is a two-door sedan, hard top, or coupe would have a code of 1.1.2.
If the list is to be updated during the life of the survey then the DYNAMIC attribute needs to be specified
along with the length of the corresponding code structure. For example:

TYPE
 Automobiles = CLASSIFICATION DYNAMIC[9]
 LEVELS
 Make, Model, Body_Style
 HIERARCHY
 ...

The Classification type can be defined within the Blaise datamodel for that survey although it could also
be set up as a separate type library so that it can be used by multiple surveys. A separate type library
would also be preferable if the content is likely to be updated during the life of the survey.

 172

Since the syntax for coding frames with complicated descriptions can be awkward to type by hand,
particularly for large hierarchical coding frames, it is recommended that you build the classification using
a Manipula program which converts a text description of the classification (which may have been
exported from a classification register). For details on how that is done and information about sample
programs on the subject of hierarchical classifications consult the Blaise Online Assistant Contents under:

 How to Use... / Programming Languages / Advanced Topics / External Files / Hierarchical coding
Once the classification type has been defined it can be used like any other type definition. For example:

MyCar "Identify your car from the list" : Automobiles

To invoke the classification the field is placed on the path using the CLASSIFY method, rather than
using the ASK method. For example:

MyCar.CLASSIFY

When the CLASSIFY method is invoked then the operator is presented with the hierarchy and then he/she
navigates down the classification until the corresponding entry is located.

The following screen shows an example where the operator has located “Ford Falcon - Station Wagon”
on the list:

Navigation through the hierarchy will return the code number for 12.1.6 for this entry.

2.3 Lookup from an external file using alphabetical search
When the list of categories is large it is not practical to set up an enumerated field. In this case it may be
preferable to lookup an external file using one of the keys on that file. Use of an ordinary secondary key
will result in an alphabetical list being presented to the operator.

 173

For the external file to be accessible from the survey datamodel it is necessary to add a USES section to
identify the external datamodel. For example:

USES
 mCountryList 'CountryList'

It is also necessary to add an EXTERNALS section within the relevant block to identify the external file:

EXTERNALS
 ExternalList : mCountryList ('CountryList',BLAISE)

The lookup is then activated in the RULES by associating the field in the lookup file with the field in the
main datamodel. This is done with the piping symbol '|'. For example:

Country_of_birth | ExternalList.LOOKUP.Countryname

The lookup process will present the list of entries from the external file using the first or only secondary
key. If the external file has more than one secondary key then search dialog will provide a radio button to
enable the operator to switch between keys. If only one key is to be used in the lookup then the designated
key can be added in the lookup instruction. For example:

Country_of_birth | ExternalList.LOOKUP(AlphaKey).Countryname

When the field is encountered in the survey then the lookup dialog will be presented on the screen. As the
operator types the first few letters of the search string the lookup dialog will jump to that point in the list.
The value which is returned by the lookup process is the content of the field named after the LOOKUP
keyword, in this case Countryname.

The following screen shows the alphabetical lookup on a list of birth places after the first few letters of
“Spain” have been typed in:

Once an entry has been selected then the identified field is returned to the survey data.

 174

2.4 Lookup from an external file using trigram search
Blaise provides a more comprehensive search mechanism on text strings through the application of
trigram indexing. Trigram indexing causes a text string to be indexed on all the subsets of three letters
extracted from the text string. For example, the word Blaise consists of the trigrams #BL, BLA, LAI, AIS,
ISE, and SE#, where # represents word boundaries.

By using the trigram index in the lookup process Blaise will return to the screen all entries that match a
defined number of trigrams found in the search text. The more text which is entered into the search field
the more trigrams will be searched and the shorter the list of possible matching entries will become.

Because Trigram searching occurs on patterns of three letters it does not matter where those three letters
appear in the indexed field. Trigram searching is therefore ideal for long descriptive texts.

The activation of lookup using trigram search is the same as for alphabetical search except that the
designated key to be searched must be of type TRIGRAM.

For more details about Trigram indexing and setting or changing the parameters which control the search
behaviour please consult the Blaise Online Assistant.
The following screen shows the trigram lookup on a list of birth places after the first thee letters of
“Spain” have been typed in:

Notice that the list presented to the user is more refined than the alphabetical list.

2.5 Using a start value for lookup operations
The lookup process also allows for a start value to be passed into the lookup. That value can help the
operator to narrow the search process. Where the start value is part of a Classification code then the
subsequent lookups, whether alphabetical or trigram, are also filtered by that code.

2.6 Retrieving other fields from the external file
The value which is returned by the lookup process in the above two subsections is the content of the field
named after the LOOKUP keyword, in this case Countryname.

 175

In order to retrieve the values of other fields from the external file it is necessary to search and read the
external file after the lookup has been done. For example, to obtain the country code for a selected
country the following code can be included. For example:

IF ExternalList.SEARCH(Country_of_birth) THEN
 ExternalList.READ
 Country_Code:=ExternalList.CountryCode
ENDIF

2.7 Combining lookup methods
By combining the various lookup methods it is possible to provide considerable flexibility for any coding
system.

3. Preparing Classification Lookup files
Most classification lookup files are created from classification data that is extracted from classification
registers or systems. Such data is usually placed in a text file, which may be fixed-format or character-
separated, which can then be loaded into Blaise using a Manipula program.

Before loading the classification data into a Blaise file that can be used in lookup and/or search processes
you need to consider and decide on the following.

3.1 Use of a hierarchical classification
Classification frames are often developed as a hierarchy because it provides structure and lends itself to
convenient addition of new codes.

If a hierarchical classification is used then there is an option to make use of the hierarchical classification
type in Blaise. The definition of a classification type in Blaise is somewhat complicated but an easy-to-
use conversion program is provided in the Blaise Sample files. Consult the Blaise Online Assistant for
more information.

Use of a hierarchical classification type will give access to the Classify method and allow the operator to
navigate the hierarchy branches to make a selection.

Make sure that you add the Dynamic option if you expect the classification to be extended over the life of
the survey.

If the Classify method is not to be used then the hierarchical code can be converted to a simple code string
and assigned through the other lookup methods.

3.2 Which entries to put into the lookup list
To make the lookup list as useful as possible, the entries should be drawn from a list of synonyms linked
to the relevant classification rather than from the classification titles themselves. For example, if “Great
Britain” is the title for an entry in a list of countries it would be better if the lookup list contained not just
that entry but also some synonyms like “United Kingdom”, “UK” or even “England”.

The more entries which are in your lookup list the better it will be for the coding process.

If you do not have a comprehensive list of synonyms then you can plan to update your list from time to
time based on “Other – specify” entries that are extracted from your survey and sent to an expert for
coding. Once a decision has been made about an appropriate code the newly coded description(s) can be

 176

added to the lookup list. Updating of code lists and coding unassigned entries is discussed in more detail
later.

3.3 The types of indexes to provide
The decision to include a Trigram index in your code list will depend on how structured the coding is
expected to be. Trigram indexes are best suited to coding where there is an unambiguous match between
the text and its possible code (for example in a list of commodities or localities). Trigram searching
generally ignores the structure of the coding frame.

For some coding frames which are highly structured (for example Occupations) then trigram searching
may not be appropriate. You will need to decide this in consultation with classification experts.

An alphabetical index should generally be provided in the code list (as a Secondary Key) so that it can be
used if desired.

For most applications, then, two Secondary Keys should be provided, one as a Trigram index and the
other as an Alphabetical index.

3.4 Adding and retrieving other fields from the code list
The code list can be enhanced to provide other information that may be useful for the survey. These
additional items could be things like edit tolerance levels for application in Signals or Checks, or weights
for calculation of exercise indexes. It is particularly useful to provide this kind of data through the code
list if it is expected that refinements or additions will be made during the life of the survey.

When other information is added to the code list then it will be necessary to add a Primary Key to the
code list so that it can be searched. Once a matching external record has been located then it can be read
and the values returned to the survey data.

3.5 Whether to add any special entries to the list during loading
For situations where a suitable entry may not be found in the code list, it may be appropriate to add a
special entry, such as “Other – specify” (which would have a non-specific code number attached to it).
The datamodel could be programmed to obtain a verbatim description for such cases. These verbatim
entries could then be extracted from time to time for coding decisions to be made.

Another special entry which may be useful could be a “Delete me” entry. When this is chosen the
datamodel could be programmed to remove the selection and its resultant code from the data. This may be
the chosen solution to removing unwanted code selections because the delete key does not function on a
field which is controlled by a Lookup. For example, the delete logic could look like:

{Ask third activity using trigram coder}
Activity_3|CodeFile.LOOKUP(TriKey).Description
{Remove activity if it starts with 'DELETE'}
IF POSITION('DELETE',Activity_3)> 0 THEN
 Activity_3:=''
 Code_3:=''
ENDIF

There are other solutions to the “delete” problem, such as adding a menu button to clear the field, but this
method might be an easy one to implement.

 177

3.6 Make adjustments for punctuation which may affect Trigram indexes
When the text strings which are used to create the lookup files contain punctuation such as commas, full
stops, brackets etc. then they will affect the trigrams into which those strings will be indexed. Given that
the operators will only be entering a few letters (and probably not any of the punctuation) then it is best to
adjust the search texts so that the punctuation is separated from the words around it by a blank character
or space. For example: a search string of “Food prep (cook, grill, bake)” would be indexed better if it was
converted to “Food prep (cook , grill , bake)”. Alternatively, the punctuation could be removed
completely.

The following procedure in Manipula applies such an adjustment to the texts before indexing:

PROCEDURE proc_FixString
 PARAMETERS
 IMPORT OldText : STRING
 EXPORT NewText : STRING
 INSTRUCTIONS
 NewText := OldText
 NewText := REPLACE(NewText,',',' ,')
 NewText := REPLACE(NewText,'(','(')
 NewText := REPLACE(NewText,')',')')
 NewText := REPLACE(NewText,':',' :')
 NewText := REPLACE(NewText,'/',' / ')
ENDPROCEDURE

Even though this kind of adjustment is made for the indexes, the original text is still retained and returned
to the survey data file when the lookup is used. The following code illustrates this:

Activity|CodeFile1.LOOKUP(TriKey).Description

Where the Secondary Trigram Key (TriKey) is based on a field called SearchString which is a copy of
the Description field that has been “fixed” using the above procedure.

3.7 Make adjustments for language/keyboard differences which may affect Trigram
indexes

When preparing a multilingual instrument, it may be necessary to make adjustments to handle differences
in lettering due to accents. In particular, those adjustments should be made so that it is possible for the
operator to use an English/American keyboard to enter search texts without the accents.

For example, Spanish words commonly contain special letters such as 'ñ' and the Spanish language also
employ accents which are placed over vowels. It is not easy to access these special letters on an
English/American keyboard. In order to make trigram lookups in Spanish more readily accessible to the
coder, these special characters are converted to (English) versions that do not have the accents.

 178

For adjustments to Spanish texts, the above procedure is extended with the following extra lines:

 ...
 NewText := REPLACE(NewText,'Ñ','N')
 NewText := REPLACE(NewText,'ñ','n')
 NewText := REPLACE(NewText,'á','a')
 NewText := REPLACE(NewText,'é','e')
 NewText := REPLACE(NewText,'í','i')
 NewText := REPLACE(NewText,'ó','o')
 NewText := REPLACE(NewText,'ú','u')
ENDPROCEDURE

Once again, the Trigram key will make use of the modified text whereas the Lookup will return the
original Description text.

3.8 Adding the code numbers to a Trigram index to increase functionality
Sometimes coders will become familiar with the code numbers used in the coding frame and so it may be
useful to enable them to search on those as well. This can be enabled by appending the code number to
the search text used in the Secondary Trigram Key. For example:

SearchString := Description+' '+Activity_Code

Here also, the Trigram key will make use of the modified text whereas the Lookup will return the original
Description text.

Using this technique can also provide a convenient search mechanism to locate all the entries coded to the
same number.

4. Deployment of code list (lookup) files
Code list lookup files must be accessible to the systems in which they are to be used. When it comes to
deployment, the main issues to consider are whether the lookup files are likely to be used by multiple
surveys, how often they are likely to be updated and, in the case of network configuration, performance.

4.1 Distributed computer deployment
For distributed systems where each interviewer has his/her own notebook computer there are two sensible
options for placement of the lookup files:

• in the same folder with the survey files

• in a common folder placed next to the survey folder

The first location is appropriate when the code list is unique to a survey and/or there are likely to be some
updates during the life of the survey. Management of the installation tends to be easier because it just
entails replacing the files in the survey folder with an updated set.

 179

However, where code lists can be applied to multiple surveys then it is appropriate that you place all the
code list files in a single folder which is parallel to the survey folders. For example, the following folder
structure could be used:

C:\DATA\EXTERNAL
C:\DATA\Survey1
C:\DATA\Survey2
...

In this case, all the shared external lookup files would be placed in the EXTERNAL folder. This also has
the advantage that there would be only one copy of each code list installed on the computer rather than
one copy per survey.

If the code list files are always placed in the EXTERNAL folder (and parallel to the survey folder) then
the file references to these external files can be easily managed using relative referencing. For example,
the following Uses and Externals statements would locate the relevant country list in the EXTERNAL
folder:

USES CountryList '..\EXTERNAL\CountryList_1_021'

EXTERNALS ExternalList : CountryList
 ('..\EXTERNAL\CountryList_1_021',BLAISE)

Using these references (involving ..\EXTERNAL\) means that the survey datamodel will always find
the external file(s) provided they are in a parallel folder called EXTERNAL.

4.2 Network system deployment
With network systems, the placement of code list lookup files should be done to provide the best
performance response. Despite the improvements with network performance in recent years the best
location for lookup files is still the local computer of the operator. This applies even if the survey data is
to be held on a network location but it applies even more so if the lookup files (when placed on the
network) would be being accessed by multiple operators at the same time. Local placement will give
exclusive and speedy access.

Local deployment for network use, involves using a designated folder on the C drive where the lookup
files can be placed. When the network system is invoked the local pathname can be supplied as a
parameter to the Manipula program or Data Entry Program (DEP). This can be done using the relevant
command line option or by using a Blaise Command Line Options file.

For example, the following Manipula statement invokes the DEP and sets the external search path to the
C drive location (C:\DATA\AllCoders) using the command line option:

aResult:=fInterview.EDIT ('/K'+aIndic
 +' /E"C:\DATA\ALLCoders"'
 +' /X ')

 180

or using a command line options file:

aResult:=fInterview.EDIT ('/K'+aIndic
 +' @SVY_System.ini'
 +' /X ') {make sure the /X option is after the Ini file}

where the options file (SVY_System.ini) could look like:

[DepCmd]
ExternalSearchPath=C:\DATA\ALLCoders
MenuFile=CAPIMenu.BMF
ConfigFile=AuditTrail.DIW
[ManipulaCmd]
ExternalSearchPath=C:\DATA\ALLCoders

Notice that the external search path is specified for both DEP and Manipula so that either program can
find the external files.

Where an external search path is to be supplied at time of execution, the references to those lookup file
within the survey datamodel are done without the folder names being mentioned. For example the Uses
and Externals statements previously shown would now look like:

USES CountryList 'CountryList_1_021'

EXTERNALS ExternalList : CountryList('CountryList_1_021',BLAISE)

When installing the survey it will be necessary to place the datamodel definition files (*.bmi, *.bdm,
*.bxi) for the lookup files in with the survey. The other alternative would be to set the Meta Search Path
in the same way as the External Search Path by using a command line option (/H) or adding it to the
options file.

5. Version control
It is almost inevitable that coding lists will be updated. It is therefore important to consider a system of
version control so that you know which version of a coding list was used with a particular cycle of a
survey. Two methods are suggested here.

5.1 Version number as part of the code list file name
A version number can be incorporated into the name of the code list. For example, for release 1.01 of the
Activity coding list the suggested datamodel and file name could be Activity_1_01. Whenever a new
release is made the version number is updated and therefore the file names are also updated.

By having the version number embedded in the name it is clearly visible to installers of the system which
version is being used. Embedding the version number in the name also means that different versions of
the same coder can be available at the same time (for different surveys or time periods).

This solution is appropriate for code lists which are shared between surveys and which do not change
often. In this situation a typical survey would make use of a particular release of a code list, probably for
the life of that survey. Of course the name of that code list file would be referenced in any Uses statement,
and any Externals section of a datamodel so it would always be known which version was being used. For
example, see the Uses and Externals for the country list above.

 181

Using this method means that any application of the code list in Manipula or a Blaise datamodel will need
to refer to the correct version by its name. If the current file is not found then the error message will name
the file (with version number embedded) and it will be easy for the maintainers of the system to know
which file is not in place.

Using this method does mean, however, if a correction is made to a code list and a new release is required
then the file name(s) would be changed to match the new release number. It would be up to the managers
of any affected survey to decide whether to adopt the new version and change and recompile any
datamodels or programs. Provided that the structure of the datamodel used for the code list file did not
change then the modified and recompiled survey datamodel will be compatible with the previous version.

Updating a code list while a survey is in progress does raise the issue of how to refresh the lookups and
searches which were done in the earlier period of the survey. This is discussed further later.

5.2 Version number as part of the folder name
If a code list lookup file is expected to be changed a few times during the life of the survey then the
version number can be embedded in the name of the folder where the external files are located. That way
the name of the code files can remain constant and the system programs will not need to be modified or
recompiled.

By having different folders for each release it will be necessary only to update the external search path
used by the DEP or Manipula. In that case the use of a Blaise Command Line Options file would be
advisable. Being a simple text file this would be the only part of the installation which would need to be
updated or replaced whenever a new code list was released. The following is an example of a Blaise
Command Line Options file used to operate the Physical Activity Recall (PAR) survey:

[General]
Version=1_053
Installer=Fred Wensing
SysFolder=H:\Blaisedata
CoderVersion=3_013A
CoderLocation=C:\DATA\PARCoder
Managers=4,9,52
[DepCmd]
ExternalSearchPath=C:\DATA\PARCoder\Version_3_013A
MenuFile=PARMenu.BMF
ConfigFile=AuditTrail.DIW
[ManipulaCmd]
ExternalSearchPath=C:\DATA\PARCoder\Version_3_013A

As you can see the folder containing the coder lookup files is named Version_3_013A. When a new
release is made then another folder name would be used.

This INI file (called PAR_System.ini) is used to define various system settings and is interrogated by
the Maniplus program which controls the survey on the network. The same INI file is passed to the DEP
as a command line options file. Whenever a new coder is released the system is programmed to update
this INI file to reflect the change of version number and the changes to the folder name(s). This would
then flow into all the uses of the system.

6. A management system for Classification lookup files
When code lists are likely to be updated during the life of a survey it would be appropriate to develop a
management system to handle all the steps involved.

 182

In a typical classification management system the following processes would need to be supported:

• knowing and updating the version control number

• backing up the current coder(s)

• extracting a list of entries from the survey data file(s) which could not be coded – that list would
be sent to coding experts to make decisions and update their synonym list

• importing an updated list of synonyms into the classification management system

• obtaining a report on the code changes made in the updated list (in case there are unexpected
changes)

• preparing the updated code list for deployment

• applying the updated coder to attempt to code those which were not coded previously

A system to handle these processes can be prepared using Manipula/Maniplus.

The following screen shows what such a system could look like:

Behind each of the buttons in this interface is a procedure or a Manipula program which carries out that
step. The current version number is stored in an INI file which is interrogated by the system before being
displayed on screen or used in other steps.

Maintenance tasks involve running the “Action” processes in order. The other processes can be run as
needed.

 183

6.1 Notes on the maintenance system implementation
The code list maintenance work is done in a folder which is separate from the current survey system even
though the maintenance function is accessed from within the survey system.

The datamodel which defines the code list includes a field to record the code which a particular entry may
have had in the previous release. The old code is obtained by checking whether an entry is in the previous
release and noting what the code used to be. Storing both the current and previous codes makes it simple
to produce a report of any changes that may have occurred. The differences report process also checks the
backup code list for any entries that may have been removed before reporting the results.

In the main survey data file, entries that cannot be coded are “entered” as a literal string (using a button
on the menu). Because those entries are not (yet) in the code list, the system is programmed to record the
code number 99999 against those entries making it easy to identify them for listing and subsequent update
when the lookup list has been improved.

The coding maintenance functions themselves do not interfere with the operations of the survey.
Installation of updated code list files to their correct location (on the local computer of the operator) is
triggered by the main system programs once the version number is updated.

6.2 Some technical details of the maintenance system implementation
Within the maintenance folder there is a copy of the current code list file and all previous releases of the
code list. Each old release is named such that the suffix on the name matches the version release number.

The View code list button will open the current version of the code list using the Data Entry Program in
the Browse Forms mode. That way progress with the update can be checked by the operator.

The Backup code list button runs a procedure that copies the current code list file to one which has the
same name plus a suffix which matches the current version number (namely that shown on the screen).
The system will only allow this button to be pressed once per release. Once the backup exists then the
current version becomes the draft for the next release.

The CSV New list button opens a “Selectfile” dialog to locate a suitable CSV file to be loaded.

The Load New list button runs a procedure which loads the code list entries from the identified CSV file.
During the loading process the text entries are “fixed” for punctuation and language issues as outlined in
Section 3. In addition, as each entry is loaded, the backup copy of the code list is checked to see whether
the entry existed previously and if it did then the old code number is copied into the “Previous code”
field.

The Deploy button copies the current (now updated) code list files to a staging folder in the survey system
where they can be accessed for installation later.

The Differences in new list button runs a Manipula program that reports on the changes in the current
code list from the previously backed up copy. It identifies new entries, deleted entries and changes in the
codes. The text report is written to a folder where it can be accessed later. That way all the changes
between the different releases are stored for future reference.

The Activities with No code button runs a Manipula program which examines the records in the survey
data file and produces a report of all the description which do not have a valid code (may be coded to
99999). That text report is also written to a folder where it can be accessed later.

 184

The Convert 99999's button runs a Manipula program which examines the records in the survey data file
and, for records that contain one or more entries coded to 99999, it applies the Checkrules method with
the setting of CheckrulesUnchanged=YES. A report on records that have been “fixed” and the number of
remaining non-coded entries is also produced and written to the same reports folder.

7. Handling some special classification issues
This section discusses some special issues that may arise with using external lookup files.

7.1 Refreshing searches following update of code list
When a code list has been updated it may be necessary to refresh the searches to ensure that any data
based on the lookup entries is up-to-date.

If an affected record is to be reopened using the Data Entry Program then all the searches and retrieval of
external data for that record will automatically be refreshed.

To ensure that all the searches are refreshed across the whole data file, however, it will be necessary to
open every record and reapply the Rules. This can be done using a Manipula program but it will be
necessary to apply the additional setting of CHECKRULESUNCHANGED=Yes. This is because the
default checking process will only check blocks that have changed, and where external files are involved,
such a change will not be known to the block. The following sample program from the Blaise Online
Assistant shows how it can be done:

USES
 MyModel 'LFS98'
UPDATEFILE
 Lfs: MyModel ('lfsdata', BLAISE)
SETTINGS
 CHECKRULES = YES
 CHECKRULESUNCHANGED = YES
MANIPULATE
 Lfs.WRITE

7.2 Not losing data when the external code list file cannot be found
If the external lookup files are placed in a parallel folder, or on a folder on the local computer, then the
potential exists for data to be lost because the search could not find the file. This is particularly possible
when the survey files are moved around during processing.

One way to avoid this happening is to add a KEEP instruction to affected fields in the survey datamodel
when the search is unsuccessful. For example:

IF ExternalList.SEARCH(Country_of_birth) THEN
 ExternalList.READ
 Country_Code:=ExternalList.CountryCode
ELSE
 Country_Code.KEEP
ENDIF

This technique is always valid when the same external file (ExternalList in this case) is used for
both the lookup and the subsequent search/read. The assumption is that once a value has been obtained
using the search (from the same unchanged file) then the result of the most recent successful search would
still be acceptable.

 185

This technique should not be used when the content of the lookup file has been changed during the life of
the survey because the assumption may not hold true.

7.3 Use of ASCII file for small lookups and ease of updating the code list
Where code lists need to be updated often or tailored for particular uses then a simple solution may be to
use an ASCII file to hold the code list rather than a Blaise file. In that case the Uses and Externals
statements would look like:

USES Citylist 'Citylist'

EXTERNALS ExternalList : CityList('Cities.csv',ASCII(SEPARATOR=',')

where Citylist is a normal Blaise datamodel with primary and secondary keys defined. In this case the
external file is comma-separated which is why the separator setting is added. For a fixed format ASCII
file the separator would be left out.

Using this method, separate city lists could be provided to different interviewers, matching their local
area. There would be no need to reload the data for a new or modified list. Blaise also loads the list into
memory which is faster for the lookup. The only disadvantage is that the Trigram indexing is not
available for lists that are loaded into memory.

7.4 Keeping track of alternate External lookup files in a multilingual survey
For multilingual surveys it is preferable that the lookups will be done using files corresponding to the
active language. So for every lookup instruction there will be conditional logic to direct the operator to
the relevant language lookup file. The problem is that if the active language is changed then all the
searches in the datamodel, including those already performed, would be switched to the new language and
many of them would fail. There is a serious risk of losing some of the data already collected.

To control the problems which can result from a change in the active language it is necessary to note the
language for each lookup when it is performed and store it in a flag field. That flag can then be used to
control which lookup file is searched and stop the possibility of using the incorrect lookup file (for each
instance).

 186

For example, the Physical Activity Recall Survey was developed as a bilingual survey with all questions
and lookups being available in both English and Spanish. The operator can change the language at any
time to use the one which is relevant for the respondent. The following logic is used to set the language
flag for once instance of the Activity question (which uses trigram lookup on a list of activities):

{Set the language for the Activity coder}
Activity_Lang.KEEP
Activity.KEEP
IF (Activity=EMPTY) THEN
 IF Purpose=EMPTY THEN
 Activity_Lang:=''
 ELSEIF Activity_Lang=EMPTY THEN
 IF ACTIVELANGUAGE=ESP THEN
 Activity_Lang:='Sp'
 ELSE
 Activity_Lang:='En'
 ENDIF
 ENDIF
ENDIF
{show the language being used}
Activity_Lang.SHOW

The language flag is checked and if it matches the active language then the lookup action is allowed,
otherwise it is changed to just SHOW the results of the lookup when it was done in the other language:

IF Activity_Lang='En' THEN
 IF ACTIVELANGUAGE<>ESP THEN
 Activity|CodeFile1.LOOKUP(TriKey).Description
 ELSE
 Activity.SHOW
 ENDIF
ELSEIF Activity_Lang='Sp' THEN
 IF ACTIVELANGUAGE=ESP THEN
 Activity|CodeFile2.LOOKUP(TriSpanish).Descr_Spanish
 ELSE
 Activity.SHOW
 ENDIF
ENDIF

All follow-up searches of the external code list are also controlled by the language flag:

{Use the codefile to assign activity code number}
IF Activity_Lang='En' THEN
 IF CodeFile1.Search(Activity) THEN
 CodeFile1.READ
 Activity_Code := CodeFile1.Activity_Code
 ENDIF
ELSEIF Activity_Lang='Sp' THEN
 IF CodeFile2.Search(Activity) THEN
 CodeFile2.READ
 Activity_Code := CodeFile2.Activity_Code
 ENDIF
ENDIF

 187

The following screen shows the effect of using this technique on the data capture process:

You can see the language used flag next to each activity text (obtained by lookup) and the (Spanish)
entries which do not match the active language are displayed as SHOW text only. Those fields cannot be
changed while the language is set to English. If the language is changed to Spanish then the English text
entries would become SHOW text only and the Spanish text entries would be able to be changed.

8. Conclusion
This paper has covered a range of material associated with classifications and the use of external lookup
files with the objective of explaining the processes involved and providing some techniques and solutions
for the issues. Complimentary information and detailed technical descriptions may be found in the Blaise
Online Assistant.

 188

Coding Tricks To Save Resources

Barbara S. Bibb, Lillie Barber, Ansu Koshy, Research Triangle Institute (RTI), USA

Introduction

As computer aided survey administration has developed, survey instruments have become increasingly
complex. Increased complexity in survey methodology seeks to gather the most correct data possible. For
surveys to be appropriately administered under all possible circumstances, instruments are customized for
individual respondents, reducing burden and complexity for the respondent but raising it for the
programmer. As a result, the software applications used to present the instruments can be pushed to their
limits. Innovative methods are therefore needed so that instruments can be built within the application’s
limitations and so they use resources conservatively.

This paper will discuss a Blaise instrument that would have grown out of control using straightforward
instrument coding methods, but which was rescued by some tricks applied during development. The
survey was about finances and insurance, difficult subjects at best for most people, and very difficult for
respondents whose personal lives took many twists and turns. To elicit good answers, the questionnaire
designers included loops, cross-references, recall aids and other techniques to help obtain the necessary
data. This may have been helpful for the interviewer and subject, but caused difficulty during
implementation.

For example, in the early stages of programming, one particularly complex module was only about a
quarter complete and contained over 15,000 lines of code. Because of its length, simple “typo” coding
mistakes would have been impossible to find, and there was concern that the program would break with
each compile. This paper will present some of the ideas and constructs that were used to reduce the
amount of code necessary to complete the instrument. Pros and cons of the techniques used will be
discussed as well as some lessons learned.

Historical Background

In the middle of the 1900’s census taking and simply counting was extended to create survey research by
using questionnaires and statistical surveys to collect data about people and their attitudes, opinions, and
beliefs. The effects of radio were investigated by collecting public opinion data to gauge reactions to and
changes in the economic environment. At the University of Michigan, Rensis Likert and Angus
Campbell (former employees of the U.S. Department of Agriculture's Division of Program Surveys),
formed the Survey Research Center (SRC). Survey research expanded to cover behaviors and elements of
interest in social sciences.

During this period, data was collected using complex paper forms containing directions that guided
respondents around inappropriate questions. Later, computers made it possible for surveys to be
customized for individual respondents, with obviously inappropriate questions automatically skipped.
More sophisticated computer applications applied complex logic to create surveys that seemed to talk to
the respondent directly, personalizing questions based on the respondent’s answers and demographic
characteristics. Thus, an effectively programmed instrument reduced the burden on the respondent.

As computer storage became more cost effective, more data could be collected while the effective
programming of the instrument worked to reduce the burden on the respondent. In addition to the data
collected from a respondent, computer applications have been asked to generate and maintain variables

 189

used to appropriately guide the respondent through the maze of questions, administering only those
appropriate for that respondent and his/her situation. The number of variables collected and stored within
a survey instrument can rapidly increase when the instrument is designed to collect and maintain person
level data within a household data collection effort. To be sure that no one in the household is left out the
array sizes specified are large. Space must be allocated for each possible array element whether or not
that space is needed in a particular administration. Application programs usually allow ample flexibility,
but even so innovative projects push the limits.

Project Background

To test methodology in a recent project for the US Census Bureau, an experimental version of some
standard questions was programmed. The respondent for the study was the person of appropriate age who
answered the phone or was available to come to the phone. This person answered questions for the
household and for each household member, so data being collected was both household level data and
person level data. The person-level data was stored in arrays where the index of the array was mapped to
each person’s position on the household roster.

In addition to a fixed set of modules, the program contained three modules that each collected the same
data in different ways. Two of these modules were question sets from existing studies. The third was an
experimental module that was implemented for the first time. This module is the topic of this paper. Each
respondent went through only one of these three modules, providing control groups and data for
comparison. The project goal was to try to determine which set of questions would generate the most
accurate (reliable and valid) data. The programming challenge was to code the experimental module.

Because human memory can be inaccurate, the experimental module was designed to collect information
by repeating some questions a number of times in slightly different contexts. The respondent answered
the sequence of questions in a number of ways, eventually covering all household members. Although
sections of questions were repeated, the total respondent burden was reduced because each round of
questions collected as much data as possible. In the later rounds, the only repeated questions were those
needed to pick up data missing as a result of the previous question sequences.

In the worst case, the entire series of questions would be repeated for each household member. The
program, however, reduced respondent burden by asking a question and then asking which household
members could be included as having the same response. Flags within the program allowed the
respondent to answer for all household members with different circumstances and prevented needless
repetition of questions. To ensure accuracy of the data with respect to the respondent’s memory of the
past, questions to verify the data were added.

Programming began with a standard straightforward approach of asking the questions by grouping them
into blocks that could be re-used when the question sequences needed to be repeated, setting the flags,
and then applying logic to determine which sequences of questions needed to be asked next. To correctly
drive the program, the backend variables needed to be set. Between the repetitious questions and the
required backend variables, the section of the program that was doing this work rapidly became very
large. There was concern that with each attempt to compile, the internal Blaise limits would be exceeded
and the project would die. In addition, the path changed as the backend global variables were adjusted and
updated with additional question responses.

To include every person in each household, this project had especially large person-level arrays. The
project allowed for up to 16 household members. Therefore, each person-level array had an index of 16,

 190

where the index number corresponded to the household member’s position on the original roster
enumerating the household.

To determine the status of each household member with respect to the data being collected, global “flag”
variables were defined for each person. Data was being collected by month and there were 17 applicable
months. In addition, there were 14 different classifications of the data or types of insurance coverage.
Backend internal arrays were filled with variables needed to summarize the collected data and drive the
program. The declarations of these internal person level arrays initially resulted in 3808 variables (16
household members * 14 types * 17 months). This variable count does not include any of the answers to
the questions presented to the respondent that were needed to collect the data. The enormous number of
variables presented problems. A program with such large numbers of variables could require more space
than Blaise, the application program, allows. Blaise has internal limits that include both the size of the
code files the program is able to compile and the number of variables that Blaise can maintain and can
keep track of. Any application program would have such limitations.

To resolve the problems in handling this experimental module, the programming staff decided that it was
essential to simplify the code if possible. This programming exercise had two challenges:

• To reduce the number of variables
• To reduce the number of lines of code

Before re-thinking the initial approach, one file contained over 15,000 lines of code, much of it repeated
with only a change of index. That file only covered a quarter of the intended question sequences for the
module. There was too much code to process, debug, and work with. Typos within the indices or any
other part of a code file this size would never be found. After innovations were applied, the final module
was reduced to two files of about 4000 lines.

Block development

Several steps were taken to try to simplify the code. Repeated questions were grouped into blocks which
was a first step in reducing the number of lines of code. Each block could be repeated as necessary to
collect the appropriate data for each household member. The paths through the blocks depended on
which household members the respondent was answering for with the current question set as well as some
global counters. Thus the block-level structure became more complex, but the body of code itself became
simpler.

Introductory questions were grouped in one block, and parameters were used to pass appropriate data into
the blocks of follow-up questions. As data was collected global counters were used to help determine the
correct path. Global counters can create problems. For example, each question set was restricted for each
respondent. The questions could only be repeated twice, so that no one was asked about having any more
than two kinds of insurance. The number of insurances reported for each person was held in a global
counter. Once that counter reached its limit, code was to be skipped. These counters were used in this
application to determine the path through the blocks and whether or not a block should repeat, but they
were dynamic. They changed as questions were answered by the respondent.

The global counters created two opposing problems. As the counter increased, certain sections of code
were to be skipped which created a path change. Entry into a block depended on not having been there
before and/or on the global counter as well as on the answers to the previously presented questions. As
the counters were incremented, question sets moved from “on path” to “off path”. This change in path
without any intervention will lead to the loss of the data initially collected.

 191

The second problem the global counter created is the counter example of the problem discussed above.
Since the paths were dependent on the global counters, some instances caused a question to be added to
the path from a block that was previously presented and presumed complete. The program would skip
back to a question unexpectedly in that “completed” block once a counter increased to the requirements in
the logic. To correct the presentation of extraneous questions from completed blocks and to prevent path
change of previously presented blocks, if and keep statements were applied to the blocks. The block was
only called if the “end” marker was empty. Once the “end” marker was encountered on the path and was
answered the block was protected with a keep statement.

If end_block = empty then
Present the block

Else
Keep the block

Endif

This type of flow control is well documented in the Blaise literature discussing the protection of blocks
from further change. (Statistics Netherlands (1999) Blaise Developers Guide, Blaise for windows 4.1, A
Survey Processing System . p. 195). It is common to protect rosters and tables from change by the
interviewer. We found that unexpected change created by the use of global counters and variables could
be managed with the same techniques. To prevent the loss of previously collected data, the block calls
were placed in ‘if’ statements with keep statements following the ‘else’ condition. In other words, when
the questions were asked as part of the “if” code they were on-path, and when they were skipped within
the “else” condition, data were protected by the keep statement.

As data was collected, this implementation essentially locked the administered blocks. The locking of
these blocks prevented the interviewer from backing up to make corrections or adjustments but prevented
loss of data regardless of which path was followed. The program went to production with this access-
limitation approach in place.

Number of variables

As program design progressed, the size of the program and the number of backend variables quickly
became large. Many of these variables were defined on a global level so that they would be available to
all blocks and all modules. It was obvious that the number of variables should be reduced if at all possible
so that the internal storage required within the Blaise application would not become so large that it would
reach the application’s limits. To this end, sets of classification variables were replaced with a single
string variable. One was defined for each set of classification variables (14 of them), where the
classification variable indicated a type of insurance coverage. A 15th classification variable was created
and called “master”. This master indicated if there was any insurance coverage of any type. These
variables were defined as strings of length 17. Each column of the string represented a month and
covered more than one year. Doing this reduced the number of global variables being stored for this
particular piece of the project from 3808 variables (16 household members * 14 types * 17 months) to a
mere 240 variables (16 household members * 15 types), a reduction in complexity within the instrument
and more importantly on the resulting analytic dataset.

The string method for each classification variable was a very effective and novel approach to the problem
of too many variables. Each column of the string represented a month. A method was devised to enable
the columns to be set on and off as appropriate. Changing a single character in the string replaced setting
an individual variable on or off. For example, the third character of the string represented the month of
March. If the respondent answered “yes” for a month, such as by saying they had insurance coverage that

 192

month, the third character would be set to “Y”. For this particular project, once a month was “on” it
would not be turned off.

The 15th type, the master, was set if any of the types were set for a particular month. This allowed the
program to evaluate a single variable to determine the insurance status of the respondent or of anyone in
the household. Each household member had their own set of insurance “strings”.

Type1(i) := “NNNNNNNNNNNNNNNNN” initialized the entire string of months if type1 was indicated
for the i th household member. At the same time the master for the i th household member was initialized.

Master(i) := “NNNNNNNNNNNNNNNNN”

Strings were left empty for all kinds of insurance that the respondent indicated were not used by a
particular household member.

A sequence of questions asked to determine if any household members were covered by each particular
type of insurance. Initializing the string to all off was the first step in capturing the data about the
insurances carried by members of the household. A range of dates was captured through the question
sequence, so the problem that remained was to collect the information together and set the appropriate
columns of the strings from ‘N’ for no insurance that month to ‘Y’ for covered by insurance that month.
The position of the column translated to the month covered.

A procedure was written to set the columns (months of coverage) of each string where the string
represented the type of insurance (one of the 14 string variables). This procedure was also used to set the
master string, representing coverage by any insurance carrier. The procedure used parameters generated
from the collected data to turn appropriate columns on. Parameters were required. Inside nested
procedures, parameters are the only way to be sure that the procedure is acting on the correct data. The
procedure TypeSTR called a second procedure which set an individual column.

PROCEDURE TypeSTR
 PARAMETERS
 TRANSIT typestr : string
 TRANSIT MASTER : STRING
 IMPORT m : INTEGER {person index}
 IMPORT BMON : INTEGER
 IMPORT BYR : integer
 IMPORT EMON : INTEGER
 IMPORT EYR : integer
 locals j:integer
 k:integer

 RULES
{the j loop sets the first 12 columns of the insurance string }
 for j := 1 to 12 do
 set_ FLAG(Typestr, J, j, 2009, bmon ,byr, emon , eyr)
 set_ FLAG(MASTER, J, j, 2009, bmon ,byr, emon , eyr)
 enddo
{the k loop sets the last 5 columns of the string}
 for k := 1 to 5 do
 set_ FLAG(typestr, k+12, k, 2010, bmon ,byr, emon , eyr)
 set_ FLAG(MASTER, k+12, k, 2010, bmon ,byr, emon , eyr)
 enddo

 193

ENDPROCEDURE

The first procedure, TypeSTR, used indices and affected the entire string. It called a second procedure,
SET_ FLAG, which set only one column of the string to ‘Y’. The loop in the first procedure called the
second procedure to set the single column the number of times indicated by the data collected. Since the
string variable for this project covered more than one year (17 months), the indices were defined to cover
the first year (12 months) and then the next 5 months.

PROCEDURE SET_ FLAG
 PARAMETERS
{The variable string being set} TRANSIT FLAG : string
 loc :integer
 flagmon : integer
 flagyr : integer
{beginning month and year being set}
 IMPORT BMON : integer
 IMPORT BYR : integer
{ending month and year being set}
 IMPORT EMON : integer
 IMPORT EYR : integer

 AUXFIELDS
 BTmpDate : DATETYPE, EMPTY
 ETmpDate : DATETYPE, EMPTY
 refdate : DATETYPE, EMPTY
 m : integer
 n : integer

 RULES
{make dates of parameters being passed}
 BTmpDate := TOdate(BYR,BMON,1)
 ETmpDate := TOdate(EYR,EMON,1)
{define a reference date that is today}
 refdate := todate (flagyr, flagmon,1)
 m := loc-1
 n := loc+1
{if the months being passed are within the dates to be set}
if refdate >= BtmpDate and refdate <= Etmpdate then
 if loc = 1 then
{set first column}
 FLAG := 'Y' + substring(FLAG,2,17)
 elseif loc >1 and loc < 17 then
{set middle columns}
 FLAG := substring(FLAG,1,m) + 'Y' + substring(FLAG, n,17)
 elseif loc = 17 then
{set last column}
 FLAG := substring(FLAG,1,16) + 'Y'
 endif
endif
ENDPROCEDURE {SET_ FLAG}

The SET_ FLAG procedure used the parameters sent by the TypeSTR procedure. It converted the
parameters to dates to compare to a reference date. If the dates were within range, it used the parameter j
to turn the j th column on. SET_ FLAG is called from a loop and will be called 17 times to change the
column values appropriately, one at a time.

 194

Conclusions

Survey application software can be pushed to its internal limits as the complexity of survey instruments
increases, requiring creative thinking to meet the demands of the methodologists and use the applications
on hand. Some of the tricks developed on this project allowed an increase in instrument complexity
without negatively impacting the survey application.

The programming changes we discussed allowed the project to be successfully completed in spite of high
complexity. Several lessons stood out from our experience:

• Programmers should carefully review the use of blocks of code and global variables.
• Our use of blocks of code was not unusual, but the repeated use of the same blocks caused some

unforeseen issues that needed to be addressed. These issues were solved by using procedures and
parameters.

• By redefining sets of variables to a single string variable, the number of variables being handled
became manageable. Complexity of maintaining these individual string variables was handled by
using nested procedure calls to update them as data was being collected.

The changes made to the initial programming design used thousands less lines of code and reduced the
number of variables.

Acknowledgments

This research is based, in part, on work that was supported by the U.S. Census Bureau. The authors of
this paper and the programming staff would like to acknowledge the U.S. Census Bureau and the
members of the BOC Survey of Health Insurance and Program Participation (SHIPP) team for their help
and patience as the programming for the project developed. The views expressed here are those of the
authors and not necessarily those of the U.S. Census Bureau.

 195

Longitudinal Survey Data – “Move It Forward”

Rhonda Ash and Danilo Gutierrez, The University of Michigan

HRS Overview
The Health and Retirement Study (HRS) is a complex longitudinal survey covering a wide range of health
issues and economic concerns related to aging and retirement. The average interview lasts more than an
hour and is administered to over 22,000 respondents. The HRS began in 1992 and had been carried out
for three waves at two-year intervals before it was merged in 1998 with its sister study AHEAD, which
covered an older birth cohort and somewhat different content area. At that time two new age cohorts
were added to fill in the age range above age 50, and a “steady-state” sample design was born which
would maintain representation of the over 50 population by bringing in a new (younger) age cohort every
six years. That change dramatically increased the ability of HRS to address the effects of events and
policy changes within its scope and allows HRS to aspire to a very long lifespan with continual expansion
and adaptation of its content as these changes occur.

HRS Preload Process - History
With a longitudinal survey about finance, family, and health, data collected from a prior wave could
simply be presented and confirmed or updated, vastly reducing the time needed for the next interview.
HRS developed a structure to house thousands of variables that were pulled forward from prior waves.
As we were learning Blaise and the program’s early version constraints in 2002, we made decisions about
the preloaded data structure to attempt to ensure the program’s performance would not be degraded. We
developed a schema whereby the data was loaded into one location (structure) and referenced or updated
in that location. As data was presented and changed the original location data would be changed. Hence,
the term “preload” quickly became a misnomer.

Original data flow

Present and collect data

Update data

Preload structure

Early Blaise Restrictions
With an application the size and complexity of HRS we had to be very concerned with the amount of
stored data that we carried in the instrument. Early in the process of working with Blaise, HRS ran into
problems which caused us to be cautious about the number of fields in our very large instrument. The
more fields we added to the route, the slower the application became until it failed -- or the RULES

 196

would not compile at all. Since the preload structure contained a lot of fields, a scheme with a single
copy of preload which would be updated as the interview progressed was baked into the design early.
While learning Blaise, we quickly designed the original “write it back” process. A block of 25 fields that
contained only people data was created in the coverscreen section of the instrument that collected such
key information as respondent's name, gender, coupleness, and age. This block was replicated 83 times
for the different types of people:

 3 Respondents (current Respondent, current Spouse or Partner, any new Spouse or Partner)

40 Children and spouses with room for any new children if the Respondent recoupled
10 Household members who are not offspring
20 Siblings and
10 Parents

For certain variables we needed to compare the previous wave's statuses to the current wave -- for
instance, married before (X066ACouplenss_V) versus married now (X065ACouplenss) -- in order to
determine which questions or what version of a question to ask. As a result, we had to duplicate several
fields in this preload structure and ensure that we never updated them. For example X065ACouplenss was

 197

updated, to reflect current marital status, whereas X066ACouplenss_V contained the “virgin” preload
value and X066ACouplenss_V was never updated.

Blaise Selective Checking and Gates
Certain aspects of Blaise, while helpful for many situations, presented certain challenges when dealing
with the HRS coversheet's complexity. Some of these aspects are described here.

Selective checking: Blaise documentation stresses that

“In a large instrument, there may be thousands of questions and thousands more rules that govern
their implementation. In such a data model, the constant checking of all rules could overwhelm
the computer. In order to know which rules to enforce, Blaise employs a selective checking
mechanism based on parameters and blocks. Blaise uses parameters to optimize the performance
of the checking mechanism during instrument use. By keeping track of parameters, both explicit
and internal, Blaise knows which blocks to check.”5

As the interview progressed, Blaise’s selective checking mechanism would rerun the rules that were
active “on the route” from the beginning of the application to the current field being asked. If we were
updating fields that had already been on the route, that set of rules was rechecked.

Gates: Code that would stop the selective checking was added to the application to stop the process in
certain conditions in order to take a field or block off the route.

KEEP statements: Used to maintain the data when a field is no longer on the route. When a field’s
value changed, other fields may be taken off the route; without KEEP statements the data in those fields
are lost. With a different way of programming, we could dramatically reduce the number of KEEP
statements needed.

Quite often we would add a field whose only purpose was to lock off other fields from the selective
checking. Once we reached a point in the application, a field was presented and once answered, the logic
of the RULES would remove fields or blocks from the route.

If A047_ = empty then
 Call Thatblock of fields
Else
 ThatBlock.KEEP
Endif

A question as simple as “Are you married?” became a programmer’s challenge as the marital status
changed and was written back to the original “Preload” field.

In this example, Respondents[1].X065ACouplenss was preloaded with a value of MARRIED. As the
interview’s coversheet progresses, we ask if they are still married to the same person at A020TSameSpP.
If the answer to A020TSameSpP is NO, the value of Respondents[1].X065ACouplenss is changed to
OTHER and the selective checking mechanism alters the route. Now A026_Rmarried shows up on the
route. (A026_Rmarried asks a single respondent or a previously married respondent who is no longer
married to the same person if they are now married to someone else.) If A026_Rmarried is answered
YES the status of Respondents[1].X065ACouplenss becomes MARRIED once again. (Still with me?)

5 Excerpts from Blaise 4.8 Online Assistant

 198

Part 1:
IF (Respondents[1].X065ACouplenss= MARRIED OR
 Respondents[1].X065ACouplenss= PARTNERED_VOL)) THEN
 A020TSameSpP_A.Keep {Keeps the data values when the field goes off the route}
 A022_.keep
 IF A020TSameSpP_A = empty then {only ask if empty}
 A020TSameSpP_A {Is Clara still your wife?}
 If A020TSameSpP = NO then
 Respondents[1].X065ACouplenss := OTHER
 Endif
 Endif
Endif

Part2:

 IF A026_Rmarried <> empty {stop lock out when X065 gets assigned below}
 or
 (piBA_HHX024_ReIwHH_V = yes and
 (Respondents[1].X065ACouplenss= OTHER OR
 A020TSameSpP_A = NO)
) THEN
 A026_Rmarried
 If A026_Rmarried = Yes then
 Respondents[1].X065ACouplenss := MARRIED
 Endif

How To Fix The Problem
One of the more difficult issues with the “old” structure is that the selective checking mechanism
unexpectedly changes the data values of fields on and off the route by re-evaluating the rules. After
several waves of adding gates and reorganizing the code, the application became error-prone when new
content was added or old content changed. In the example above, we referenced the Respondents block
which is an array of three instances (current Respondent, the Spouse or Partner, new Spouse or Partner).
We would load data from the prior wave into that arrayed block, and then alter the values as we
progressed through the application.

To change that process we adapted a “Move it forward” philosophy. That is, once the data had been set
into any field we would not re-assign it. We would move the data forward into a block or field that had
not been altered.

We now have the same arrayed structure, but added a new location where the data values will not be
changed. The prior wave’s data is currently loaded into the PRELOAD_Respondents block. Any updates
to the preload are recorded in the SecA.Respondents, , and the updated data are copied to the Respondents
block. The PRELOAD_Respondents data are never altered after the data loading process, thus the Blaise
selective checking mechanism is not triggered. The same philosophy is now followed for the Children
data: we use three arrayed blocks for the preloaded, updated and final data. All updating is done in the
coversheet section (SecA). Any reference past this coversheet section would look at the data in the final
copies of each structure (Respondents or Children).

 199

Since it is important to maintain comparability in the instrument across waves with a longitudinal study,
the thought of restructuring is nerve-racking. The data being collected must be able to be connected to the
prior wave data, and be assured that the collection process does not change the meaning of any question’s
intent. The changes made were in how the data are stored, not in how the questions are asked. We are
now able to store additional data structures for the Respondent and Children blocks. Restructuring
allowed us to only alter the data in the update data locations and reduce or eliminate the back-writing.
The code became easier to manage and understand. What took many lines of code before now takes only
a few lines. We now need less code to handle the selective checking mechanism.

 IF Preload_Respondents[1].X065ACouplenss = MARRIED OR
 Preload_Respondents[1].X065ACouplenss = PARTNERED_VOL THEN
 A020TSameSpP_A

 IF Preload_Respondents[1].X065ACouplenss = OTHER) OR
 A020TSameSpP_A = NO THEN
 A026_Rmarried

Now, since Preload_Respondents[1].X065ACouplenss is never altered, we no longer need to protect
against the selective checking mechanism. The rewrite gives us only one location of data to reference in
future sections. The final data location helps to simplify and avoid interrelated problems between
sections.

 Respondents[1].X065ACouplenss := A038TCouplenss_A

 200

Conclusion
Making any changes to our instrument, even small ones, was a matter for grave consideration because we
never knew what unintended consequences might emerge. As a result, often times sometimes desired
changes to improve question objectives were not implemented, especially if they were discovered late in
the program development period.

Why was the coversheet rewritten?

• It was very difficult to manage code.
• Anticipating how the selective checking mechanism would behave became highly problematic

in our very large instrument.
• The code became hard to understand especially for non-programmers.
• With any change, the whole instrument needed to be fully re-tested.
• We would have to check to make sure that data was not dropped “off the route” and lost.
• We had to make sure we did not unintentionally overwrite data.
• There were many interrelated problems between sections with the way the code was written.
• Changing the route in the coversheet adversely affected the logic in later sections. These

effects were observed in other family data sections.

During the design of the re-write we considered these major issues. Each of these issues was examined
and addressed. With the investment of time and planning in this re-write, the efforts will pay off into the
future. The benefits have already been evident beyond our original hope. Now, with the easier code
readability, non-programmers are able to look through the code and better understand the flow of the data
collection. We are also much more confident that we can modify those areas of code without introducing
unintended effects and endangering the whole instrument’s integrity.

With the benefits that we have received from this investment, we plan to re-write other sections of the
application. We have already applied this schema to the section that collects sibling data. Next, we plan
on re-writing the section that collects children transfer data.

References
Statistics Netherlands, Blaise Department, Blaise 4.8 Online Assistant.

 201

The Challenges of Implementing the China Family Panel Study
(CFPS)

Jiahui Yao, Peking University, Gina-Qian Cheung and Youhong Liu, University of Michigan

1. Introduction

The Chinese Family Panel Study (CFPS) is the largest and most comprehensive national panel study ever
undertaken in China. It is designed to collect three levels of data: individuals, families, and communities.
The survey topics include society, economy, population, education, and health changes. The data are used
for academic research and policy decision-making in China.

The CFPS survey has features modeled after the Panel Survey of Income Dynamics (PSID), the National
Longitudinal Study of Youth (NLSY) and the Health and Retirement Study (HRS). The study is hosted by
the Institute of Social Science Surveys (iSSS) of Peking University.

CFPS preparation began in 2005. Two paper-and-pencil surveys were conducted in Beijing, Hebei, and
Shanghai in 2007. In 2008, CFPS had a pilot for 2,400 households in Beijing, Shanghai and Guangdong.
A follow-up CAPI survey was launched in 2009. During the 2009 pilot, CFPS fully tested all CAPI
systems, including Blaise data collection, real-time sample management, real-time technical support, data
quality, and real-time monitoring. CFPS started production in April, 2010, and completed data collection
in September, 2010. The total completed cases are about 85,000!

In this paper, we will first describe the CFPS CAPI system architecture. Then we will discuss the
challenges encountered during implementation of Blaise.

 202

2. CFPS CAPI System Architecture

As shown in figure 1, the CFPS CAI system includes the following three subsystems (discussed in detail
below):

• Data Collection system
• Data Synchronization System
• Systems At iSSS Center

Sampl e
Management

syst em

Sampl e
Management

syst em

Sampl e
Management

syst em

Sur vey Sur por t t i ng
Syst em

Repor t i ng syst em

ver i f i cat i on Syst em

Sampl e mai nt ai nance
Syst em

Figure 1 – CAI System

2.1 Data Collection System

2.1.1 Sample Management System (SMS)

The CFPS Sample Management System evolved from the University of Michigan’s Sample Management
System, SurveyTrak. Staff from Michigan and iSSS worked closely together to develop the system for
CFPS. The final product is all in Chinese.

 203

2.1.2 Six Blaise Questionnaires

The six CFPS questionnaires are: Screening, Family Member Confirmation, Family, Community, Adult,
and Child.

 204

2.2 Data Synchronization System

The data synchronization system synchronizes the interview data and paradata between the interviewer’s
laptop database and the server database. The system has both server side and client-side databases. The
basic principles are as follows:

• All database operations are recorded in the log table (such as add, delete, modify), and the last
successful synchronization time (both upload and download) is recorded to another table;

• When uploading data, the data synchronization system compares the log table with the last successful
upload time, and if there are differences, the latest updated data is uploaded to the server;

• When downloading data, the data synchronization system compares the log table with the last
successful download time, and if there are differences, the latest updated data is downloaded to the
client database.

2.3 Systems at the iSSS Center

To ensure production data collection runs smoothly and with high quality, several systems have been built
to run at the iSSS Center with the server database.

2.3.1 Survey Supporting Systems

• Sample Transfer System - This is used by supervisors to transfer sample from one interviewer to another

interviewer.

• Technical Support System - Supervisors use this system to submit technical issues raised by interviewers.

They assign the problems for timely resolution to appropriate technical staff.

• Sample Help System – This is used to process special sample such as sample that were refused three times or

that could not be contacted after six tries. In such cases, the iSSS Center contacts the respondent and assigns a

special status code to the sample, and then informs the interviewer whether to further contact the respondent.

• Interviewer Management System – This is used to manage the interviewer's information, such as adding a

new interviewer or modifying information for existing interviewers.

2.3.2 Reporting System

SAS Web Report Studio is used to report on daily survey processes, such as sample completion and
sample distribution. The data are shown in dashboards, tables and curves.

2.3.3 Data Verification System

The data verification system selects samples to be verified according to the values of a selected
questionnaire’s variables and other user backend database variables. It is a web system using BlaiseIS.
The verification can be conducted by telephone, by review of sound recordings, and by face-to-face
interviews.

 205

2.3.4 Sample Maintenance System

This system is mainly used for sample tracking and maintenance after the completion of interviews.
Similarly, this is a web system that uses BlaiseIS to complete questionnaires and to record the results of
sample maintenance. The other function of the Sample Maintenance System is to send respondents
customized holiday greetings through Short Message Service and E-mail.

3 Challenges

3.1 Implementation Challenges in SMS Development

3.1.1 Implementing family level of survey with five subprojects

• The entry point of the family level survey is the Household Screening Survey. Certain criteria, such
as how long the family has lived in its current location, are used to determine if a family is eligible for
further interviews.

• The second survey is the Family Member Confirmation Survey, in which all members in the
household are listed in a table of the Blaise instrument. After the survey, SMS generates sample lines
in the Adult or/and Child projects. The number of projects generated is based on the answers from the
Blaise family list table. For example, if there are two people in the family who are older than 16, then
two sample lines in the Adult project will be generated.

Both of these surveys are screening tools used to select families and individuals to be interviewed. The
main surveys are the Family Overall, Adult, and Child surveys

3.2 Challenges for Blaise Development

In this section, we will describe details that are unique for implementing the CFPS in Blaise.

3.2.1 Setting up the Blaise Chinese Environment

In 2003, University of Michigan had a paper discussing how to display Chinese in Blaise. It mentioned
that the NJ Star program was used to display Chinese for a multi-language Blaise instrument. Since CFPS
is not a multi-language instrument, it is not necessary to use a third party program such as NJ Star to
display Chinese. There are certain computer system settings that can be changed to enable Blaise to
display Chinese properly.

The following two changes to the Windows operating system are needed in order to display Chinese
characters correctly:

1. Control Panel->Regional and Language Options->Advanced->Select a language to match

the language version of the non-Unicode -> Chinese (PRC)
2. Control Panel->Regional and Language Options-Regional Options->Standards and formats-

>Chinese (PRC)

3.2.2 Translate Blaise System

The above two settings in Regional and Language Options help to deal with Blaise questions and answers
in Chinese language. To change Blaise System text to Chinese, we use the Blaise translation tool to set up
a language INI file in Chinese. The INI file contains translated menus, dialogs, forms and error messages.

1. Translating: The basic object in the translation process is a Blaise database.

the system text. The Blaise setup for this (
subfolder of the Blaise system folder called
Dep.exe; 2) Setting Up the Blaise Chinese Environment
be translated; and 3) in the translated text field, input the Chinese text. See the figure below:

2. Transforming the translation to the INI file format: The Manipula setup BlTxt2IN.MAN in the

Translate will conduct the transformation for us. The output of this Manipula program is a file called
Blaise.tra.

3. Using the new language file: There are several wa
a DEP.exe parameter e.g. /#C:\

3.2.3 Testing System for CFPS

There are six datamodels for CFPS 2010. As development evolved, it was necessary to build a testing
system so that programmers could setup and update datamodels easily for the testers to test the latest
changes. For quick development, VB6 was selected to construct the system.

The Testing system folder structure: When a new version is ready to test, first a version folde
e.g., version16. Second the VB6 cfps2010 is copied to the folder. Then, the datamodel files are copied to
their corresponding directories.

By implementing this type of folder structure, a Blaise programmer can easily create and send the lat
version to testers, and the older versions are still available for change verification.

206

Translate Blaise System Text to Chinese

The above two settings in Regional and Language Options help to deal with Blaise questions and answers
in Chinese language. To change Blaise System text to Chinese, we use the Blaise translation tool to set up

e. The INI file contains translated menus, dialogs, forms and error messages.

Translating: The basic object in the translation process is a Blaise database. BlTxtTra.bdb
the system text. The Blaise setup for this (BlTxtTra.bla) and the text database itself can be found in a
subfolder of the Blaise system folder called Translat. To Translate: 1) open BlTxttra.bdb with

Setting Up the Blaise Chinese Environment ocate the section and identifier that need to
the translated text field, input the Chinese text. See the figure below:

Transforming the translation to the INI file format: The Manipula setup BlTxt2IN.MAN in the
Translate will conduct the transformation for us. The output of this Manipula program is a file called

Using the new language file: There are several ways to use the new language file. CFPS chose to use
\blproj\CFPS\Blaise.tra.

Testing System for CFPS

There are six datamodels for CFPS 2010. As development evolved, it was necessary to build a testing
grammers could setup and update datamodels easily for the testers to test the latest

changes. For quick development, VB6 was selected to construct the system.

The Testing system folder structure: When a new version is ready to test, first a version folde
e.g., version16. Second the VB6 cfps2010 is copied to the folder. Then, the datamodel files are copied to

By implementing this type of folder structure, a Blaise programmer can easily create and send the lat
version to testers, and the older versions are still available for change verification.

The above two settings in Regional and Language Options help to deal with Blaise questions and answers
in Chinese language. To change Blaise System text to Chinese, we use the Blaise translation tool to set up

e. The INI file contains translated menus, dialogs, forms and error messages.

BlTxtTra.bdb contains all
database itself can be found in a

. To Translate: 1) open BlTxttra.bdb with
ocate the section and identifier that need to

the translated text field, input the Chinese text. See the figure below:

Transforming the translation to the INI file format: The Manipula setup BlTxt2IN.MAN in the
Translate will conduct the transformation for us. The output of this Manipula program is a file called

ys to use the new language file. CFPS chose to use

There are six datamodels for CFPS 2010. As development evolved, it was necessary to build a testing
grammers could setup and update datamodels easily for the testers to test the latest

The Testing system folder structure: When a new version is ready to test, first a version folder is created,
e.g., version16. Second the VB6 cfps2010 is copied to the folder. Then, the datamodel files are copied to

By implementing this type of folder structure, a Blaise programmer can easily create and send the latest

3.2.4 Modify Blaise Preload in the Testing System

Some of the CFPS datamodels have complicated preload block structures. To ensure that different preload
sceneries can be tested, the testing system must enable testers to modify preload values. The following
steps in the Blaise datamodels and VB programs are set up for this purpose:

1. Define an Auxfield in the Datamodel: PreLoadForTesting
2. In the Datamodel’s rules section, add the following code

PreLoadForTesting.KEEP

IF PreLoadForTesting = 1 THEN
{To enable preload modification during test}
Preload

ENDIF
Preload.KEEP

3. In the cfps2010test.exe VB program, the DEP parameters assign a value to this Auxfield.
/Q=PreloadForTesting=1.

All three steps are defined so that in the testing environment, users can change preload field values freely
because “PreloadForTesting=1” is fed to the database form. For the production environment, the preload
block is locked. This is because the field assignment is not included in the DEP parameters. This is an
elegant approach, because no code changes are required between testing and production to avoid potential
programming errors.

The CFPS testing system described above is eff
For example, Bug Log is not implemented; users need to put their testing comments in a separate Excel or
Word file. At the time development was taking place, CTT was not ready for CFPS, due to some con
between Chinese characters and CTT’s backend SQL Server database design. With some database
modifications and small code modification, CTT will be ready for testing Chinese projects.

3.2.5 Blaise Word and Math Tests in CFPS

CFPS2010’s Adult and Child instruments include tests for math proficiency and word recognition. One of
four sets of math tests and one of eight sets of word tests are randomly assigned to a selected respondent.
The following steps are implemented in the Blaise instruments:

207

Modify Blaise Preload in the Testing System

Some of the CFPS datamodels have complicated preload block structures. To ensure that different preload
ries can be tested, the testing system must enable testers to modify preload values. The following

steps in the Blaise datamodels and VB programs are set up for this purpose:

Define an Auxfield in the Datamodel: PreLoadForTesting
section, add the following code

PreLoadForTesting.KEEP

IF PreLoadForTesting = 1 THEN
{To enable preload modification during test}

In the cfps2010test.exe VB program, the DEP parameters assign a value to this Auxfield.

All three steps are defined so that in the testing environment, users can change preload field values freely
because “PreloadForTesting=1” is fed to the database form. For the production environment, the preload

s is because the field assignment is not included in the DEP parameters. This is an
elegant approach, because no code changes are required between testing and production to avoid potential

The CFPS testing system described above is effective. However some system enhancements are required.
For example, Bug Log is not implemented; users need to put their testing comments in a separate Excel or
Word file. At the time development was taking place, CTT was not ready for CFPS, due to some con
between Chinese characters and CTT’s backend SQL Server database design. With some database
modifications and small code modification, CTT will be ready for testing Chinese projects.

Blaise Word and Math Tests in CFPS

ild instruments include tests for math proficiency and word recognition. One of
four sets of math tests and one of eight sets of word tests are randomly assigned to a selected respondent.
The following steps are implemented in the Blaise instruments:

Some of the CFPS datamodels have complicated preload block structures. To ensure that different preload
ries can be tested, the testing system must enable testers to modify preload values. The following

In the cfps2010test.exe VB program, the DEP parameters assign a value to this Auxfield. i.e.,

All three steps are defined so that in the testing environment, users can change preload field values freely
because “PreloadForTesting=1” is fed to the database form. For the production environment, the preload

s is because the field assignment is not included in the DEP parameters. This is an
elegant approach, because no code changes are required between testing and production to avoid potential

ective. However some system enhancements are required.
For example, Bug Log is not implemented; users need to put their testing comments in a separate Excel or
Word file. At the time development was taking place, CTT was not ready for CFPS, due to some conflicts
between Chinese characters and CTT’s backend SQL Server database design. With some database
modifications and small code modification, CTT will be ready for testing Chinese projects.

ild instruments include tests for math proficiency and word recognition. One of
four sets of math tests and one of eight sets of word tests are randomly assigned to a selected respondent.

1. In the Family Confirmation instrument, we calculate which test group number a family would start

with: RandomNum := Random (8) + 1. This number and the person’s index number in the household
list table are preloaded in the Adult and Child instruments.

2. In the Adult and Child instruments, the calculations below are used to determine which test group is

used by the respondent. These calculations ensure that members in a family are assigned to different
test groups:

WhichMathList := (RandomNum + RespdentIndex
WhichWordList := (RandomNum + RespdentIndex

3. For the word recognition level test, an external look up database was utilized to store the word list

see the structure and data below, note that there 34 words in each group:

In the instrument, an array is used to store data read from the lookup database:

FOR I:=1 TO 34 DO
WordData.Search (I)
WordData.Read
IF WhichWordList = 1 THEN

Words [I] := WordData.Group1
ELSEIF WhichWordList = 2 THEN

Words [I] := WordData.Group2
ELSEIF WhichWordList = 3 THEN

Words [I] := WordData.Group3
…….

 ENDIF
xWordFill:=Words[I]
QWordTest [I]

ENDDO
The individual tests are represented in a field array. The fill xWordFill is determined with the above
logic.

208

the Family Confirmation instrument, we calculate which test group number a family would start
with: RandomNum := Random (8) + 1. This number and the person’s index number in the household
list table are preloaded in the Adult and Child instruments.

Adult and Child instruments, the calculations below are used to determine which test group is
used by the respondent. These calculations ensure that members in a family are assigned to different

WhichMathList := (RandomNum + RespdentIndex-1) Mod 4 + 1
WhichWordList := (RandomNum + RespdentIndex-1) Mod 8 + 1

For the word recognition level test, an external look up database was utilized to store the word list
see the structure and data below, note that there 34 words in each group:

the instrument, an array is used to store data read from the lookup database:

WordData.Search (I)

IF WhichWordList = 1 THEN
Words [I] := WordData.Group1

ELSEIF WhichWordList = 2 THEN
Words [I] := WordData.Group2

WhichWordList = 3 THEN
Words [I] := WordData.Group3

xWordFill:=Words[I]

The individual tests are represented in a field array. The fill xWordFill is determined with the above

the Family Confirmation instrument, we calculate which test group number a family would start
with: RandomNum := Random (8) + 1. This number and the person’s index number in the household

Adult and Child instruments, the calculations below are used to determine which test group is
used by the respondent. These calculations ensure that members in a family are assigned to different

For the word recognition level test, an external look up database was utilized to store the word list -

The individual tests are represented in a field array. The fill xWordFill is determined with the above

4. For the math proficiency test, html f

x_y.html, where x indicates the group number and y denotes the test number in the group. For
example, 2_10.html is for test number 10 in group 2. The benefit of using html files is that we ca
link images into the html files. For example, in the figure below, the math representation cannot be
presented by text. The technique here is to put the math image in an image file, then link the image
file to the html file. The image files can be genera
efficiency.

In the instrument, the file name is determined by the following code:

xQMathTest := str (WhichMathList)+ '_' + str(I) +'.html'

The field text in the math test is shown below. The xQMathText fill
concatenation above:

Database
Just as at the University of Michigan, CFPS2009 used SQLAnywhere as our sample management
database. Due to the availability of version 6 of SQLAnywhere in China, we had to update the database
SQLAnywhere version 11 with the help of our colleagues at Michigan. There were many problems
encountered due to the instability of SQLAnywhere version 11. The main issue is data synchronization.

With the above problems in CFPS2009, we decided to migra
effort for this migration was to develop a new data synchronization function that integrates the new
database platform and the sample management system.

209

For the math proficiency test, html files are used. The files are named with a specific format, i.e.,
x_y.html, where x indicates the group number and y denotes the test number in the group. For
example, 2_10.html is for test number 10 in group 2. The benefit of using html files is that we ca
link images into the html files. For example, in the figure below, the math representation cannot be
presented by text. The technique here is to put the math image in an image file, then link the image
file to the html file. The image files can be generated by a non-programming person to improve

In the instrument, the file name is determined by the following code:

xQMathTest := str (WhichMathList)+ '_' + str(I) +'.html'

The field text in the math test is shown below. The xQMathText fill is the file name from the string

Just as at the University of Michigan, CFPS2009 used SQLAnywhere as our sample management
database. Due to the availability of version 6 of SQLAnywhere in China, we had to update the database
SQLAnywhere version 11 with the help of our colleagues at Michigan. There were many problems
encountered due to the instability of SQLAnywhere version 11. The main issue is data synchronization.

With the above problems in CFPS2009, we decided to migrate the database to MSSQL2005. The major
effort for this migration was to develop a new data synchronization function that integrates the new
database platform and the sample management system.

iles are used. The files are named with a specific format, i.e.,
x_y.html, where x indicates the group number and y denotes the test number in the group. For
example, 2_10.html is for test number 10 in group 2. The benefit of using html files is that we can
link images into the html files. For example, in the figure below, the math representation cannot be
presented by text. The technique here is to put the math image in an image file, then link the image

programming person to improve

is the file name from the string

Just as at the University of Michigan, CFPS2009 used SQLAnywhere as our sample management
database. Due to the availability of version 6 of SQLAnywhere in China, we had to update the database to
SQLAnywhere version 11 with the help of our colleagues at Michigan. There were many problems
encountered due to the instability of SQLAnywhere version 11. The main issue is data synchronization.

te the database to MSSQL2005. The major
effort for this migration was to develop a new data synchronization function that integrates the new

 210

The new synchronization function operated smoothly at the earlier stage of 2010 interview. After two
months, synchronization became very slow and problematic when the database reached 3 Gigabytes. iSSS
and Michigan worked together to find a solution – regular database backup and weekly database clean-up.

3.3 BlaiseIS

CFPS used BlaiseIS in two systems – Data Verification and Sample Maintenance. The major issue with
our original design for BlaiseIS was preloading data into the Blaise database, which would lock the
database, preventing data saving after completion of a BlaiseIS interview.

After consultation with the Blaise developer, we found that the preload operation needed to be performed
before the sample is accessed from BlaiseIS’s web pages. After implementing this protocol, the database-
locking problem was resolved.

4 Conclusion
After just one and half years of using CAI and Blaise, the iSSS Center has gained tremendous experience.
Of course, there are many areas of improvement needed, such as:

• Capturing Journal data in BlaiseIS;
• Testing the BlaiseIS instrument (this will be accomplished by modifying the University of

Michigan’s CTT system as mentioned above);
• Implementing a CATI capability in future surveys.

In the process of implementing CAPI, the iSSS Center encountered many challenges and difficulties.
Working with colleagues at the University of Michigan, they met these challenges. The Blaise developer
also answered many questions, whether they were simple or complicated. And above all, iSSS
successfully completed the CFPS2010 survey. It is a landmark in Chinese social research history.

 211

Customizable .NET Event History Calendar: Looking to the
Future
Roberto V Picha, Daniel Moshinsky, Mecene Desormice, Seth Benson-Flannery, U.S. Census Bureau

1. Introduction

The U.S. Census Bureau’s survey of Income and Program Participation (SIPP) provides monthly
information about the nation’s income, wealth, and program usage. Currently, SIPP administers three
interviews per year to each sample member; each interview’s reference period covers the preceding four
calendar months.

In 2006, the Census Bureau initiated a SIPP re-engineering effort, a key component of which is a shift to
a single annual interview covering the preceding calendar year. An Event History Calendar (EHC) is
employed to help address the concern that the longer reference period may impact respondent recall.
To study the implications of the switch to the EHC method of data collection and the expansion of the
survey’s reference period, it was decided to conduct several field tests prior to the final production
implementation.

In the beginning of 2010, the first field test of the re-designed SIPP instrument was conducted. There
were 7,982 sample cases for this field test. This paper will describe some of the initial findings of the field
test and lessons learned as they relate to the use of the Re-engineered SIPP (ReSIPP) instrument and its
EHC for a second field test which is scheduled to take place in early 2011.

2. Background

ReSIPP contains some 40 sections. This includes sections relating to employment history, government
program use, health insurance coverage, assets, utilization of health care services and demographic
information. The ReSIPP is a survey that interviews and collects data for each household member,
directly or by proxy for people over 15 years old and by proxy for children under 15 years old. Not all of
SIPP questions are well-suited for being asked in the EHC.

It has been shown that the Event History Calendar method of interviewing is more effective than the
standard question list method in improving recall of dates of autobiographical events for most topics
(Belli et. al., 2001). Therefore, the types of ReSIPP sections that are asked in the Event History Calendar
contain questions involving the recall of dates for changes in status throughout the reference period. For
example, questions about the dates of job changes or changes in receipt of benefits are collected through
the EHC.

On the other hand, questions relating to topics such as assets pertain to the reference period as a whole
(e.g. “What was the combined value of your assets in the previous calendar year?”) and do not involve
recall of dates. Topics such as these have no transitions and are included outside the EHC section of the
instrument. Thus, these sections can still be asked in the standard question list method and can be
programmed in Blaise.

 212

3. Features of the 2010 Instrument

For the field test in 2010, we designed a customizable EHC, programmed in C# .NET, and invoked it
from Blaise 4.8 as a COM object DLL.

Twenty-five of ReSIPP's forty content topic sections were collected in the EHC. The interview began
with introductory and demographic questions collected in Blaise. This was followed by the launching of
the EHC. The respondent would answer the next 25 sections (containing several hundred questions) in the
EHC environment. Then, the respondent would return to the Blaise DEP to complete the remainder of the
interview.

Parameters from the Blaise DEP were passed into the EHC via the Blaise API, and data collected in the
EHC were saved via the API in the Blaise database. One common Blaise database was used to store all
data for the case. Question text, answer lists, topics, rules, and screen layouts within the EHC were
created dynamically based on the Blaise datamodel and several external metafiles. Nearly all survey-
specific content was described in the Blaise metafiles without rules – the C# EHC functioned as a user-
interface and a shell for displaying that content. This design is described in full detail in the paper
presented at the Riga Conference (Daniel Moshinky, Mecene Desormice, Seth Benson-Flannery, 2009).

The result was an easily customizable instrument that yielded a robust data collection system that not only
included all the features of an Event History Calendar, but also aimed to mimic the question flow and
error checking that our users have come to expect from Blaise instruments.

4. Results from the 2010 Field Test

Feedback from the 2010 field test has come from direct observations of live interviews, as well as from
written and oral comments from field representatives and their supervisors who were queried during a
number of debriefing sessions.

On the whole, the majority of debriefed interviewers have rated the Event History Calendar as a very
positive experience and have commented on how much they enjoyed the greater freedom and
conversational style of data collection with the EHC. The interviewers also offered a number of criticisms
and constructive suggestions of the 2010 tests.

4.1 Survey content

The overwhelming consensus of the Field Representatives (FRs) was that the survey was much too long,
with interview times of several hours being common. In addition, FRs complained that many of the
questions were repetitive and redundant. For example, many of the questions asked who in the household
was covered by various benefit and health insurance programs. When subsequent household members
were interviewed, the instrument re-asked those same questions again, instead of pre-populating the fields
based on the answers already collected. As a result of these shortcomings, respondent engagement waned,
with many respondents becoming restless, annoyed, and uncooperative. It became clear that the survey
will need to be shorter and “more intelligent” if it is to maintain the cooperation of the respondents.

4.2 Usability

Overall, contrary to our concerns about the FRs acceptance of this new technology, most did not report
any problems using the EHC. Of the FR comments made available to us, none commented about
problems within the Event History Calendar environment. Also, no problems navigating the EHC were

 213

reported to our technical support staff during the interview period. This does not mean that the EHC was
problem-free. It is more likely that the FRs focused their comments on the problem that was most
pressing to them – that of the survey length and content.

4.3 Use of EHC techniques

Because audit trails and audio recordings are still being analyzed, full results about the patterns of the
FRs’ use of EHC interviewing techniques to aid respondent recall are not available yet. However, early
feedback shows that the FRs were often confused about the meaning and purpose of certain topics such as
the “Landmarks” line (some suggest it be renamed to something more descriptive, such as “Life Events”).
The FRs used other topic lines for cross referencing more than Landmarks.

4.4 Data

Data output from the 2010 field test is still being reviewed. The initial results show good data integrity
resulting from our single-database design approach, but it is too early to draw any further conclusions
about the quality of the data collected using the EHC method.

In summary, the FRs we have debriefed strongly warn that the response rates in subsequent interview
waves will drop significantly if the length of the interview is not shortened.

5. New requirements for the next field test

A number of major requirement changes were proposed to us to accommodate FR feedback, reduce
respondent burden and improve data consistency. Firstly, the EHC reference period was to be extended to
the interview month – resulting in a reference period ranging from 13 to 18 months, depending on the
interview date. This was done in order to be able to feed data into subsequent interview waves that would
jump-start interviews and reduce the number of questions asked.

Secondly, access to a number of EHC topics that depend on the respondent’s income level would depend
on a few income screeners asked in the beginning of the interview. This reduces the number of questions
asked of respondents whose income is too high to be eligible for the programs involved.

Thirdly, common information would be copied across household members. For example, answers about
marital status would be copied from one spouse to the other, and answers about residency would be
copied across all household members who have lived and moved together as a unit.

Lastly, we were asked to create the “Time without a job” line that would be automatically computed
based on the dates provided on the “Job” lines– rather than asking the FR to enter the “begin” and “end”
months manually for respondents that reported being out of work as it was done in the 2010 field test.

In addition to these new requirements, we needed to address some technical shortcomings of the 2010
EHC instrument. As the number of questions asked in the EHC grew tremendously over the course of the
EHC development, so did the complexity of the universe statements and edit checks involved. For the
most part, the rules functioned as specified, but in some situations there were problems with rule re-
execution when the FRs backed up and changed values inside the EHC. With the ever-growing
complexity of requirements, our existing mechanism of using a metafile and some auxiliary functions (as
described in our 2009 IBUC paper) became quite difficult to maintain. It was decided that a much more
efficient and easier way would be to delegate all rule processing to the Blaise engine.

 214

At first, we attempted to display the topics’ detailed follow-up questions in the EHC by using the BCP
and the Blaise API to re-execute the rules, evaluate universe conditions, and determine the next field on
path. However, this approach would require us to store values to the Blaise database and force rules re-
execution after every single entry in the EHC. Considering the size of the instrument, this approach
carried a considerable performance burden.

We decided that the most straightforward approach would be to collect the “begin” and “end” months in
the EHC, while moving the follow-up questions into the DEP and simply toggling between the two
environments during the interview. Interview time would be reduced by expanding the use of screener
questions to screen out respondents who are not eligible for certain sections (e.g. people with household
income above a certain threshold), copying available data from one household member to another,
automatically creating periods of unemployment, and improving the way the user interface guides the
interviewer to the next action.

6. Design of the 2011 ReSIPP EHC

After the EHC is first launched, the user is taken to its main screen, which contains a list of topics and
timelines. After a topic is selected, the user is asked one or two screener questions, and asked to create a
spell. After the user creates a spell, the EHC main screen closes, and the user is taken to the DEP to
answer the detailed follow-up questions for that spell period. After the last question in that topic (or
earlier if a function key is pressed), the EHC appears on the screen again, and the user can either enter
another spell period for the same topic, or begin data collection for a new topic. Thus, whereas in 2010 all
of the follow-up topic questions were asked within the EHC, in 2011 they are being asked in the Blaise
DEP.

The graphic below shows the new EHC screen for the 2011 field test.

 215

The graphic below shows the EHC screen used in the 2010 field test.

6.1 Entering data in the DEP from the EHC

Within the ReSIPP instrument, each topic is stored as a block. (Depending on the topic, each of these
blocks may also contain additional blocks.) All of the topic level blocks are stored in our TEHC block.

Upon leaving the EHC to go into the DEP portion of the instrument, three auxfields are populated via
calls in the C# code. In the code presented below, these are showQs , which represents the topic selected
in the calendar; prdSelected, which represents the instance of that topic (and spell period) that has been
selected; and AskReturning, which is a flag set to “TRUE” if this is not the first time entering a
particular period and “FALSE” otherwise.

If both showQs and prdSelected have a value, then we are to ask the detailed follow-up questions for a
particular topic and period. In the case where AskReturning has been set to “TRUE,” we will first ask
an auxfield named Returning that only allows a value of “1.” The purpose of this field is both to notify
the user that they are about to enter a spell in which they have already entered data and to act as a gateway
into a previously entered spell. When we leave the EHC, we need an empty question on route to land on.
In the case where data have already been entered, Returning assumes that role. After Returning is
answered, or if AskReturning = “FALSE”, the user is taken into the TEHC block, passing in showQs
and prdSelected as parameters.

 216

Within the EHC block, these parameters (called IN_showQs and IN_prdSelected in the code below) are
used to place the spell level questions on route. Using this method, only one instance of one topic can be
on route at any time. (Please note that, although it is not displayed in the code below, when using this
technique, all of the spell level blocks need to have a KEEP statement associated with them.)

6.2 Returning to the EHC from the DEP

When the spell period level detailed questions have been answered, the interview is directed back into the
EHC calendar. This is done by using an event to call a COM-object DLL associated to fields at the end of
the block of detailed questions.

 217

Because each spell period may contain many different variables that could be the last one on route, we
opted to create a new shared EndSpells block that comes on route at the end of detailed questions for all
topics. Within this new block, we have three questions that could be the last one on route (e.g. “Do you
have any more periods to report?”). The last variable triggers the event to call the EHC DLL, which will
determine whether to open up the EHC calendar or do nothing. If instrument logic dictates that the EHC
is to be launched after the first question, then code within the DLL control will launch the calendar.
Otherwise – if we are not ready for the calendar to be launched -- the code within the DLL control will
simply return control back to the DEP without launching the calendar, and the focus will go to the next
field on route. By coordinating the Blaise code and the C# code, we are assured that we always return to
the EHC calendar at some point in this new block.

After the EHC is re-launched, DEP fields are used to guide the focus on the EHC screen and help guide
the interviewer’s transition. For example, if the interviewer indicated in the DEP that there are more time
periods to report within the current topic, the focus is guided to the EHC field at which a new period can
be created. On the other hand, if it was indicated that there are no more periods to report (or if the entire
reference period has been covered), then the focus is guided to the calendar grid and onto the subsequent
topic. Still, FRs maintain the power to navigate freely within the EHC and can enter any topic at any time.
The intention is to aide the flow of the interview and to reduce the number of FR key strokes while
preserving the flexibility to enter data in a free form way consistent with the conversational style of data
collection within the EHC.

The transfer of follow-up questions to the DEP offers several key advantages. Firstly, the full power of
the Blaise rule-checking can be used to route the instrument. Secondly, the inclusion of the EHC
questions within the DEP provides users with a consistent user interface and makes the instrument appear
more seamless and easier to use. In addition, the DLL launches quicker than it did in the 2010 instrument
because less data now needs to be passed via the API.

7. Challenges

7.1 Transition to the new EHC Design

From a technical standpoint, the transition to the 2011 approach was fairly painless. All of the Blaise
fields and blocks already existed in Blaise and were being read in by the EHC in the 2010 instrument.
Rules had to be added, and the EHC had to be modified to return to the Blaise DEP rather than launch a
window to ask the follow-up questions. The transition took us no more than a couple of weeks.

This was achieved because of the loosely coupled object-oriented design of the EHC, and our focus on
making the EHC flexible and customizable. Because all of the instrument content had been driven by the
Blaise database and the metafiles, very minimal changes were needed to accommodate the new approach.
The balance of our development time has been spent incorporating additional requirements, making
enhancements to the GUI of the EHC, and testing. A number of technical problems had to be overcome.

The graphic on the next page shows the Residency topic detail questions as they appeared in the EHC
used for the 2010 field test. Note that the country combo box covered some other items below it. In order
to browse through the combo box, the FR had to select the item again which was always difficult.
Another issue we encountered was selecting the respondent’s country as part of his address. In most
cases this was the United States, and that option was not available as the first option.

 218

The graphic below is the Blaise side of the data collection for the 2011 field test. A lookup table is now
used to display countries list defaulting to the United States as the first option displayed.

 219

7.2 Copying data

One of our biggest challenges revolved around copying data, both to populate data and to populate
enumerated fields. For example, in our topic section on residency in our 2010 instrument, we were
copying address information to individual fields (detail questions regarding the current address), as well
as copying the entire address to an enumerated list so subsequent respondents could simply choose an
address from a dropdown list rather than retype all the information. In 2010, this was done using a
combination of Blaise and C#. However, the dropdown list was not as user friendly as expected. As a
result, FRs were instructed to handle these items with extra care (extra keystrokes) since the dropdown
automatically expanded as soon as the focus was active for this question blocking some other questions
on route and confusing the FRs at times.

For our 2011 instrument, we have chosen to take advantage of Manipula for these tasks - evoking events
in the DEP to call Manipula programs to populate our data. Our Manipula program is required to loop
through numerous arrays, unduplicating addresses to populate an enumerated answer list to mimic the
dropdown list we had in C#. We had concerns that this may add considerable time whenever this was
called, but we found that the program worked quickly enough where no significant delay was detected.
Impressed by the speed of this, we added another Manipula program, called more frequently, to populate
data that would remain the same from person to person in a household (e.g., fields based on the
residence). Again, we found that this did not create a significant delay to the program, and we have
extended the use of this routine to many areas of the instrument.

7.3 Look-up tables

Another new requirement was to use lookup tables working in conjunction with one another to narrow
choices down. The best example of this is our state and county lookup tables. When a state is chosen
from a lookup table, we create another lookup table consisting of counties (or their equivalents) from that
state. Because of the familiarity with the C# code, we opted to build these in C#, although we could have
achieved this programming in Manipula had we opted to do so.

7.4 Audit Trail

In the 2010 instrument, we had one audit trail file for the DEP portions of the instrument and another
audit trail file for the EHC portion of the program. Because the interview only transitioned to and from
the EHC a few times per interview, it was relatively easy to reconstruct the flow of the instrument even
with two audit trail files. However, in the 2011 instrument there will be many more transitions between
the EHC and the DEP, and analyzing two audit trail files would not be practical.

To rectify this, we are now only creating one audit trail file. In order to do this, we have switched the
"CloseFile" toggle in the .aif file so that the audit trail file is opened and closed every time a line is
written to it (i.e. CloseFile=1). This removed the Blaise generated lock file after every Blaise entry,
meaning that there is now nothing preventing us from writing to the Blaise generated audit trail file when
we are in C#. Therefore, we are still able to use the techniques we were using to write to a C# audit trail
file in our 2010 instrument, but we are now writing directly to the Blaise generated audit trail file.

In the future, we are planning to use a Manipula script in conjunction with the CloseFile setting at various
points during the interview, and write additional information (i.e. paradata) to the audit trail file, such as
the FR identification code, respondent name, outcome codes, and so on.

 220

8. Conclusions

In the enhancements made for the upcoming 2011 field test, we worked to help our sponsors address the
biggest concerns of the 2010 field test – that the survey was too long, and that it contained too many
redundant questions. We have tried to create a smarter, more responsive and agile instrument with the
help of the Blaise DEP and Manipula, using the Event History Calendar as a user-friendly shell for
graphically selecting chronological information.

9. Disclaimer

This document is to inform interested parties of ongoing research and to encourage discussion of Blaise
instrument design issues. The views expressed are those of the authors and not necessarily those of the
U.S. Census Bureau.

 221

Security Considerations in Blaise Environments: Options and
Solutions

Mike Rhoads and Ray Snowden, Westat

1. Introduction

IT Security has become an increasingly important and costly component of survey research operations.
This trend will continue for the foreseeable future due to the following general factors:

• The number and variety of applications and devices that are used to support survey data

collection is continuously increasing as vendors develop new tools and technologies, such as
smart phones, iPads, and faster and more reliable wireless communications, which can
significantly improve the efficiency or reduce the cost of data collection. Each new technology
exposes additional potential security risks, which must be understood and properly mitigated.

• The Internet has become the standard mechanism for business data communication and, given its

open accessibility to the public, exposes confidential data and valuable IT assets to a wide variety
of continuously evolving threats.

• The U.S. government, other regulatory bodies, and clients have become increasingly aware of the

importance of IT security and have promulgated a steady flow of new security related regulations,
guidelines, and best practices. The passage and implementation of the Federal Information
Security Management Act of 2002 (FISMA) has created significant new compliance and
reporting requirements for Federal systems.

Although the technologies, risks, and regulations continue to change, many of the scenarios that make
security an important business concern remain very familiar. The following are just a sample of the
common concerns that these regulations and controls are intended to address:

• A field system with personally identifiable information (PII) is lost or stolen

• Unprotected systems are exploited by a new virus

• Hackers exploit a web site and delete or deface valuable data

• An interviewer copies PII data to a flash drive which he loses

• A new OS security patch is installed and brings down 400 laptops for a week

• Employees are using work systems for Internet gambling

• An interviewer is at a respondent’s house at 8:00pm and forgets her password

• Authority to Operate (ATO) is denied for an important project due to missing security controls

Given the scope of IT security, the variety of threats to be guarded against, and the number and
complexity of the various regulatory requirements, IT security can seem to be an overwhelming

 222

undertaking, particularly if one assumes that the objective is the achievement of a perfectly secure system
and the elimination of all risk. Although the requirements and guidelines often appear to be unnecessarily
burdensome and operationally inefficient, they are intended to reinforce a systematic and comprehensive
approach to the planning, implementation, and monitoring of security controls to reduce the risks to an
acceptable level, to detect incidents quickly when they occur, and to minimize the associated harm.

Blaise is an important component of a survey system and, as such, must provide security-related features,
support secure development and operation, and be installed and operated in a secure environment. The
next two sections of this paper summarize FISMA and the Federal Desktop Core Configuration (FDCC).
Next, we look at some aspects of Blaise that specifically relate to IT security. We conclude by discussing
security considerations for Blaise surveys on specific platforms. Although the specific details of FISMA
and FDCC will be primarily relevant to U.S. Government agencies and contractors, the former in
particular spells out a number of general principles that may well be useful for planning purposes even
outside the United States.

2. FISMA as a Security Framework

2.1 Overview

Although numerous security regulations and frameworks have been developed and may impose specific
requirements, FISMA has created a broad framework for IT security definition and implementation used
by the Federal Government. Through the work of the National Institute of Standards and Technology
(NIST), specific concepts, procedures, and guidelines have been developed and are experiencing
widespread use. Given the broad scope of FISMA, these concepts and practices are relevant and
applicable to many IT systems, even those not under governmental oversight, and will be used in this
paper as a representative approach to IT security.

FISMA is the Federal Information Security Management Act of 2002. It was passed as Title III of the E-
Government Act (Public Law 107-347) in December 2002. FISMA requires each federal agency to
develop, document, and implement an agency-wide program to provide information security for the
information and information systems that support the operations and assets of the agency, including those
provided or managed by another agency, contractor, or other source. These agency programs are required
to include the following types of activities:

• Develop an inventory of all information systems used by the agency, complete a risk assessment,

and classify systems in terms of the harm resulting from accidental or malicious modification,
damage, or loss in the data or supporting systems.

• Implement managerial and operational procedures and technical security controls that reduce the

risks to an acceptable level in a cost-effective manner while satisfying any mandated security
requirements.

• Provide training to staff and contractors about the importance of security, the risks to data and

systems associated with their activities, and the policies and procedures that are to be followed.

• Perform periodic monitoring and testing, no less than annually, to ensure that policies and

procedures have been implemented and are executed properly.

 223

• Implement procedures to continuously review and evaluate security practices and identify and
remediate deficiencies.

• Implement policies and procedures for detecting, reporting, and responding to security incidents.

• Implement plans and procedures to ensure continuity of operations for information systems that

support the operations and assets of the agency.

2.2 Security as Defined by FISMA

FISMA defines the term “information security” as protecting information and information systems from
unauthorized access, use, disclosure, disruption, modification, or destruction in order to provide the
following general safeguards:

• Confidentiality – restricting access to information to authorized users only. This is a central

security concern in survey research projects where respondent data often includes highly
confidential personal information and PII. Unauthorized disclosure of confidential data is
everybody’s top concern.

• Integrity - guarding against the unauthorized modification or destruction of information due to

either accidental or malicious actions. This is another important aspect of security in survey
research projects where survey data is generally time-consuming and expensive to collect and the
credibility of analytic findings depends on a high degree of confidence in the quality of the
underlying survey data.

• Availability - ensuring timely and reliable access to and use of applications and information.

Consistent and reliable access to survey systems in CAI projects can be particularly critical since
response rates are extremely important. Once a respondent is contacted and ready to provide
information, the CAI systems must work.

Confidentiality, integrity, and availability of information and systems are the three central objectives of
FISMA and these are also critical issues for any survey research project.

2.3 NIST Activities in Support of FISMA

The FISMA regulation also directs the National Institute of Standards and Technology (NIST) to develop
standards, guidelines, and security requirements to be used in the development and implementation of
agency security plans. The work of NIST to support FISMA has been organized as the NIST FISMA
Implementation Project.

In support of FISMA, NIST has developed an integrated Risk Management Framework which brings
together all of the FISMA-related security standards and guidance to promote the development of
comprehensive and balanced information security programs by agencies. The name Risk Management
Framework is used because the key organizing principle of FISMA and the focus of the framework is to
identify and understand risk as a function of two related considerations: 1) the magnitude and prevalence
of the threats to confidentiality, integrity, and availability that the IT system will be exposed to; and 2) the
harm resulting from a loss of confidentiality, integrity, and availability to the IT system.

The RMF consists of the following 6 steps:

 224

1. Categorize the information system and the information processed, stored, and transmitted by that

system based on an impact analysis. NIST Publication FIPS 199 provides guidance around the
categorization of information systems using an approach that assigns a security level to each
system of low, moderate, or high.

2. Select an initial set of baseline security controls based on the information system’s security

categorization, tailoring and supplementing the baseline based on organizational assessment of
risk and local conditions. NIST Publication SP 800-53 provides a detailed list of management,
operational, and technical controls that are considered requirements for systems for each of the 3
security levels.

3. Implement the security controls and document how the controls are deployed within the

information system and environment of operation. The documentation that is developed in this
process and generated as the system is operated are key artifacts for the remaining steps in the
RMF.

4. Assess the security controls using appropriate procedures to determine the extent to which the

controls are implemented correctly, operating as intended, and producing the desired outcome
with respect to meeting the security requirements for the system. This is often completed by a 3rd
party security organization and involves examination of records, interviews with staff, server
scans, etc.

5. Authorize information system operation based upon a determination of the risk resulting from the

operation of the information system and the decision that this risk is acceptable. A security
authorization package consisting of various documents including the system security plan (SSP),
the results of the security assessment, and a plan of action and milestones (POAM) is submitted
to a designated individual at the agency. An Authority to Operate (ATO) is the official
designation by the agency that the risks of operating the system are understood and acceptable
and that the system may be placed into production.

6. Monitor and assess selected security controls in the information system on an ongoing basis,

which includes documenting changes to the system or environment, conducting security impact
analyses of the associated changes, and reporting the security state of the system to appropriate
organizational officials.

NIST Publication SP 800-53 provides a catalog of several hundred management, operational, and
technical security controls and indicates the applicability of each to the 3 security levels (low, moderate,
and high). Although selecting, implementing, and documenting these controls seems at first to be a very
daunting process, SP 800-53 does provide a structure and degree of comprehensiveness that can be very
helpful in the development of a security plan, which is often characterized by the troublesome
combination of a very broad scope and numerous complex details.

The security controls that are defined in SP 800-53 are organized into 17 security-related areas. These
controls can be classified into the following broad groups:

• Security policies – formal statements published by an organization which establish the

framework in which security controls are defined, implemented, and enforced. Security policies
are established by the organization’s management and should reflect the importance to the
organization of sound security practices.

 225

• Human controls – policies and procedures which describe required, acceptable, and
unacceptable behavior in the secure use of systems and data. This is typically reinforced through
formal training and documentation. Also included are personnel security controls, covering
position categorization, screening, transfer, access agreements, and termination.

 • Physical controls – steps that are taken to secure and protect information assets and the physical

environment within which sensitive data and systems are installed and operated, including locked
cabinets, secure rooms with controlled access, fire suppression, etc.

• Technical controls – technical features and practices that are employed to protect data and

applications such as user authentication, platform policy settings, encryption technology,
backups, etc. These controls usually employ features of the network, OS, application systems, and
specialized COTS products.

• Systems management – procedures to manage the acquisition, development, deployment, and

operation of new systems, and to manage changes to these systems over time using security
standards and principles.

• Auditing and monitoring – procedures and practices employed to actively check for and log

security vulnerabilities and incidents and to verify that required security controls are in effect and
functioning properly.

• Systems continuity – procedures and resources that are defined and implemented in order to

ensure that the necessary availability of critical systems and data will be maintained in the event
of technical, platform, or facility failure.

3. The Federal Desktop Core Configuration (FDCC)

As part of its overall IT security policies, the U.S. Office of Management and Budget (OMB) mandated
the Federal Desktop Core Configuration (FDCC), which is a security configuration designed to
standardize the configuration of desktop computers used by U.S. Government agencies. The FDCC was
initially announced in a memorandum (M-07-11) issued by OMB on March 22, 2007, with agencies
directed to comply by February 2008. On February 28, 2008, Part 39 of the Federal Acquisition
Regulation (FAR) was modified to require that information technology acquired by the government
comply with relevant security configurations. A subsequent OMB memorandum issued in August of 2008
(M-08-22) provided additional information about procedures that IT providers need to follow in order to
certify that their products comply with the FDCC requirements.

On May 7, 2010, the U.S. government’s CIO Council announced the United States Government
Configuration Baseline (USGCB). Under this initiative, security configuration baselines were released
(Major Version 1.0.x.0) on September 24, 2010 for Windows 7, Windows 7 Firewall, and Internet
Explorer 8. USGCB appears to be carrying out the same types of activities as were previously performed
under FDCC, which it officially replaces. However, FDCC settings and requirements for Windows XP
and Windows Vista will remain in effect unless and until USGCB issues its own settings for these
platforms.

Since the Blaise development environment runs on Windows desktop computers, it is required to meet
these guidelines. Federal agency staff needing to run the development environment on a desktop may be

 226

required to provide assurance of FDCC compliance either as part of the procurement process, or when
they request government IT staff to actually install the software.

Westat, in its role as the licensor of Blaise software in North and South America, arranged with a third-
party provider of assessment and certification services to perform the necessary validation testing for
Blaise 4 under Windows XP and Windows Vista. This testing confirmed that Blaise complies with all
FDCC requirements. Specifically:

• The desktop components of Blaise software are fully functional and operate correctly as intended

on systems using the FDCC under Windows XP and Windows Vista.

• The standard installation, operation, maintenance, update, and/or patching of the Blaise desktop

components does not alter the configuration settings from the approved FDCC configuration.
Blaise uses the Windows Installer Service for installation to the default "program files" directory
and is able to silently install and uninstall.

• Blaise applications designed for typical end users are able to run in the standard user context

without elevated system administration privileges.

More information regarding Blaise compliance is available at
http://www.westat.com/westat/statistical_software/blaise/fdcc_compliance.cfm.

4. Aspects of Blaise Relating to Security

Effective IT security measures take advantage of multiple layers of security, such as platforms and
infrastructure, physical facilities, and organizational policies and procedures. A Blaise application is one
of these layers. The existence of these other layers means that Blaise itself does not have to provide for
every aspect of security – as we shall see, many important security practices and techniques are relatively
independent of the specific software application involved. However, application software must be able to
be gracefully integrated within the overall project security framework.

Fortunately, Blaise is a mature and well-designed data collection product that is highly suitable for
operation in a secure environment. Numerous Blaise surveys for U.S. Government clients have
successfully undergone certification and accreditation (C&A) and have been authorized for operational
use. As noted in the prior section, Blaise also complies with all FDCC requirements.

Blaise also fits well into the set of security controls that relates to systems management, including
development practices and change management. Tools such as Microsoft Visual SourceSafe can be
effectively used for version control of Blaise code files. Software testing is also a critical component of
sound development practices, and this topic has been addressed in many IBUC presentations.

4.1 A Blaise Coding Technique to Maintain Confidentiality

Although most aspects of security and confidentiality for Blaise surveys are typically implemented in
security layers beyond the Blaise instrument itself, there is one relatively common situation involving
confidentiality that can be effectively addressed within the rules of the Blaise data model. This occurs in
CAPI instruments where some sections may elicit particularly sensitive information, such as participation
in antisocial or even illegal activities. Since respondents may be reluctant to admit such behavior directly

http://www.westat.com/westat/statistical_software/blaise/fdcc_compliance.cfm

 227

to an interviewer, a commonly-used technique in such situations is to have those sections of the interview
be self-administered, with the laptop turned away from the interviewer but facing the respondent. This
allows the respondent to operate the laptop and then turn it back to the interviewer after finishing the
sensitive set of questions.

When this method is employed, it is important for the interviewer to be able to truthfully assure the
respondent that the interviewer will not be able to look at the answers that the respondent has recorded.
The Blaise developer can accomplish this by inserting a “wall” into the data model, which will prevent
the interviewer from going back and seeing the respondent’s answers. The Blaise Online Assistant uses
the following code snippet to illustrate this method.

RULES
 ThankYou.KEEP
 RespondentIntro
 NEWPAGE
 IF ThankYou = EMPTY THEN
 Ticket
 SmallOffence
 MajorOffence

 ELSE
 Ticket.KEEP
 SmallOffence.KEEP
 MajorOffence.KEEP

 ENDIF
 ThankYou

This code ensures that once the “Thank You” item has been presented to the respondent after having
answered a sequence of private or sensitive questions, those questions and the populated answers can no
longer be viewed. It works as follows:

This code uses the field (ThankYou) immediately following the sensitive questions to control the flow.
The first time through, when the respondent is using the laptop, this field is empty, so the sensitive
questions are asked. After responding to the ThankYou item, the laptop is returned to the interviewer. If
the interviewer attempts to move backwards in the instrument, the rules branch around the sensitive
questions, since the ThankYou item has already been completed. The KEEP method is used with
ThankYou so that the rules can access the value that has been entered, and also in the Else branch of the
If-Then-Else so that the values of the sensitive fields will be stored in the final Blaise data even if the
interview backs up through the instrument.

For a complete code example illustrating this technique, see the keepdemo.bla sample file, which is in the
Blaise sample library under \Datamodel\Basics.

4.2 Ability to Use Relational Databases for Data Storage

One important security feature in recent versions of Blaise is Blaise Datalink, which allows Blaise to
utilize Microsoft’s OLE DB technology to store its data in relational databases such as Oracle and
Microsoft SQL Server. Most enterprises have a variety of established security practices for database

 228

security, such as locating the database servers in special security zones. Using Datalink to store Blaise
survey data takes advantage of these existing security procedures.

5. Security Considerations for Web-based Blaise Surveys

Applications that run on the Internet can be especially vulnerable from a security standpoint. There are
many network and platform features that must be implemented to securely operate a web site accessible
over the public Internet. This includes an appropriate network configuration with adequate firewall
protection, Windows servers that have been hardened for use as web servers, timely software patching,
virus protection, etc. This section discusses some of the important security considerations for web-based
surveys.

1. One of the most basic yet important decisions to be made is the format to use for storing the

incoming survey data (as well as any necessary preloaded data). The ability of Blaise to store its
data directly into an RDBMS is especially important in a web environment, since enterprises are
likely to locate their database servers in special security zones that are not directly connected to
the public Internet. Using Datalink to store the Blaise Internet survey data in an enterprise
database takes advantage of all of the security procedures that have already been established for
the database servers, thus avoiding the need to implement customized methods to protect native
Blaise data files.

2. User authentication and authorization is another important aspect of security for Blaise Internet

surveys. Authentication is particularly complex due to the number of possible techniques and
tradeoffs. The Blaise Online Assistant provides an extensive discussion of security considerations
for web surveys, including several possible methods of implementing user authentication.

 A difficult issue for web-based surveys specifically can be the communication of authentication

credentials to the end users. In some cases, where the sample for the survey is open, users may be
asked to create their own login and password at a self-registration page of the site before taking
the survey. In many cases however, the sample population is restricted and identified in advance.
In order to implement an authentication mechanism that is secure and maintains a strong
password, it is necessary to securely communicate an account and password to each user, and
have the user change their password at their first login.

Following the standard security principle of least privilege, users and applications should be
authorized, through application, database, or OS permissions, to have access only to the specific
resources required to complete the survey. This will help reduce the scope of damage that may be
caused due to the activities of a malicious user or malfunctioning application.

3. Web-based surveys programmed in Blaise can be accessed over an encrypted connection using
Secure Sockets Layer. SSL is implemented by acquiring, installing, and configuring a server-side
encryption certificate under IIS and accessing the web site from the browser using the HTTPS
protocol. Once this is done, IIS and the browser establish an encrypted connection over which all
data is communicated. This technique protects the confidentiality of the data between the end-
user computer and the web server.

 When setting up SSL it is important to ensure that all potentially sensitive data is encrypted

including user credentials, case management data, and the survey itself. SSL should be configured
as the required protocol to eliminate the possibility that an end user can mistakenly access the site

 229

without SSL in effect. Also, the SSL encryption mechanism chosen should be FIPS 140-2
compliant.

6. Security Considerations for CAPI Blaise Surveys

CAPI surveys also present a number of unique security considerations, due to the characteristics of the
CAPI environment such as the use of single-user systems, disconnected and connected operations, and the
need to synchronize data and software with central systems.

The following are some key security considerations and controls when using Blaise in a CAPI study:

1. Encryption – encryption plays a larger role in a CAPI study than for the Internet, due to the fact

that sensitive survey data are stored on the field device and must be communicated back to the
central system in a secure fashion. There are three different areas where encryption technology
should be considered:

• Full disk encryption – in 2006 the OMB mandated that sensitive data stored on mobile

devices must be encrypted. The use of a full disk encryption mechanism ensures that all
data stored on a device are encrypted before being written to the hard drive. The data are
only decrypted when an authorized user enters valid user credentials and logs into the
device. This protects instances where a laptop is lost or stolen by eliminating the
possibility that the hard drive cannot be removed from the device and simply connected
to another computer.

• File encryption – data files sent between the central system and field devices can also be

individually encrypted before being sent. This provides another level of protection
beyond the encryption of the connection itself and can further protect the data as it is
stored on the field device or at the central system. Often the vendor that provides the full
disk encryption technology can also provide an API that can be used to programmatically
encrypt and decrypt data files.

• Encrypted connection – as noted earlier, when connecting to the central system to

synchronize data, SSL or some other encryption mechanism can be used to encrypt all
data sent between the central office and the field device. If wireless connections will be
used, make sure that adequate protections are in place to protect the data during wireless
transmission.

When using full disk encryption or file-based encryption, it is very important to ensure that the
encryption keys are safeguarded, as they represent the only mechanism to access the encrypted
data. Often the encryption package will provide master encryption keys which can be used to
recover data if the primary keys are lost. When choosing encryption solutions for any of these
areas, compliance with FIPS 140-2 should be a consideration.

2. User authentication – as with web-based surveys, user authentication in a CAPI environment is
a critical security control and presents some unique issues.

Providing an account and password to log into the field device is one of the primary mechanisms
for protecting the applications and data on the device. The entry of a valid account and password
“unlocks” the full disk encryption, if it is used, and also provides access to the case management

 230

program, instrument data, and other field applications and data (e.g., e-mail) which may be
installed on the device. It is essential that the user credentials and login process are configured
and managed securely including:

• The use of a strong password or pass phrase. This includes a minimum length, minimum

complexity, an expiration period, and limits on password reuse.
• Obscuring the password on the screen when it is entered.
• Disabling the account after a certain number of failed attempts to login.
• Displaying a password-protected screen saver after a period of inactivity.
• Logging all failed login attempts.

One of the most important security controls with respect to authentication is user training. Users
must be taught the importance of security and the need to keep the password secret. This means
not writing it down where it can be easily found, not revealing it to friends or family members,
not allowing respondents to see it being typed, etc.

Another issue for CAPI projects is having a procedure by which field staff can quickly have
accounts and passwords reset by the home office in the event of a forgotten password. This may
include connecting to a help site or the configuration of a single-use emergency account. Security
should be configured to provide necessary protections without substantively interfering with the
productivity of the field staff.

3. Platform controls – a laptop connected to the Internet for data synchronization to the home
office is exposed to Internet threats from two sources: 1) other Internet users or devices that may
attempt to connect to and access or damage data; and 2) web sites that field staff may voluntarily
connect to that include malicious code. For this reason it is important to approach the
configuration of the field device as one would approach the configuration of a web server. The
following are the types of controls that should be considered:

• Disable any services under Windows that are not absolutely necessary to running the

survey applications. This is another interpretation of least privilege and will eliminate
potential security vulnerabilities that are not needed.

• Adopt the use of one of the standard Windows security templates that are available from

NIST and other security organizations. These templates include default definitions for
numerous obscure system settings for which the default setting is unacceptable. It is
important to test the full operation of the survey software with the template to make sure
that all required services and features function properly.

• Install and configure a firewall on the field device to limit the ports over which outbound

requests can be made and to block any unauthorized attempts to connect to the field
device. If possible, limit the external web sites to which a field device user can connect.

• Install and use anti-virus, anti-spyware, anti-malware tools.

• Disable USB ports or any other external data devices that are not required by field

operations.

The list of the specific controls and protections which may be required continues to develop as
new devices and new threats emerge. Suites of security tools are available from various

 231

companies that can provide a full range of protections that are controlled and monitored through a
single integrated administrative and reporting interface.

4. Configuration management – another unique challenge for CAPI projects is the requirement to
manage numerous, sometimes hundreds or thousands, disconnected devices in the field. Given
the very dynamic nature of security threats and the survey project operation it is essential that
tools are in place to manage and monitor the configuration of the field platform over time.

The following types of configuration changes are common:

• OS patches – new security threats are identified every day and many of them are the

result of some vulnerability in the built-in OS controls. Security patches to the OS are
generated periodically or as needed by the OS vendor. Patches which correct serious
errors should be evaluated for immediate dissemination to the field.

• Security application signature files - anti-virus software, intrusion detection software, and

other anti-malware applications use signature files and other configuration information to
detect and protect against threats. Updates to configuration files for this type of software
should be updated at each connection.

• Corrections or updates to survey instruments and case management applications are

sometimes necessary to correct a programming error or add some critical new
functionality.

• Updates to the platform configuration or other security controls may be required either to

protect against a newly discovered vulnerability or to allow a function that had initially
been restricted.

Introducing change to devices already active in the field is itself a source of additional risk to the
confidentially, integrity, and availability of the field devices and data. A mistake in a system
update can expose unintended vulnerabilities, damage data or introduce new bugs, or render the
devices inoperable. Changes of these types must be designed carefully and tested thoroughly to
ensure that they work properly, fail gracefully, and roll back appropriately. It is also very
important to keep a log of which systems have received updates to make sure that all systems are
maintained at the current configuration and to help troubleshoot problems when they might arise.

7. Other Security Considerations

As we have seen, web-based and CAPI surveys involve some unique areas of vulnerability, based largely
on their physical exposure in the former case and electronic exposure over the Internet in the latter.
Traditional, centralized CATI surveys do not involve either of these vulnerabilities. Of course, this does
not mean that security is not a concern for such studies, but only that these particular risks are not an
issue.

As with other platforms, however, evolving technologies and capabilities bring additional risks into the
picture. With CATI, the most significant recent development has been the increasing use of home-based
interviewers. This brings back the issue of remote access, as well as raising new risks due to the less-
controlled physical environment.

 232

A number of strategies can be employed to mitigate these risks. In contrast to CAPI, there exists the
option of storing all data centrally, due to the existence of a persistent Internet connection for the
duration of each interview. Measures such as background checks, interviewer training, and interview
monitoring to reduce the risks of inappropriate interviewer behavior can be employed. If Blaise Internet is
chosen as the data collection platform, similar techniques can be adopted as for other web-based surveys.
Alternatively, you can use appropriately-secured platforms such as Citrix.

An integrity consideration for even centralized CATI surveys (and CAPI surveys as well) is making sure
that only one interviewer “owns” a case at any given time. The possible risks here range from respondent
annoyance (if she is called a second time after already completing an interview) to data loss (if completed
data are overwritten by blank data from an interviewer who was incorrectly assigned the same case).

Nor does data collection always operate on a single platform: multimode survey efforts are becoming
increasingly common. As Hart and others discuss in their 2004 paper (Hart et al., 2004), such efforts
involve a number of challenges for IT security, as well as for other aspects of the project.

Finally, the need for IT security does not end once an interview has been completed and transmitted to the
home office. As long as survey data are being stored, processed, and analyzed, they need to be protected
by a variety of human, technical, and physical controls. Encryption may be employed or even required for
data storage on the home office network (Mamer, Hart, and Rozen, 2007). Nor can you assume that you
are done with security once the data are no longer stored online; you may want to consider encrypting
your backup media, and you certainly need to pay attention to retention periods and destruction dates.

8. Conclusion

IT Security in survey projects addresses a very broad set of concerns intended to reduce the risks to the
confidentiality and integrity of survey data and the availability of survey support systems. In addition to
the many actual vulnerabilities and threats that must be identified and addressed, there may also be a
significant amount of supporting documentation and related activities necessary to meet the evolving
regulatory requirements.

FISMA and the supporting NIST guidelines and publications are examples of a comprehensive and robust
approach to IT Security management. Although FISMA is intended to regulate U.S. Government systems
development, the concepts and processes address common security issues and can be used in a variety of
situations.

The different survey modes and platforms share many common security issues but also present unique
problems reflecting the specific configuration of devices, users, and data. Various security controls and
techniques can be configured and combined to address these unique issues.

Blaise is a central IT component to many survey operations. Blaise is a mature and proven product that
provides a number of security-related features and can be integrated and operated as part of a secure end-
to-end solution.

 233

9. References

Hart, Leonard, Amanda Foster-Sardenberg, and Yuki Okada. “System Implementation for a Blaise
Multimode Web, CATI and Paper Survey.” Proceedings of the 9th International Blaise Users Conference.
September 2004.
< http://www.blaiseusers.org/2004/papers/25.pdf> (August 31, 2010)

Mamer, John, Leonard Hart, and Josh Rozen. “Encrypting Blaise Data on Network Servers.” Proceedings
of the 11th International Blaise Users Conference. September 2007.
< http://www.blaiseusers.org/2007/papers/A1%20-%20Blaise%20Encryption.pdf> (August 31, 2010)

http://www.blaiseusers.org/2004/papers/25.pdf
http://www.blaiseusers.org/2007/papers/A1%20-%20Blaise%20Encryption.pdf

 234

Computer Assisted Recorded Interviewing (CARI): Experience
Implementing the New Blaise Capability

Rick Dulaney and Wendy Hicks, Westat

I. CARI: What and Why

Computer-Assisted Recorded Interviewing refers to the collection, management, coding and other uses of
sound recordings taken during data collection. Sophisticated CAPI and CATI software packages have
combined with widespread availability of recording capabilities on laptop computers to produce a wealth
of supporting survey data in the form of sound files. In particular, Blaise version 4.8.2 contains full
support for CARI in the Blaise system.

The advent of CARI over the last several years allows field managers, methodologists, coders and others
to be present at the moment of data collection in a way never before possible. Listening to the interaction
between interviewer and respondent provides important new insight – into the instrument design, into
training needs, and into the quality of the data collected. Listening to that interaction while seeing the
data entered by the interviewer increases the value to the listener, and directly affects several survey
processes:

• CARI supplements or replaces direct observation. In many CAPI surveys, a percentage of field
interviews are observed by supervisory staff, normally as part of ongoing quality control efforts
and possibly as mandated in contracts. Direct observation carries significant costs, and may have
an observation effect on the cognitive interaction; that is, an observed interview may be a
different experience for both interviewer and respondent from an unobserved interview. CARI
capabilities allow observers to hear the interactions – at their own pace and with the ability to re-
listen as needed – without interfering in the data collection. This becomes more effective if the
recording technology includes no signal to the interviewer or respondent that the recording is
active.

• CARI supplements or replaces interviewer validation. Most surveys use some form of validation
to determine whether field staff have falsified interviews. In many cases this validation involves
re-contacting the respondent and verifying that the interviewer was there, asking a few of the
same questions again, recording the answers on a laptop, etc. CARI data allow validators to
perform this function without additional burden to the respondents.

• CARI offers significant potential to assess data quality. There are many possible factors that may
affect whether the data collected are of the highest possible quality. Recording the data collection
allows survey designers to assess whether specific question design facilitates or hinders the
collection of accurate data. Methodologists can also gain new insight into how interviewers work
and how the interaction of the interviewers and the instrument affect the overall quality of the
data.

• CARI provides an additional source for post-data collection processing, such as editing or coding.
Often when editing inconsistent data or coding text strings back to a set of categories, the home
office staff rely on text entered by the interviewer. This text may be in the form of remarks, or
perhaps a response to an other-specify or similar text string. The data, however, are entered by
the interviewer in the middle of an interaction that is focused on retaining respondent cooperation
and moving through the questionnaire, and may not contain everything the respondent said.

 235

Hansen et al (2005) demonstrated that text entered by interviewers during an interview is often
less complete and even inaccurate as compared to the text data captured as a result of listening to
audio-recordings of the survey interaction.

• CARI can assist with long open-ended responses. Many items that involve a longer answer are
difficult for interviewers to record accurately while maintaining the momentum of the
conversation. Having these items recorded can yield accurate and complete data while allowing
the interviewer to concentrate on the quality of the interaction.

• CARI may augment or replace consent for subsequent data collection. Many organizations that
require consent to release records, allow student participation, etc. will accept recorded consent.
This recorded authorization may be easier, faster and more economical than other methods
relying on paper forms, either mailed or collected in-person.

• CARI can also be used as a training tool. Interviewers in training can record their administration
of a survey (or components of a survey), listen to the recordings and complete self-evaluations on
their skills. Training staff can then use the recordings and the self-evaluation data to guide
additional training and coaching.

Methodologists in particular may appreciate the value of CARI data, as these data are a rich source for
understanding the specifics of data collection. The relative ease of use encourages experimentation, such
as recording a large number of items or recording items only under certain circumstances. And one need
not navigate the ocean of recorded data made possible by CARI technologies at one time; items can be
“banked” for further analysis or comparison against future studies.

II. CARI Implementation Requirements

Over the course of several years, a set of implementation requirements has emerged for CARI:

• The technology should to the extent possible leverage existing hardware. This is made easier
because virtually all laptops available in the last few years include built-in audio recording. On at
least one occasion Westat has used a peripheral recording device to record both sides of a
telephone conversation, but in general the recording capabilities of the laptop computer are
sufficient for CARI. The emergence of CARI capabilities now influences laptop acquisition
criteria and decisions.

• The recording function itself should be completely unobtrusive. Interviewers should not be
“signaled” (overtly or through subtle cues) when the system is recording, and there should be zero
effect on the respondent or the data collection.

• The CARI capability should be designed and implemented to provide the maximum flexibility for
survey designers, reviewers, coders and other users. This includes the ability to designate certain
items for recording but not other items and the ability to record items only for a certain
percentage of the time they are encountered. This also includes the ability to record continuously
for a period of time or for a set of items.

• CARI should work seamlessly with the data collection system, and should require minimal
additional custom coding – and any custom work should be forward-compatible with future
versions if possible. The system should also allow for “informed consent” in which respondents

 236

are informed that portions of the interview may be recorded for quality control purposes, and
should turn off the recording capability should the respondent wish not to be recorded.

• The CARI data should be highly usable for coders and other reviewers: they should be able to
stop, start and restart the recordings; they should be able to listen to all recordings together for a
single item (multiple recordings may be generated when an interviewer backs up and re-asks an
item); and they should be able to see the data entered and the paradata associated with the
recording. In addition reviewers might be anywhere, and should be able to review the recordings
from wherever they might be.

• Because recorded data may contain virtually anything, all CARI data must be considered and
treated as confidential.

Our core CARI implementation at Westat falls into three areas:

1. Recording items during the CAPI interview
2. Integration into field management systems
3. Reviewing and coding the CARI data

The remainder of this paper takes these up in more detail.

III. Recording Questionnaire Items

For some years, Westat has implemented a Westat-developed recording capability built into the Blaise
product. This capability, known as WesCARI, leveraged the audit.dll shipped with Blaise. Programmers
specified in an .INI file which items were to be recorded (using the full Blaise path) and a percentage
between 1 and 100, where 100% meant that we always recorded the item. Since the audit.dll program
always knew the current item, we evaluated that against the items in the .INI file and generated a random
number to determine whether to record the item. The audit.dll program typically writes records to the
audit trail log as each field is entered and exited, and so we turned the recording capability on and off at
those times. The .INI file also controlled the specifics of the recording, including the format and
granularity of the sound files, and the maximum length of the recording.

This approach yielded the sound files we wanted, but had some drawbacks. First among these was the
need to re-engineer the recording capability into the audit.dll file whenever a Blaise release changed the
audit.dll. Although these system changes do not occur all that often, we still needed to evaluate each
release and update which versions of WesCARI were appropriate for that release. Second, our review
applications could display the questionnaire specification for a particular item and the data stored for that
item, but we could not easily display the item as it was displayed to the interviewer and the data as
entered by the interviewer at the time of the recording. In most cases, this latter shortcoming was not a
problem, but when interviewers backed up and changed the data – thus generating two or more recordings
– it became more difficult to evaluate the interviewer’s performance and the quality of the data. In
addition, the mismatch between a questionnaire specification version of a screen hindered coders’ ability
to accurately assess interviewers’ skill at reading scripted questions correctly since the appropriate fill
logic was easily lost among all the fill alternatives.

With the advent of Blaise 4.8.2, the CARI capability is included directly in the Blaise system. From the
control centre, you can invoke the CARI Specification Tool and specify sound recordings and/or
screenshots:

 237

 238

Note that you may specify the file name; in the example above, we include the case ID (KEYVALUE)
and the field name. In the example below, note that you may designate the “chance” that the question
will be recorded; below on the left we would like the item recorded 30% of the times it is encountered,
and on the right we can review all the items and the probabilities of recording.

 239

In addition to the probability feature, the CARI Specification Tool includes the ability to specify
maximum recording length, granularity, etc. In addition, Specification Tool users can specify which field
indicates that the respondent has consented to be recorded; in the event this field is set to No – whether
initially or if the interviewer backs up and changes it to No – then no recordings are made.

 240

The CARI Specification tool also allows us to designate a CARI log file that contains an audit trail of
recording activities. We may specify that the CARI log contain only fatal errors, or contain additional
messages useful for reconstructing what occurred during data collection. Here is an example of the most
extended messages:

Finally, the ability to take screen shots showing the response and all fills is a very useful feature of the
Blaise CARI capability:

 241

Note that this screen shot – this is a file stored with the other CAPI data on the laptop – shows the data as
entered by the interviewer. This is particularly useful in the event the interviewer backs up and changes
the response: recordings can be keyed to the exact screen rather than to the final data values. Additionally,
the actual screen shot shows only the appropriate fills for the question, exactly as displayed to the
interviewer, facilitating assessment of interviewer skills.

We are using the Blaise CARI for several reasons. First, it is tightly integrated with Blaise, which leads
to straightforward and robust implementation in our Blaise applications, and provides an easily-
understood structure for identifying the items and percentages to record as part of the questionnaire
specification process. Second, this integration eliminates the maintenance burden of having versions of
the CARI software that are sensitive to the version of Blaise. We expect that CARI will be forward-
compatible with subsequent versions of Blaise. And finally, the screen shot capability allows for more
accurate and detailed coding.

IV. Integration into Field Systems

Sound files present several challenges to survey field management systems. First, they can contain any
data at all, and therefore may contain confidential information. As such, the sound files need the highest
possible level of protection within the overall data and communications flow. Second, the files need to be
named and stored in a way that makes them easy to process and to identify with the Blaise survey data,

 242

stored separately. Third, the system needs to accommodate significantly larger data files, which need to
be transmitted as necessary throughout the system.

With regard to the first challenge, our response is to treat the sound files like any other case data.
Westat’s Baseline Field Operations System stores all survey data associated with a case in a single
directory location, and keeps them all encrypted until they are needed for data collection. At survey time,
when the interviewer has selected the case from a list in the management system and has started the
survey, then BFOS decrypts the data files and starts the Blaise application. When the survey is finished,
BFOS re-encrypts all the data files, including the sound files, and stores them in their case-specific
location. The individual sound files themselves are named with the case ID, item or question number,
date/time, and sequence number (if an item is recorded more than once).

The large data files generated by CAPI are a major challenge. First, the size cannot be accurately
predicted, since the recording may be for just a second or two or may be minutes in length, particularly if
the interviewer needs to probe or clarify a response. Second, one can estimate but not predict how many
recordings there will be if the survey records only a percentage of the items. Third, many items scheduled
for recording depend on prior skip patterns and therefore may not be reached at all (though the skip
patterns are typically considered in setting the percentage for recording an item). Fourth, interviewers
may back up an unlimited amount of times to the same item, thus generating many extra sound files.

It therefore seems prudent to plan defensively for a large amount of CARI data. On a recent small study
at Westat, the Blaise data for an interview took 12-24 KB on average, while the complete case data
including screen shots and sound files was in excess of 4 MB. This will have an effect on transmission
times and on data storage and retrieval times. Data transmission is normally acceptable over broadband,
even when several cases need to be transmitted, but if field staff are using phone lines they should
transmit frequently and expect much longer transmission times than usual. Westat normally instructs
field staff to transmit as soon as possible after performing any field work, but this is especially important
for those staff who cannot or do not have a broadband connection and who need to use phone lines. On
the laptop itself, Westat has historically not deleted completed cases after transmission until a natural
break in data collection (such as the end of a round). We are now looking carefully at disk space usage
and are ready to delete complete cases earlier if we suspect that the larger CARI files are having a
negative effect on disk fragmentation and performance.

V. Coding Sound Files: CARICode

For some years projects at Westat have used networked applications to code CARI data. Recently,
however, Westat has developed a broader capability available for distributed use across projects and
known on projects as CARICode. The CARICode system allows authorized users to log in and securely
perform specific coding functions using specific roles. CARICode functions include:

• Interviewer validation. Coders – generally field supervisors or staff dedicated to quality
assurance – listen to recordings and fill out a coding form describing how well they heard the
interviewer and respondent as well as other sounds they may have heard (or not heard) on the
recording that can help provide clues as to the likelihood of falsifying data. By default, the
coders listen to all the items designated for validation for a single case coding a specified set of
variables describing what they heard on the recording and then complete a case summary. The
summary data are then ultimately used to categorize a case as potentially falsified and needing
further review. CARICode is loaded with the recordings, screen shots and relevant paradata for
the cases to be validated (e.g., CAPI timing data, start time/date of the interview, previous result
codes for the case, etc) and the recordings are presented on the screen with the screen shots and

 243

paradata . The coders use all of this information – the recordings and the paradata – to assess the
likelihood of falsification.

• Question assessment. Coders – normally design staff and/or methodologists – sign in and listen
to specific questions and code how well they are working in the field. By default, the coders will
listen to a specific question across cases rather than all the questions recorded within a case.
Additionally, the system allows for a sample of recordings to be double-coded or verified, and
differences adjudicated as needed.

• Interviewer performance. Coders – generally field supervisors or their managers – log in and
listen to how interviewers asked specific items and how they responded to and recorded different
responses. Any quality issues are addressed directly with the field interviewers as part of our
ongoing feedback to their development.

• Survey data capture. Coders – generally coding staff – log in and listen to the audio recordings
of open-ended questions and capture the response verbatim, or use the recording to code the
response into specified categories, such as with Industry and Occupation coding or some other
classification scheme. This can be done as part of a field pretest to help develop defined response
categories for full sample data collection, as part of a post-collecting editing operation, or as the
actual data capture for a question.

For all of these functions, reports and other outcome materials are available for managers, methodologists
and field staff as necessary.

An example of the screen used to code CARI data for interviewer validation follows. The screen is
divided into four parts: The top section contains paradata from the field management system, the middle
of the screen allows the coder to play the recording, the bottom left shows the Blaise screen shot (may be
enlarged if necessary) and the bottom right contains the questions for the coder to answer.

 244

The coder codes all recordings for a given case using this format, and then summarizes the recorded data
for the case using the following screen:

 245

One benefit of a distributed system is the ability to direct users who are best positioned for specific tasks
to that work. CARICode is role-based, meaning that user tables are configured so that individual users
may be a coder for one function, a verifier or adjudicator for another function, and have no role at all on a
third function. Other configuration tables allow individual projects to designate specific CARI items and
associate them with individual functions.

VI. Implementation Overview

An overview of the CARI implementation on a specific project is:

• During the questionnaire design and specification stage, items are targeted for recording by
function or purpose of recording, along with the probability of recording. . For instance, a set of
questions will be recorded and used for interviewer validation, another set for interviewer
performance, and some for multiple purposes such as interviewer performance and question
assessment. A pretest may place particular emphasis on question assessment, while another
project may not use that function at all.

• These items and functions are tested during instrument development.
• Systems integration testing – i.e., testing that the instruments, field management system, and all

data communication components work together – includes CARI sound files.
• CARICode items and coding/verification rates defined.
• Supporting data are defined and specified and loaded into the CARICode system. Paradata are at

the heart of this specification, and may include:

 246

o Timings data – either the whole interview, or modules/sections within the interview
o Interview date and start time
o Previous result codes for the case, such as an pre-close out refusal
o GPS coordinates

• Coding items and response schemes are configured for each coding function in CARICode.
• CARICode usernames, passwords, and access rights are defined and implemented for this project.
• Case data and sound files are loaded from the data collection environment into CARICode and

tested, and coding begins.
• Coded data are extracted into various reports, including those designed to monitor and manage

the coding effort, and more analytical reports geared toward data quality assessment and
outcomes.

VII. Conclusion

Advances in CARI capabilities have expanded the utility of the recording data, making it easier to create
the recordings and to subsequently process the recordings for many different purposes. CARI data and
the improved coding capabilities significantly enhance the usefulness of the recorded data in terms of
improving survey data quality, interviewer performance, and even reducing total data collection costs
with the reduced need for direct field observations and validation reinterviews.

 247

Development of an integrated CARI Interactive Data Access
System for the US Census Bureau
Mai Nguyen, M. Rita Thissen, B.Christopher Siege, Sandhya Bikmal, RTI International

Abstract
In preparation for the American Community Survey Content Test, a team from the US Census Bureau and
RTI International has been collaborating in the development of the CARI Interactive Data Access System,
an integrated web-based system for reviewing of audio and image recordings which are made with Blaise
4.8.2 during field and telephone interviewing.

The use of computer audio-recorded interviewing (CARI) techniques is expanding and can be expected to
grow rapidly with the release of CARI capabilities in Blaise software. Capture of these sound and image
files is only the beginning of the process, however; to be useful, those recordings must be reviewed and
analyzed in light of the study goals. CARI can have many values: confirmation of data quality and
authenticity, examination of the effectiveness of question wording, study of interviewer and respondent
behavior, managing performance of the interviewing staff, and other purposes. In this paper we discuss
the design and implementation of the integrated CARI Interactive Data Access System with emphasis on
data integration to bring audio and image recordings created from Blaise 4.8.2 during data collection into
the system for quality review, authenticity evaluation and behavior coding of interview administration,
respondent reactions and questionnaire design

Introduction
Blaise software offers many built-in capabilities for survey data collection, and with the release of version
4.8.2, the language now has the capability to record audio and capture snapshots of screen images during
the course of an interview, storing them on the computer’s local drive along with the response data.
Whether used for in-person interviewing on laptops or computer-assisted telephone interviewing with
voice-capture, the CARI-equipped Blaise instrument appears and behaves just as it would without audio
or image capture.

By programming a survey questionnaire to take advantage of the audio and image recordings, researchers
can obtain insight into the interviewing environment in detail through later review of the audio recordings
and their matching screenshots. Many uses have been found for computer audio-recorded interviewing
(CARI), ranging from quality control <Thissen et al, 2010> <Mitchell et al, 2008> <Thissen and Nguyen,
2008> <Basson, 2005> to coaching <Biemer et al, 2000> <Watt, 2009><Thissen et al, 2008> to data
capture <Edwards et al, 2010> .

Over the past several years, the US Census Bureau has evaluated the use of CARI, with the intent of using
it for production survey data collection after establishing its feasibility <Biemer et al, 2000><Wrenn-
Yorker and Thissen, 2005>, acceptance by field staff <Arceneux, 2007> and cost-effectiveness <Biemer
et al, 2002>. In 2008, a prototype CARI System was created at the Census Bureau <Thissen et al, 2008>.
Stemming from that effort and other methodological and technical studies, a decision was made to
develop a full-fledged system for use on the upcoming American Community Survey Content Test (ACS
Content Test).

The ACS Content Test is programmed in Blaise 4.8.2, collecting audio and screen images as described in
a separate paper at this conference, Implementing Computer-Audio Recorded Interviewing (CARI) Using
Blaise 4.8.2, William E. Dyer, Jr. and Malcolm Robert Wallace, U.S. Census Bureau. To effectively use
CARI recordings, the organization requires a secure system for receipt of the incoming audio and image
files, an efficient interface for playback and coding their contents, and especially for a large organization

 248

such as the Census Bureau, a facile mechanism for managing operations which will ultimately need to
handle many thousands of cases passing through it on a flow basis.

The CARI Interactive Data Access System (CARI System) was collaboratively developed by RTI
International and the Census Bureau for this purpose. The system was designed to reside centrally at the
Suitland, MD, headquarters of the Census Bureau while being accessible to Census Bureau telephone
centers in Hagerstown, MD, Tucson, AZ, and Jeffersonville, IN, as well as to the twelve regional offices
across the country. To enable such broad access without distributed storage, the system provides a web
based interface, requiring only a standard browser and network access credentials for usage.

The ACS Content Test is relying on CARI recordings from the Blaise instrument to aid with decisions on
questionnaire design through behavior coding of the captured audio and image files. Later surveys expect
to use the system for quality assurance, management and coaching of field staff, and potentially other
purposes. In the pages that follow the CARI System’s design, functionality, usage and implementation
details are presented.

Functionality
The CARI System presents a web based interface currently consisting of 4 major components. Plans exist
to expand the system to enable additional functionality. Two of the components provide direct access to
the CARI recordings from Blaise, while two others support daily operations.

• Behavior Coding Component (BCC). The BCC is designed to allow researchers at the US
Census Bureau to capture the interactions between interviewer and respondent by listening to the
CARI audio files and viewing images captured during data collection. Coding interviewers’
behaviors as part of the survey interaction not only allows research managers to monitor whether
interviewers consistently adhere to the required (standardized) interviewing practices, but it also
alerts them about possible problems with the questionnaire. For example, deviations from the
interviewing script may reflect weaknesses in the questionnaire design or skip logic. On the other
hand, the respondents’ behaviors may also reveal if respondents adequately understand and
respond to a particular question. The request for explanation, providing inadequate response, or
other non-scripted discussions may indicate a weakness in the comprehensibility of the
respondent task or survey question.

• Quality Assurance Component (QAC). Quality assurance activities ensure that the data

collected in a survey have as little error as possible. Survey error can arise from numerous
sources, but generally fall into two main categories: authenticity problems and errors introduced
by individual differences in presentation of the questionnaire by survey interviewers.

The first error source, relating to authenticity, arises when interviewers do not collect data
directly from a respondent. This may occur in an innocent way, as in the case when interviewers
feel they already know the respondent’s answer and do not wish to burden them by asking the
question, or it may arise as a result of malfeasance, in which the interviewer does not collect data
at all or fabricates it. In any of these cases, the data cannot be considered authentic.

The second source of error, resulting from differences in presentation of questions to the
respondent, can be seen as a lack of precision. Most survey data collection is predicated on the
notion of consistent delivery of the questionnaire to minimize individual differences. Though
computerization forces some degree of uniformity, the interviewer may still cause variation
through failure to follow protocol (such as non-verbatim reading), emotional loading (such as
through tone of voice), biasing the response by suggestion or leading comments, or other

 249

violations of best interviewing practices. These faults weaken the reliability and validity of the
data set as a whole, though individual data points may be correct.

The QAC is designed to allow monitors to evaluate the quality of collected data by listening to
the audio files and viewing images captured during data collection.

• Automatic Assessment Tool for User Feedback (AAT). The AAT module allows the Census
Bureau staff to collect user feedback to evaluate ease of use and effectiveness of the CARI system
from the user’s perspective. RTI and Census Bureau staff will use the feedback to identify future
improvements to the CARI system.

• eTraining. The eTraining module provides integrated, online training materials to introduce new
coders to the system and to train them on how to manage their workload and to conduct the
behavior coding and/or quality assurance coding properly.

Coding Workflow
The behavior and quality assurance coding processes are managed by Census Bureau staff at various
divisions following specific workflows associated with each component. In general, the overall division
of labor among the Census Bureau divisions is:

• Site supervisors and staff at the 3 telephone sites will primarily use the website to conduct the
behavior and quality assurance coding activities.

• The survey configuration, case assignment to sites, workload monitor, and data extraction for
analysis are done by research staff at the HQ.

• Website administration and its infrastructure are maintained and supported by Census Bureau
staff.

The CARI System is designed to support this division of labor through the use of user roles as shown in
Figure 1. The coding workflow includes all tasks from the creation of a new survey entry through coding
completion and finally survey data removal, in chronological order, identifying the responsible party at
each step. The major tasks in this work flow are:

• Create new survey entry and user accounts
• Configure and assign staff to the survey
• Load data into the system
• Assign cases to sites and coders
• Conduct coding
• Monitor coding progress
• Data extraction and close-out

Each user role has different responsibilities within the website, providing a clear division of labor from
setup through closeout. The original setup for any survey takes several steps, after which operations
become more routine. To begin with, survey entries are created in the system by the System
Administrator. Subsequently, a list of the questionnaire items which were recorded is uploaded through an
interface provided as part of the system. Once a survey entry is ready, the case data can be loaded into the
system, but it cannot be coded yet. The System Administrator at this time may create accounts for users,
such as a Survey Manager and Site Administrator, giving them access to the newly created survey entry.
Responsibility then shifts to the Survey Manager, who configures the coding interface with survey-
specific header items, coding categories, coding groups and code definitions. The Research Manager also
designates groups of cases for any sites at which coders will work, after which the Site Administrators can
assign those cases to specific Coders, who listen to audio, view screen images, select appropriate codes
and write notes with their observations. The majority of work is done by the Coders, who may review

 250

thousands of cases for a single survey, and Supervisors, who oversee the work of the Coders. When all
coding is complete, the Research Manager and System Administrator again take responsibility,
determining when to close out the survey entry. These steps are very similar for both behavior coding and
for quality assurance coding, providing a workflow which is fully managed through the CARI website
interface.

 251

Figure 1. CARI System Workflow, with Activities Identified by User Role

The Behavior Coding page, together with the Window Media Player for playing audio file and the
captured images, is shown in Figure 2 below. Through this page, the coder can access the audio recording
by clicking on the Audio link and view the image by clicking on the Image link. The page also provides
the capability for flagging the case if further review is needed. Further, there is provision for additional
notes on the case or for each utterance to be captured by the coders.

 252

Figure 2. Behavior Coding Page, with Window Media Player and Captured Image

Data Flow
The purpose of the CARI System is to make Blaise CARI files available for study by staff who are
located around the country, potentially quite distant from the interviewing sites or even from the Census
Bureau’s campus.

 253

Response data files, including CARI files, originate at the point of interviewing, such as on the laptop of a
field interviewer or the desktop of a telephone interviewer. Regardless of where the data start, the files
are transmitted to a centrally located master control system (MCS) for loading into the CARI System. A
simplified diagram of the overall data flow is shown in Figure 3. CARI coders may be located at any of
the Census Bureau’s locations, depending on the needs of the survey and the type of analysis for which
the CARI files are being coded. Ultimately, the coded results become available to headquarters (HQ)
staff, both as summary statistics and as exported datasets.

Figure 3. Data Flow from Field and Telephone Interviewing Through the CARI System

The CARI System utilizes an Oracle database as its data repository, which users of the CARI System
access through the CARI website. CARI audio files and screen images, selected interview data and
paradata flow into the database from the MCS through a pre-defined programmatic data-loading interface.
The database also accumulates administrative data such as user accounts, roles, survey configuration
parameters, code definitions and other operational information.

Once loaded, case information and CARI recordings become available to coding staff through the
website. Codes are assigned, comments written and operational flags are set by the coding and
supervisory staff through the web pages, which validate and store this data alongside the original
information. CARI System reports and data review pages provide details and summaries to interactive
users, and an extraction function allows authorized research managers to export datasets to secure
locations for further analysis. Upon completion of the work, when there is no further need for storage,
system tools enable removal of the unnecessary data.

System Design Overview
The CARI System has been developed using the Microsoft ASP.NET Framework 3.5 with an Oracle
database. The Visual Basic.NET programming language is used for server-side development tasks in
conjunction with the JavaScript language for handling client-side activities. AJAX technology is used in
highly interactive pages to provide better user experience.

 254

The Microsoft ASP.NET Framework provides a modern platform for developing enterprise-scale web
applications. It provides the following development benefits:

• Improve productivity by using the form-based, drag-and-drop development model familiar to
many developers. Microsoft Visual Studio 2008, being one of the best development tools,
provides a further boost to productivity.

• Leverage large infrastructure and prebuilt class libraries available via the Microsoft .NET 3.5
framework, including ADO.NET for data access, server-side web UI controls, AJAX
programming support, etc.

• Support for enterprise relational database management system (RDBMS), including
Microsoft SQL Server, Oracle database and IBM DB2.

• Ease of deployment, especially to Windows servers running the IIS web server.

The CARI System is hosted on the Census Bureau’s Windows server using the Microsoft IIS web server.
It is accessible within the Census Bureau secured intranet network. It has achieved the security
certification and accreditation specified by NIST SP 800-37. The CARI System website is designed to be
viewed with the Microsoft Internet Explorer (IE) web browser version 6.x or later.

In addition to network security, the CARI System also employs a number of security measures to control
user access and protect its data:

• SSL protocol implementation.
• Integrated LDAP user authentication using the Census Bureau’s eDirectory.
• Role-based authorization to control user access to both web pages and data within the system.
• Protections against SQL injection and cross site scripting attacks using best practices.
• Validation of all data input
• Use of parameterized queries and stored procedures for all database access
• Encryption of configuration data

The CARI System controls data access using two types of roles, system roles and survey-specific roles.
System roles include:

• System Administrator. Members of this role will be able to access all web pages and view and
modify all data for all surveys.

• Security Administrator. Members of this role will be able to access select web pages for
security auditing purpose only. They will not be able to see any data within the system.

• Site Administrator. Members of this role will have access to all web pages, but can only view
and modify user accounts for their site (user accounts) and cases assigned to their site.

Survey-specific roles include:

• Coder. Members of this role can only access coding-related web pages and work on cases
assigned to them. They can see neither cases from other users nor cases from surveys they’re not
assigned to.

• Supervisor. Members of this role can access coding-related web pages, workload management
pages and reports, but they can only view and modify cases assigned to their site.

• Research manager. Members of this role not only can access all pages as a supervisor can but
also can view and modify cases across sites for any survey assigned to them. They are able to
access pages to configure these surveys and set up the QA sampling rate parameters.

• HQ. Members of this role have the same access level as research managers with the exception
that they cannot modify any data.

This role-based design can be seen in Figure 4 where each colored box represents a web page accessible
by the specified role.

 255

Figure 4 – User Role Design, with Web Pages Accessible by Each Role

System Integration
The CARI System’s primary point of integration is with the Census Bureau’s master control system
(MCS) through a data loading process. This process transfers selected paradata along with audio and
images files from the interview case records and is capable of quickly loading thousands of recordings
into the CARI System database. Within the CARI System web interface an initial survey configuration is
defined and the instrument questions are imported. Once complete the CARI System can support an
automated batch process of loading the survey case data either as a single complete set or on a continual
flow basis.

Integration between the systems is facilitated through the use of Oracle external tables. These external
tables allow flat files to be exposed within the Oracle database and provide a convenient way to process
external data for importing. They provide an abstracted interface between the systems and allow details
of the exporting process from the MCS to be decoupled from the importing process of the CARI System.
The definition of the flat files provides an interface contract between the systems as illustrated in Figure
5.

 256

Figure 5 – CARI System Data Import Diagram

Once the data load process is complete the user can then access interview cases within the web based
interface for either Behavior or Quality Assurance Coding. Within these primary areas of functionality,
the user can access case and question level attributes while reviewing both the Blaise screen capture and
audio recordings.

After case and question level review has been completed within the CARI System it is possible to
perform a number of defined data extracts. Associated with most of the data extracts is a SAS program to
allow for external analysis.

Conclusion
The new Blaise functionality of audio and image recording opens a wide range of potential opportunities
for survey research and operations. As mentioned above, the technology enables behavior coding, quality
management and coaching activities. Additional possibilities present themselves:

• Conducting “cognitive interviews” through silent observation of production interviewing, by use
of CARI files.

• Data collection, for open-ended questions or for semi-structured (conversational) interviewing
• Enhanced training for interviewing staff, allowing them to practice interviewing and review their

own performance
With further technological advances, speech analytics and transcription may become feasible for post-
processing the recorded audio, and pen-based computers might be able to record signatures as part of the

 257

screen image collected for consent questions. These and other activities will make good use of Blaise’s
newly introduced capabilities.

References
Arceneaux, T. "Evaluating the Computer Audio-Recorded Interviewing (CARI) Household Wellness
Study (HWS) Field Test." 2007 Proceedings of the American Statistical Association. Statistical
Computing Section [CD-ROM]. Alexandria, VA: American Statistical Association, 2007. 2811-2818

Basson, Danna. 2005. "The Effects of Digital Recording of Telephone Interviews on Survey Data
Quality." Pp. 3778-85 in the American Statistical Association 2005 Proceedings of the Section on Survey
Research Methods. Washington, DC: American Statistical Association

Biemer, P.P., D. Hergert, J. Morton and W. G. Willis (2000), “The Feasibility of Monitoring Field
Interview Performance Using Computer Audio Recorded Interviewing (CARI)”, Proceedings of the
American Statistical Association’s Section on Survey Research Methods, pp. 1068-1073

Biemer, P.P., F. Mierzwa, M.R.Thissen (2002), “Comparison of the Steady-State Costs for CARI vs.
Reinterview Approaches for Interview Verification”, RTI Technical Report to the US Census Bureau

Edwards, Brad, W. Hicks and Michelle Carlson (2010, June). Old Dogs New Tricks: CARI and CASI
Innovations to Reduce Measurement Error and Nonresponse, Presented at the International Total Survey
Error Workshop, Stowe, VT.

Mitchell, S.B., K.M. Fahrney, M.M. Strobl, M.R. Thissen, M.T. Nguyen, B.S. Bibb, and W.I. Stephenson
(2008). “Using Computer Audio-Recorded Interviewing to Assess Interviewer Coding Error,” Presented
at the 63rd Conference of the American Association for Public Opinion Research (AAPOR). New
Orleans, LA USA

Thissen, M.R., Fisher, C., Barber. L., Sattaluri, S. (2008). “Computer Audio-Recorded Interviewing
(CARI), A Tool for Monitoring Field Interviewers and Improving Field Data Collection”, Proceedings of
the International Methodology Symposium 2008, Statistics Canada, Gatineau, Canada

Thissen, M.R., & Nguyen, M.T. (2008, June). Using Audio Recording to Detect Data Collection Error.
Presented at The 2nd International Total Survey Error Workshop, Research Triangle Park, NC.

Thissen, M.R., Thorpe, S., Peytcheva, E., Barnes, C., Park, H., & Fisher, C. (2010, June). Improving Data
Quality Through Audio and Image Recording. Poster presented at International Total Survey Error
Workshop, Stowe, VT

Wrenn-Yorker, C and Thissen, M.R. (2005), “Computer Audio Recorded Interviewing (CARI)
Technology“, Presented at the Federal Computer Assisted Survey Information Collection (FedCASIC)
Conference.

Watt, Barbara (2009, May), “Accountability for Data Quality Excellence”, Presented at the International
Field Directors and Technologies Conference, Delray Beach, FL

 258

Acknowledgements
We would like to thank the U.S. Census Bureau for funding the development of the CARI System. We
would also like to thank the Census Bureau staff for their contribution and collaborative effort in this
development, as well as a number of RTI staff including Carl Fisher, Neelima Kunta, Brett Anderson,
Erica Saleska and Emily McFarlane Geisen. The views expressed in this paper are those of the authors
and not necessarily those of the U.S. Census Bureau.

 259

Implementing Computer-Audio Recorded Interviewing (CARI)
Using Blaise 4.8.2

William E. Dyer, Jr. and Malcolm Robert Wallace, U.S. Census Bureau

1. Introduction

Our mission was to integrate Computer Audio Recorded Interviewing (CARI) with the American
Community Survey (ACS) Content Test instrument for use by a Behavior Coding and Quality Assurance
system being developed for the U.S. Census Bureau by Research Triangle Institute (RTI) International.
Specifically, we needed to create sound and image files for the CARI questions being used for this new
system.

Circumstances dictated that we implement the recording component rapidly so that we might provide
input to this new system as it was being designed, developed, and tested. In the fall of 2009 we were
tasked with creating what we now refer to as a “homegrown CARI.” Aside from an abbreviated schedule
we were faced with sponsor requirements for CARI we considered diverse and complex.

As requirements started to unfold and the number of questions the sponsors wanted to record increased,
the complexities with coding our homegrown version also grew dramatically. We were pleased when we
were able to capture a screen image along with a recording for a CARI question the first time the field
was visited. However, the code to implement this was bulky and tricky and our homegrown version was
not meeting the needs of the system or the sponsors. At this point we decided to investigate using the
Beta version of Blaise 4.8.2 CARI. Once we were able to figure out how to use the CARI we quickly
realized that Blaise 4.8.2 was what we needed to move forward. While using the Beta version of Blaise
CARI we were able to identify some issues that Statistics Netherlands quickly addressed for us. We were
also able to identify and request some additional CARI functionality that was very useful for us and
hopefully will be useful for others. This paper will discuss how we implemented CARI into our Blaise
ACS Content Test instrument using Blaise 4.8.2, results of our testing, and how Blaise 4.8.2 CARI
addressed our CARI needs.

2. CARI Requirements

As the project started underway, the requirements kept increasing. The sponsors required a significant
amount of detail (e.g., recording individual questions, series of questions, bounding questions, irregular
navigation, multi-person households, top quality recordings, CARI transparent to the interviewer,
sampling, screen shots, and more). Along with the requirements from the sponsors we needed to define
and determine the requirements for the system. How do we implement CARI consent? What should the
maximum recording length be? How do we transmit the files? How big will these files be? What
settings do we need to use? What information do the back-end systems need?

For discussion purposes of this paper we will limit “CARI Requirements” to those requested for the
survey instrument. Here is a summary of some of the requirements we were working with:

• Record up to 238 unique questions (18 household level and 44 (times 5) person level)
• Only record the first 5 people (over 12 years old) in roster
• Create two different content test paths – with some containing unique CARI questions and

some CARI questions overlapping each path

 260

• Use a CARI Sample flag to control the CARI recordings for 5 different paths. Different
questions are recorded depending on the value of CARI sample flag (0-4)

• In certain situations record all CARI eligible questions (ignore the CARI sample flag)
• Build in a system “emergency exit” in case CARI bogs down the control systems. That is,

allow interviews to be conducted without creating any sound/image files by using a system
override CARI flag

• Expect to always have a 1 to 1 relationship between sound and image files – each sound file
should have a corresponding image file

• Image/sound files should be created when backing up and going forward, however only save
the ones that have a discussion (something of substance)

• Stop recording after 60 seconds (this was more of a system requirement than a sponsor one)
• Consent could only be recorded if the respondent agreed to be recorded.
• If interviewer changes the respondent then the instrument must “automatically” re-ask the

consent question (instrument must force this)
• CARI must integrate easily into our existing CAI system
• CARI must work for CAPI and CATI

These requirements were fairly significant and did not include much of the behind the scenes type of
requirements that we needed to research and define ourselves. We had major concerns regarding file
sizes and potential number of files. Requirements also had to be defined for the sound/image file naming
and what was needed to help integrate this data into the CARI Behavior Coding system being developed
simultaneously by RTI International. The Behavior Coding and Quality Assurance system is described in
a separate paper at the 2010 IBUC conference, Development of an integrated CARI Interactive Data
Access System for the U.S. Census Bureau, Mai Nguyen, Rita Thissen, B. Christopher Siege, Sandhya
Bikmal, RTI International.

3. Homegrown Version of CARI

It was pretty clear from the start that we would not be able to program all of this - in the time we had,
with limited staff - and still create a reliable, easy to maintain product. We lobbied for the sponsors to
record as small a number of questions as possible, recording one time the first time they were asked. We
suggested that, if we were lucky, we might be able to get a screen capture of the question text and answer
as we left the field.

In a previous field test, we implemented a CARI instrument that recorded snippets from a Health
Wellness Study so CARI concepts were not completely new to us. The initial foray into recording
interviews consisted of a few snippets from the interview which were recorded in a .WAV format,
converted to .MP3, and zipped for transmission. Given the size of sound files and the limitations of the
transmission system and recording software we used, there were concerns of putting a major burden on
the system with recording and transmitting up to 30 questions. Unfortunately, limiting the number of
questions to that few did not meet the needs of the sponsors and researchers. Our team had to make our
best guess as to the method and formats for the system given that we were limited to Blaise version
4.8.1b1403 at the time.

 261

3.1. Homegrown Approach

We discussed recording alternatives and after a couple of false starts decided our ‘best solution’ to
integrate recording was twin alien procedures - a CARI Recording procedure and a Snap Shot procedure.
An alien procedure is additional code outside of Blaise used to perform specialized functions. In our
application we used the alien procedure method to control turning on and off the recorder and to call the
program to capture screen shots. Blaise allows us to do some very versatile work but we needed to pay
close attention to the suggestions and limitations – see message from Blaise Help:

• WARNING!

“There are no restrictions for procedures and methods. You may develop any method for
graphics, complex algorithms, sophisticated sound techniques or other advanced applications.
Take notice that DLL and COM procedures and methods are executed outside the Blaise system
and any malfunction of using them is at your own risk. We strongly advise you to test methods
and procedures thoroughly before using them.”

We combined the requirements, early sample questions, a base lined ACS Blaise instrument and sample
data to establish a “proof-of-concept.” The twin alien procedures, though bound very tightly to the data
structure, were able to produce sound (.WAV) and image (.JPG) files. We proved early on that we could
produce very good quality files and lots of them. However, these files were only created one time for
each CARI question - the first time the question was entered. Running the homegrown version we were
able to confirm that the sound and image files would be very large and possibly challenging to transmit
through the existing control systems for both CATI and CAPI.

3.2. Homegrown Issues

Besides the fact that this approach only produced one set of files per CARI question, it also required a
significant amount of code to implement. We had to add numerous variables for each question to track
whether the image or sound was to be recorded, start and stop flags, hard coded variable name fields to
meet output requirements, and a lot of other tracking information. Each field eligible for recording had to
be checked during execution of the rules. We had to know where the interview was coming from to turn
on and off the recorder and all of these fields had to be kept on route all of the time. The procedure for
recording kept growing longer and longer as CARI variables were added to the list. We far exceeded the
length of a block and had to subdivide the task. Attempting to add the other requirements (different paths,
different CARI flags, etc.) to the CARI code made the sheer size of this code massive and un-
maintainable. As mentioned previously, there were 238 unique questions that needed to have CARI
related code applied to them.

After much work we were able to get the homegrown CARI to run. However, this method left much to be
desired and did not give our customers everything they really wanted. Irregular navigation was another
challenge that this method could not handle. But, we did learn a lot about what we could not do or
change and how hard it is to keep track of recording and picture taking.

4. Blaise 4.8.2 CARI

About this time a new Beta version of Blaise CARI was released. We decided that it would be
worthwhile to research this to see if it could address some of our issues. It is said that technology
sufficiently advanced enough looks to the primitives like magic. This is how it seemed to us, moving
away from our homegrown version of CARI to the Statistics Netherlands implementation. When Blaise

 262

4.8.2 build 1500 was released for beta testing, we took a giant step toward satisfying the sponsor’s
requirements for collecting sound and image files for a Behavior Coding System – and making it much
easier for the programmers.

We quickly did a proof-of-concept using Blaise 4.8.2 CARI, using the same ACS Content Test instrument
we had been working with for our homegrown version. It seemed promising enough that we decided to
switch gears and go with the Blaise CARI implementation.

4.1. The BCI File

Blaise 4.8.2’s crown jewel for us is the .bci file. This is a valuable addition to the Blaise suite of
products. The CARI configuration file allows a great deal of control over settings used for CARI:
sound/image quality; compression; the creation of images and sound recordings. What a great tool!

Developers may run the CARI Specification Tool from the Blaise
Control Center. Not all of these options are used for every
application. We feel that once the parameters are set many of
these options can and should be shared by any survey in the
agency needing a CARI component. Note any unused options
were left at the default setting or disabled if possible.

This tool may also be accessed stand alone by launching the
BLCariSpec.exe program. It is shipped with the Blaise software
and can be found in the Bin directory where the software is
installed. We use this program application with our testing
application to give sponsors and managers the opportunity to
review our configuration settings. This can also be used as a
testing and development tool. This tool was very helpful when
researching the various settings to use for CARI.
Let us review the relevant menu options and settings used in this
specification.

The challenge here is to figure what settings one should use. In an ideal world we want crystal clear
screen shots, crisp and clear recordings, and very small file sizes so that transmissions and systems run
smoothly and do not get bogged down with large files. In practice however, we decided to use recordings
and screen shots of a lower quality to reduce file sizes and mitigate the burden on our transmission and
control systems.

4.1.1. Setting the Sound/Image File Names

Determining the appropriate file names for the sound and image files is very important. We were
somewhat restricted in file naming due to our earlier development work. You will obviously want to
make sure that you have a unique name for each CARI file name. The latest version of Blaise 4.8.2
assists in this endeavor by adding a unique counter to the end of each sound/image file name. This helps
differentiate between multiple visits into the same CARI field. Our file naming consisted of 4 major
pieces: a unique case identifier, some case specific information, the full Blaise variable name, and the

 263

date/time the recording was created. Setting up your sound/image file name in the BCI can be a little
tricky. Here is how we did it.

Audio | Record - File parameters

File Name = $KEYVALUE+CARIFileString+$FIELDNAME+'-'+$FILEDATE+$FILETIME

The filename is derived from the case primary key value + our CARI specific file string maintained in the
code + Blaise dot notated fieldname + File date + File time as described in the General Settings | Format.
We use the exact same naming convention for the Image files so the names would match until the
time/date stamp.

Example: 2CSS00401abcde3272200Sect03.Housing.COMPUTERC-20100603131428(01).wma

2CSS00401abcde3272200Sect03.Housing.COMPUTERC-20100603131434(01).jpg

Note that the “(01)” is the counter (sequencing number) set by Blaise and will increment by 1 each time a
recording/image is created for the same question.

4.2. Setting the Sound Files

There are 3 different sound file formats to select from - WAV, WMA, and MP3. We selected the
Windows Media Audio (WMA) format because it gives us small files of acceptable quality. Another
important consideration is the “Min (minimum) file size” (in bytes). We decided to set this to 6kb
(6,144 bytes) which, based on our research and settings, should be less than 1 second of recording. If this
setting is not set, Blaise generates sound and image files each time the interviewer moves through the
CARI question. We decided that recordings less than 1 second in length were not useful and would most
likely be created due to interviewers quickly moving backward or forward through the instrument. This
could end up creating a lot of extra files that would need to be transmitted from the laptops. These
temporary files are stored in the “Temporary Path” (we left it as: \SoundRecordings) and are discarded
when the instrument is exited. However, the Blaise CARI Log file will track these so you will know they
were created.

 264

4.2.1. Global Sound Recording Parameters

Audio | Record - File parameters

These are the global record settings. Enabled = “True” and Chance = “0%” means that the recorder will
use the field specific settings to determine whether or not to record a question. We went with a “Time
limit” of 60 seconds. That means that the recorder will automatically turn off after 60 seconds of
recording the same question. Otherwise, the recorder shuts off as soon as the interviewer exits the CARI
field.

There is a wide range of settings allowed for recording quality. The general rule of thumb is to match the
quality of the recording with the equipment being used: the quality of microphones for recording and
playback speakers or headsets will contribute to the decision. Why record in concert quality and playback
on $1.99 speakers? In addition, the quality of the files both for sound and images determines the file size.

The “Sequencing” item turns on the Blaise counter so that 01, 02, etc. is assigned to multiple recordings
of the same CARI question. Checking the “Record consent” item tells the recorder that Consent must be
“true” in order to record any CARI question.

4.3. Screenshot File Settings

There are 4 different image file formats to select from - .BMP, .JPG, GIF, and PNG. The primary
concern has been compatibility with the systems used to process output. We selected JPG initially
because bitmaps are very large. It was also selected because JPG was the original file format that was
picked when the homegrown CARI solution was being developed and our CARI processing systems were
designed to look for and process JPG images.

 265

Screenshots - File parameters

The same file naming convention is being used for the image files (screen shots) as is defined for sound
files. In this way it is easier to process the files so that the Behavior Coding system is able to match the
sound/image pairs together during review.

 Screenshots - Parameters

There are three different “Capture Context” settings; Form, Window, and Screen.
These set the image perimeter of the image capture. We desire to have the status bar, survey name, and
version on each image so we chose the “WINDOW” (full Blaise screen) option.
Again, “Sequencing” is checked to add the counter to the end of the image file names when more than
one image is taken for a CARI question.

“Compression quality” allows the setting for the level of detail (quality) for the JPG file. The larger the
level the better the picture and the larger the image file. We went with a very low setting here (10%) in
order to minimize the size of the JPG file as much as possible.

4.4. The CARI Log File

The CARI Log file keeps track of all of the image/sound files created during the interview, even the ones
that are deleted once the case is closed. This is similar to the audit trail file. We discovered it helpful to
have some ability to audit and analyze recording activity. The .carilog file and .adt audit trail have been
very successful thus far in being able to recreate and account for any unusual issues observed in testing.
Sometimes the behavior in the instrument is not what the tester expected, but we were able to explain
what happened after stepping through the audit trail and CARI log files.

 266

Logging

4.5. General Settings

The Beta versions of CARI did not contain these options. When we created our filename we used the
$DATE and $TIME variables in the configuration file for file naming. This did not work as expected
since all files created for a session had the exact same date and time. This happened because the
temporary files are renamed when you exit a session. Using the “general settings” options eliminated this
issue, and now date and time are correctly set to the date and time the sound/image is captured in the
CARI file names created.

General Settings

The “Sequence nr format” option gives a number of alternatives for bracketing the sequence number.
We use “(##)”, but other systems may prefer other bracketing (e.g., $, %, ~, }, etc.).

4.6. Specific field parameters – Setting the Consent Fields

Consent is an interesting topic that deserves a more detailed discussion. But, as far as the BCI file
settings are concerned, if you use consent for CARI then you will want to set at least one consent field in
your BCI file. If the “Lent” condition for your consent field evaluates to “True” then the CARI fields
defined in the “Fields” section will be recorded if their conditions evaluate to “True”. If the “Lent”
condition in your consent field(s) does not evaluate to “True”, then no recordings will be made regardless
of the settings in your “Fields” section.

For our project we needed the ability to collect consent from 3 different locations – CAPI front, CATI
front, and from a parallel tab that allowed the respondent to change his/her mind mid-interview.
Therefore we added 3 consent fields to the BCI file:

 267

Consent fields

The trick here is that the consent “Lent” condition had to evaluate to “True” for all of our consent fields
so we had to be careful on how we set this up. Unfortunately for us, we could not take full advantage of
Blaise and had to add extra code in order to address our requirement of asking consent twice – the first
time we could not record it (we called this verbal consent) and if the respondent agreed, then we had to
ask a second time (the actual CARI consent question) while recording it. The challenge here was, if the
respondent changed his/her mind and said no at the verbal question, we did not ask the CARI question so
we could not control the recorder easily. Instead we created a separate variable – CARICON_Flag – and
had to do all kinds of code gymnastics to keep this flag up-to-date based on all the possible ways consent
could be asked/changed. This approach appears to work fine for us, but it is not ideal. Newer versions of
Blaise 4.8.2 have a setting that allows us to not save the recordings for “consent” if the respondent says
“no”. We are hoping to take advantage of this feature for future projects using CARI, but we would need
approval from the U.S. Census Bureau’s legal staff first.

4.6.1. Considerations with Handling Consent in the Instrument

If you conduct CARI and require the respondent to give his/her consent to be recorded before recording
any questions, most likely you will add a consent question near the front of the interview. This works
alright unless the following happens:

1. The respondent changes his/her mind
2. The interviewer changes respondents

4.6.2. What if the Respondent Changes His/Her Mind?

Here, the expectation would be as soon as the respondent says “no”, the instrument must stop recording.
Obviously, the Field Representative (FR) would need to modify an answer in the instrument in some way
so that the recording stops. Expecting the FR to back up to the front and change the Consent field is not
very realistic. Therefore, we added a parallel tab to the instrument that the FR could access at any time.
We made the question in this tab a “consent” question in the BCI file and controlled turning on/off the
recorder in this method. Technically the respondent could change their mind from No to Yes, Yes to No,
or some crazy multiple combination of each.

4.6.3. What if the Interviewer Changes Respondents?

In some of our survey instruments we allow the interviewers to change respondents in the middle of the
interview. One could instruct the FR to simply visit the parallel consent tab and re-ask consent.
However, our sponsors did not think this was the best approach. Their feeling was the interviewers may
not remember to re-ask consent in this situation. To address this we added code to the Respondent tab
that “forces” the instrument into the consent tab if the respondent is changed during the interview.

 268

4.7 Specific field parameters – Setting the CARI Fields

Fields Parameters are the heart of the BCI CARI configuration! Being able to select CARI fields using
this BCI file setting eliminated thousands of lines of code for us.

Here you simply add the fields you want to record, specify the conditions for recording the field, indicate
the chance you want it to record if your conditions are met, add the upper time limit (if you have one),
and indicate if it is a snippet or not. Snippets will record until the time limit is reached (starting from the
CARI question). Snippets set to “False” indicate that the recorder will turn off as soon as you exit the
field or after the upper time limit is reached.

For our implementation the sponsor pre-determined the sampling for the possible CARI questions for
each case. So we used the value of the CARISAMPLE variable sent in on input to determine whether to
record or not. This gave the sponsor the ability to subdivide their sample and collect recordings on
different topics by case.

The image above is an excellent example of how to specify recording arrayed variables. We agreed with
the sponsor to allow up to five people in the household to be recorded. Sect04.Person4A[1].ANCW in
this example is the first household roster person ancestry question. We then had to include each pertinent
subscripted field in the BCI file. This is very easy to set up.

5. CARI Testing Considerations

In addition to the usual instrument testing that takes place, CARI requires additional testing. One of the
main objectives of testing CARI is to verify that the instrument is creating sound and image files when
you expect it to and that it does not create sound/image files when you do not expect it to. As noted
earlier, the requirements for the content test were fairly challenging. The instrument contained 2 unique
paths for content test questions. Some of the CARI questions overlapped and some were unique in each
path. Combine that with the 5 different CARI sample flags, the “Record All”, and the “Record None”
options and you have 12+ unique scenarios with many more potential CARI paths through the instrument.
The authors and the testers certainly had their work cut out for testing. Besides verifying the sound/image
files, you must verify the file names, quality of sound/image files, that consent works as expected, that
new system interfaces work correctly, and so on. We also needed to spend time advising the sponsors on
ways to test CARI since this was new for them as well.

 269

5.1. Helping the Sponsors Test CARI

Early on we realized it would be a challenge to test CARI and realized that it would be important to
identify which fields should be recorded based on the input and scenario. So one of the things we did was
to add a fill to the question text for CARI variables which displays in red on the top line of the infopane:
 CARICARI***CARI***
This fill is assigned in the main driver program for testing and used the same conditions as the CARI
settings. This really makes a CARI variable stand out for the testing team and developers. Of course this
must be “turned off” for production.

The idea behind this approach was to indicate to the testers that the question was being recorded so they
could verify the scenario was working and verify that sound/image files were correctly generated for the
case. The challenge was making sure the conditions for filling the red CARI text exactly matched the
conditions set for recording these fields.

The next step for the sponsors was to verify all sound/image files were correctly created, verify the sound
matches the image, and verify the image matches what was entered into the question. Since we zip up all
sound/image files into a <case ID>.car file we created a program in our test environment to display all
cases that were tested for that instrument:

Once the sponsor selected the case they wanted to review, all image files were displayed. The sponsor
was then able to review the file names or click on the first JPG where the program automatically played
back all sound files while cycling through the image files. The program also indicated the size of the zip
file and estimated the transmission time for the file. This was done to stress the size of these files and
potential transmission issues with the volume of recordings and images being created for a case. Once we
moved to a newer version of 4.8.2, we were able to scale down the quality (size) of the image files so this
became less of a concern.

5.2. Testing CARI Over the Network

There were some interesting issues which developed when testing CARI over the network. One difficulty
was that the various divisions had different microphone settings and default sound and image display
software. Across divisions and even within branches computers were different due to age, memory,
software, and so on. We had to work with the testers to setup the correct settings on their PCs.

 270

We also requested that sponsors test CARI on the FR laptops since those are running a very different
software and hardware configuration than our office PCs. The FR laptops run Windows Vista with wide
screen display at a higher resolution.

5.3. CARI Testing Tips

Some things to keep in mind for testing CARI:

1. Verify that sound/image files are created when you expect them to be. You also want to
verify that you create “pairs” of sound/image files and that no unpaired (extra or unexpected)
ones are created.

2. Verify that consent is working correctly. In other words, verify that sound/image files are not

being created when consent is “No” and verify they are being created when consent is “Yes”.
All possible ways to answer and change the value of consent should be tested and verified.
This was one of the most crucial things for us to test.

3. Verify every potential CARI field will create a recording if needed. One good way is to print

out your BCI file settings using the “File – Print” option from the CARI Spec Tool.
Example:

This will list the conditions of every CARI item defined in your BCI file. One can quickly
scan through this to verify the settings match the requirements. We initially had a few typos
in our settings file and this list helped us identify those. Another method for documenting the
CARI file settings is to use BRegEdit.exe to create what we now refer to as the “barf” file.
This tool will list (barf out) the CARI specification in a file suitable for documenting and
printing

4. It is beneficial to have two people testing – one reading the question and another responding.

This will help give more realistic sound file sizes and will give people an opportunity to
review the sound quality.

5. For CATI, special devices were purchased that connect the phones and CATI workstations

which allow the CATI machines to record the phone conversation. For testing CATI, you
should make sure testing is conducted using the phone and another respondent.

6. Verify that the settings in your BCI file are working as expected. For example, we set our

minimum sound file size to 6kb. We then purposely created small sound files by moving
back and forward through the instrument quickly and verified these files did not get saved
after exiting the instrument. The CARI log file is a good way to verify this as well. We also

 271

reviewed the size of all the sound files that were transmitted in from the systems testing and
verified all were greater than 6kb.

7. The CARI Team conducted an end-to-end full systems test to verify each step of the process

created and passed along the expected files. They verified that the correct sound/image files
were created on the laptops, those same files were packaged correctly in the zip (CAR) file,
the files made it back to HQ, and finally the correct files were processed through our Master
Control system into the CARI Behavior Coding system.

8. Verify that instrument lag is not introduced when modifying BCI file settings.

6. CARI System Testing Results

We conducted our final systems testing using Blaise 4.8.2b1529. This was the latest version we were
able to use given our timing. Results documented will reflect this version of Blaise unless noted
otherwise.

6.1. Sound File Results

Since the MP3 files generated by Blaise were very large, we decided to use WMA files. WMA files are
much smaller than the MP3 files. The sound quality was not as crisp, but the CARI Team agreed the
quality was acceptable for use in the behavior coding system. It is difficult to get exact comparisons since
the size of the sound file has so many factors – length, outside noises, computer settings, etc. Our
research showed that the Blaise WMA files were about 12 times smaller than the MP3 files. In addition,
WMA files compress better than MP3 files giving us even more file size savings. (Note that some of this
testing was conducted with an early version of 4.8.2).

The size of our WMA files ranged from 6kb (a little over a second) to 68kb (about 60 seconds). We
found it interesting that the average size of the CATI sound files (using the recording devices connected
to the phone and PCs) was larger than the CAPI sound files (from laptop). CAPI WMA file sizes ranged
from 6kb to 40kb while CATI ranged from 6kb to 68kb. The median file sizes were around 10kb for
CAPI and 14kb for CATI giving CATI about a 40% larger size. The 60 second sound file was about 60%
larger for CATI (68kb vs 40kb). We have not been able to determine the reason for this difference in file
size. One thought is that the CATI recording devices used in the phone centers may pick up more
background noise. Also, our CATI testing may have had more conversation than our CAPI testing.

6.2. Image File Results

In our initial testing of the Beta version of Blaise 4.8.2 we noticed that the sizes of the JPG files were very
large. Many JPG file sizes were well over 100kb. Given the number of CARI questions to be recorded
and the potential for multiple JPGs per question we investigated other image formats. The BMP files
were even larger so we tested the GIF format. The GIFs looked very promising - the image quality was
adequate and the size was very small. As we began to investigate using this format we discovered an
issue with it. Using the GIF image format caused a significant lag in our instrument. It added a 2-6
second lag when exiting a CARI question. This lag was not acceptable since it would disclose to our
interviewers which questions are being recorded. After discussing concerns about image file sizes with
Statistics Netherlands, a new feature was added to the JPG image format called “compression quality”.
This feature allows us to scale down the quality of the image in order to decrease image file sizes.

 272

Compression Quality was a very useful enhancement that allowed us to dramatically reduce the size of
the JPG files. The question with this new compression quality (CQ) setting was to determine “how low
do you go?” To help us answer this question the CARI Team compared the image quality and size for
the same screen shot with various CQ settings. The following graph shows how the size of the JPG file
changed with the various CQ settings:

 JPG File
Size (bytes)

Compression Quality Setting (testing with Blaise 1520)

The CARI Team decided on the 10% CQ setting to take advantage of the file size savings. There is
definitely image quality degradation with this setting, but the CARI Team agreed that the quality was
adequate to read the question text and make out the answer entered. During this testing, we also noticed
that lower quality JPGs compress better which translates into even more file size savings.

Our systems test findings indicated, as expected, that the images taken from the phone centers (4x3
monitors with lower resolution) were smaller than the images taken on the laptops (widescreen, higher
resolution). Image file sizes ranged from 32kb-52kb for CAPI and 27kb-40kb for CATI (CAPI was about
20-30% larger).

6.3. Comparing Sound Files to Image Files

Even with the savings in the JPG file sizes, the images were much larger than the sound files in our
testing. For CAPI, the JPG file sizes averaged about 3.4 times the size of the WMA files. CATI had a
smaller difference with JPG file sizes averaging about 2.1 times the size of the WMA files. The median
WMA file was about 10kb CAPI/14kb CATI while the median JPG file was about 38kb CAPI/30kb
CATI.

6.4. Overall File Sizes

From our system testing we are expecting the average compressed case to increase about .25 megabytes
in file size. This average includes cases that did not contain any sound/image files (which is what we
expect in our production), so CARI only cases would have a larger increase. Production may yield
different results since many of the system test files were scenario based. We are using a 6kb minimum
sound file size to try to reduce the amount of “extra” files that would be produced by FRs moving back
and forward throughout the instrument. We are hopeful that eliminating these files will save a lot of
space from extra sound/image files being created that really are not needed. It is hard to determine
exactly where to set this number since file sizes vary and the sponsors do not want to lose any

 273

conversation they may contain. We will have a better idea of these numbers after our production test later
this year.

6.5. Outstanding Issues

Since we conducted all of our systems testing with Blaise 4.8.2 build 1529 we are moving forward into
production in this version. During our verifications test, the CARI Team identified two issues with this
version of Blaise. Both of these issues worked correctly in prior versions of Blaise, and we believe both
have been resolved in the latest version of Blaise 4.8.2.

1. The sequencing of the Blaise sound/image file names was not working as expected. All files
created for a CARI question were assigned a sequence number of “01” regardless of how many
times the question was visited.

2. When the max recording time is reached for a CARI question (60 seconds in our instrument) –

meaning the CARI question was not exited before the max time was reached – the image file is
not created. The sound file is correctly generated, but there is no corresponding image file.

7. Conclusion

When implementing CARI into a Blaise instrument, we are looking for something that creates small,
useable sound and image files without noticeable instrument lag. We also want to be able to control when
these files are created and make sure that irregular movement in the instrument can handle the creation of
these files. More importantly, we are looking for something that is fairly simple to implement into an
existing Blaise instrument.

With Blaise 4.8.2 CARI we now have the ability to do just that. This software made our lives so much
easier. The most challenging part for us was dealing with the consent issues because of our agency
specific requirements. Newer versions of Blaise 4.8.2 give us more flexibility with how consent can be
handled which will hopefully make things easier for us to implement in the future. Another challenging
part of implementing CARI is determining the ideal settings for the sound and image files. Once the
settings that work best for you are determined, you are well on your way to implementing CARI. The
BCI file and editor (BlCariSpec.exe) are useful tools that simplify the selection of CARI fields. The
editor also allows you to easily try out and test various sound and image file settings. If you desire,
Blaise CARI also provides the flexibility to use more than one BCI file with your survey.

We wish to thank Statistics Netherlands for adding CARI into Blaise. After attempting to implement
fairly complex CARI ourselves, we can appreciate this new component to the Blaise software.

8. Acknowledgements

The authors would like to acknowledge the American Community Survey Office (ACSO) CARI team for
their contributions and collaborative efforts. They were a huge help with identifying requirements,
testing, and identifying issues with our various versions of CARI. The views expressed in this paper are
those of the authors and not necessarily those of the U.S. Census Bureau.

 274

Experiences with Blaise for Data Editing in the Housing Rental
Survey

Harm Melief and Mark Kroon, Statistics Netherlands

1. Introduction

This paper reports on a data editing system designed and built at Statistics Netherlands for use in the
housing rental survey. The survey collects data on housing rental, which is used to calculate price indices
f or housing rental costs and which is also supplied to the Dutch Government. The data is collected partly
from paper forms and partly using electronic sources, all of which have to be corrected manually. Chapter
2 describes the survey in more detail and will explain what features a system should contain to support the
survey.

The resulting system is described in Chapter 3. The system supports data import into a relational database,
scanning it for mistakes, correcting them, calculating the price indices and exporting the results. All these
properties were implemented in the Blaise Suite, using Manipula, Maniplus and Blaise. The resulting
system is fairly complicated, the implementation of which presented us with a number of unforeseen
problems. In chapter 4 our experiences with using Blaise for data editing are described. Finally, these
experiences are discussed in chapter 5, where our final conclusions are given.

2. The housing rental survey

2.1 Description of the housing rental survey

The housing rental survey (huurenquête) is conducted by Statistics Netherlands (CBS) and (partly)
commissioned by the Dutch Government. The main output of this survey is the housing rental price
index, which is computed for both the normal and harmonized rents. Secondary outputs are the garage
rental and service charges price indices.

The housing rental survey is a stratified fixed panel survey of some 14000 (rented) houses from
approximately 1300 respondents, i.e. rental agencies. Each year a few hundred houses drop from the
panel, usually because they are either sold or demolished. Therefore, the panel is yearly replenished from
a group of new rental houses. Moreover, every few years the panel is updated to remove any bias and fill
out the strata if needed.

Of the roughly 14000 houses 9000 rentals are collected using paper forms, 4500 are obtained from the
administrations of large rental organizations and some 500 are provided as electronic forms (Excel). The
paper forms are sent out and received by a special department within Statistics Netherlands. They are sent
out in May and usually received over a period of one to two months, starting from the beginning of July.
The filled-out paper forms are manually entered into an Microsoft Access database, which is updated
daily during the response period.

Approximately 50 variables are measured, most of which are used to determine the housing rental price
indices. Some variables, however, are specifically collected for the Ministry of Housing, Spatial Planning
and the Environment (VROM), which uses this information for setting housing policy.

 275

All forms are inspected for inconsistencies, omissions and mistakes, after which they are manually
corrected. Small and obvious mistakes, or mistakes resulting from the typing out process, are immediately
corrected, but for most problems the respondents need to be contacted. Much of this work is done by
temporary workers. For optimum efficiency all imperfect records of one respondent are collected and
treated in one phone call. Thus only one person is responsible for a given respondent, which guarantees
that respondents are not needlessly contacted multiple times. Distributing the work amongst the workers
is something of a challenge, as will be explained in chapter 3. Preferably all errors are corrected, but to
remain cost effective, some are ignored, especially if the involved variables are not used during the
calculation of the price index.

Based on 4 categories, type of housing (2), type of rental agency (2), year of building (4) and geographic
region (4), the housing rental price index is stratified into 2×2×4×4 = 64 strata. For the rental prices the
following method is used to calculate the price index. Within each of the cells, the sample mean of all
observed and corrected records is calculated. The results of the cells are combined using a weighted
average to give the average rent of the country, from which the index is calculated as the ratio of the
current and the last period. The weights for this calculation are supplied by VROM, which has
information about the complete housing rental sector. For the garage rents and service charges the price
indices are calculated through an unweighted average of all respondent and corrected records.

2.2 A supporting system

Discussions with the supervisors of the process helped us define the main features of a support system for
the survey. As described above the main purpose of the process is the editing of the respondent data and
the calculation of the price index. The task of supporting the data editing consists of three parts. Firstly, a
large set of rules is needed to detect any imperfections in the forms. Secondly, an incorrect form needs to
be conveniently presented for correction. This means that as much information as possible should be
presented in one screen and that related variables should be grouped together. Thirdly, due to the large
number of forms that need to be corrected, an efficient system for distributing the work amongst the
temps was desired. Calculating the price index is a relatively straightforward set of aggregations, which
can be supported by many different tools.

The system of course needs to support the import of the survey forms, but there are also a number of
supporting data sources that need to be imported. At the end of the process the computed results, but also
some of the micro-data needs to be exported for use within our organization. Just as for the calculation the
I/O can be performed in many different tools. This means that the most distinctive feature of the desired
system is support of the data editing. It was deemed that the Data entry Program of Blaise could support
this feature, while Manipula should be able to support the I/O and the price index calculation.

3. Support system in Blaise

We have built a system, which supports the process described above, in the Blaise Suite version 4.8.1,
build 1447. In this chapter the main parts of the system are described: data I/O (section 3.2), data editing
(section 3.3), calculation (section 3.4) and classification management (section 3.5). The basic architecture
of the system and the coordinating main menu are described in section 3.1

3.1 General architecture

The system needs to support a large number of different functionalities. To organise the program, a home
screen was built in the form of a Maniplus menu. This menu delivers a menu bar, from which the
functionalities may be called up. These functionalities are grouped into three main groups: editing,

 276

management and miscellaneous purposes. This last group contains both data I/O and the price index
calculation. The management section contains both classification management and user rights.

As the most important function of the system is to support the editing (correction) of the survey forms,
this forms the basis around which the system has been build. Consequently, the core of the system is
determined by three data models:

1. Panel data: This contains the fixed data of the panel houses. Fields include the address and a link to

the rental agency.
2. Respondent data: This contains the information of the rental agencies. Variables include the contact

information and identifying properties of the agencies.
3. Variable data: This contains all the variables from the survey. This includes all the rents and service

charges, as well as the properties of the houses, such as number of rooms and parking facilities.

These three data models are linked through the panel data model, as this model defines the house through
its primary identifier, its address. Besides these main data models, a large number of supporting data
models were needed for the different parts of the program. In the next sections these different parts of the
program are described at which point the supporting data models are described.

Most data is stored in a SQL database. The data models were connected to corresponding database tables
through .boi files. Since Blaise only allows joining one record at a time, we chose to combine data from
the different data models by creating views in the database. For instance for the calculation information
from all three database tables is needed, which was obtained by making a view in which these three tables
are joined. These views can again be accessed through a boi file.

3.2 Data I/O

As mentioned in the previous chapter, the survey is collected either as paper forms, from the
administration of a large rental agency organisation or from electronic sources. The paper forms come in
two formats, introduction forms for new respondents and panel forms for recurring respondents. Including
the two types of electronic data, this means that four statistical sources are used. Moreover, some 8
secondary sources are needed to supply supporting data. These typically include a ZIP-code register,
information about the values of the properties and others. The sources have different formats, mdb
(Access), xls (Excel) and text (csv and fixed columns).

The output takes two forms. A group of output is derived from the panel and respondent tables. These are
used for the setting up of the paper forms at the start of a new survey. These outputs are all text files. In
addition to this group there are some 12 different outputs required of different aggregates of the three
tables. These outputs are delivered to different customers within and outside the statistics bureau. The
most important customer is the government (VROM). These files are also all text files.

All these data are imported or exported using Manipula, which supports all of the required file types. The
required data models for the input or output files were mostly programmed by hand, but for all mdb or xls
files, which are accessed through a boi file, the Oledb workshop could be used.

3.3 Editing the data

The editing of the data consists of three parts, work assignment, main editing window and record based
editing (in a DEP). These three approaches work together to form an interactive environment, which
supports a group of data editors. Each of these components is treated in a different subsection.

 277

3.3.1 Work assignment

Much of the actual editing work is done by temporary workers. As explained in the previous chapter
mistakes or omissions are corrected by calling the respondents. For optimum efficiency all imperfect
records of one respondent are collected and treated in one phone call, which means that the work
assignment is grouped by respondent. To facilitate this process a list of all respondents with imperfect
records is made. This list is presented in a separate window in a lookup, see figure 1. The list contains the
name of the respondent as well as the number of houses, number of mistakes and types of mistakes. From
this list entries can be selected which can be assigned and selected for editing (see next section) by using
the buttons at the top of the screen. A number of filter options are also supplied, in the form of the
controls at the bottom of the screen, which allow the temps to select only their own respondents or to
prioritize unassigned respondents.

Figure 2: This figure shows the work assignment screen. The buttons at the top of the screen govern refreshing, refilling the list
and allow the user to assign or open an entry in the main editing window. The controls at the bottom of the screen govern the
different filtering options.

This screen was built in Maniplus. The lookup was found to be an efficient method of presenting large list
of data. Moreover it could be integrated with other modules such as the main editing window. This
allowed the building of an interactive system. The disadvantage of lookups is that they are difficult to
sort, especially on different categories, which meant that the different filtering options had to be
implemented. Moreover, we had some problems with refreshing of the lookups, see next chapter.

 278

Figure 3: This figure shows the main editing window. This window was set up to edit groups of houses, typically all houses of
one respondent. For privacy reasons the rental prices have been removed.

3.3.2 Main editing window

As explained above, the editing is simultaneously performed on all houses of one respondent. Therefore a
screen was build which supports the editing of a group of houses, see figure 2. The upper lookup shows
the selected group of houses, one of which can be selected. The lower lookup shows a time series of the
currently selected house. The buttons to the right of the lookup govern all group-based actions (the first
two bullets below). The controls at the top of the screen show detailed information on the currently
selected house and the associated respondent. The buttons allow the user to edit some of the detailed
information and open a DEP for the panel data, variable data and respondent data for the currently
selected house.

In principle the group can be selected based on different criteria. Usually, all the houses of one respondent
are selected. A number of actions can be performed in this screen:

• Changing variables of the entire group. Certain variables, such as the rental costs and also the status
of a record (whether it is correct or not) may be changed for an entire group. This is governed by
the buttons to the right of the lookups.

• Changing the filters to change the group size. As mentioned above, the typical group contains all
houses of one respondent, but for larger respondents it often is convenient to further refine the
filter, for instance to show only the records with mistakes in it. This is also governed by the buttons
to the right of the lookups.

• Viewing and editing currently selected house: The details of the currently selected house are
presented in the upper lookup. Double clicking one record of the list triggers a refreshing of the
lower lookup, giving a time series of that house over the last ten surveys. This also updates the
controls at the top of the screen. The block on the left shows information about the respondent of
the house, which facilitates the contacting of this respondent. The button below the information
opens a DEP, which allows the editor to change the information of the respondent. The controls on

 279

the right give some of the panel and variable information of the house. The buttons allow the editor
to change the status of the house and also to start the DEP’s for these two data sources, which is
treated in the next section.

3.3.3 Record based editing (DEP)

From the main editing window data entry programs (DEP’s) may be launched to edit records in the three
main database tables. Each of these DEP’s is constructed from the corresponding data models. The layout
of the DEP’s has been defined in the layout sections which use modelib and menu files.

The panel and respondent data entry programs are relatively simple. They both contain only one double
column with the names and values of the variables. Both sources use only one external data link, to the
ZIP code register to check addresses which are entered. This check is also the only rule in these data
models.

The variable data has a much more complicated layout, see figure 3. This data source contains most
yearly changing variables and as such most editing is done in this screen. The DEP contains some 150
variables and another 50 auxiliary variables. It is spread out over two pages. To check for mistakes and
inconsistencies approximately 150 rules have been defined.

The screen is set up in three parts. The buttons govern a number of functions, which are explained later
on. The information blocks at the top of the screen contain external data from the other two main data
sources. Below this information block the variable data is presented. The third and fourth columns are
conditionally interchangeable, depending on whether the record represents a new (introduction) or a panel
housing unit. Violations of the rules, which corresponds to errors or omissions in the data, are denoted in
the usual manner using a red sign with a white cross in it.

Figure 4: This figure shows the DEP for the variable data. For privacy reasons some of the contact information was removed.

All three DEP’s contain a number of buttons defined in the menu file. The variable data has most buttons,
which are mainly used for navigation and changing the status of the record (validate/reject). All three
DEP’s have a close button which starts a Maniplus script, which forces the user to place a comment if the

 280

record has been altered. In that case it also records who the user was and at what time the record was
changed. This information is used to supervise the temps.

3.4 Calculation

The calculation was performed in Manipula. As will be explained in section 4.2, a view was made, which
joined the three main data sources. This view is used as the input for the Manipula script. The script uses
a sort section for aggregation, in combination with two manipulate sections. In the first section each
record is assigned to one of the cells mentioned in chapter 2. Also, all records that should not participate
in the calculation, either because they were manually rejected or because essential variables are blank, are
removed from the calculation. Subsequently, all valid records are aggregated in the sort section, after
which the average rental prices for each cell are computed in the second manipulate section.

The results of this calculation are joined to the weights per cell that are supplied by the Ministry. In
additional scripts the data are then summed to different aggregates. These include aggregates over
provinces, municipalities and a total aggregate for the entire country. For all aggregates the average prices
are calculated both for the current and former year. These averages are divided to obtain the price indices
for the aggregates. The aggregate for the whole country is called the housing rental price index and is part
of the consumer price index. These results are also used for some of the export products, mentioned in
section 3.2.

For the service charges a different approach is used. Firstly, some 700 categories of service charges have
been recorded, which are grouped into 13 categories (12 real and 1 residual groups). Secondly,
unweighted (arithmetic) means for the entire country are used to calculate the average values for the
former and current year. The averages are then divided to obtain the prince index for the 13 categories.

3.5 Classification management

Within the survey two types of classifications are in use.

• A large number of categorical variables are used, half of which are yes/no variables. The other half
usually have between five and ten categories. These variables are defined using Blaise types, the
advantage of which is that Blaise consequently enforces these types in the DEP and in Manipula
and Maniplus scripts. A disadvantage is that these types are hard-coded and changing them usually
means changing all involved data models. That in turn means that all Manipula/Maniplus scripts
and boi files that use these data models have to be recompiled too.

• Lists are also used extensively in the survey. For instance the 700 different service charges
mentioned in the last section have to be categorised into 13 groups. These lists have to be
maintained which is typically done in the following manner. The list is put in a table, which is
accessed through a boi file. A screen is built in Maniplus in which a lookup presents the list. A user
can select an item from the list and subsequently edit this item, either directly through a control and
buttons or by opening a DEP to edit the entry.

4. Using the Blaise Suite

In the previous chapter we have presented a large system build in the Blaise Suite (Blaise, Manipula and
Maniplus). To build this system we have used many parts of the Suite extensively and in some parts
reached the boundaries of the Suite. In this chapter our experiences with the main components of the Suite
are described.

 281

4.1 Experiences using Blaise

Blaise was used to generate the DEP’s for the main data sources as well as a few DEP’s for the editing of
classifications. In general our experiences with Blaise were positive. Defining data models is rather
straightforward and self defined types are a very powerful tool. In particular the property of Blaise (and
Maniplus) that values outside the type definition are automatically blocked is very convenient. For the
DEP many automatic properties are set and many settings may be refined in the mode library (bml).
Finally, the rules, which are integrated in the forms, are a powerful tool of checking the validity of the
input. All these properties make Blaise a very powerful tool for building survey forms.

A less attractive property of Blaise is that the layout of the DEP is divided over two sections, the order of
appearance is defined in the Rules, while their aspects are defined in the layout section. Moreover, four
files are used to define the DEP, the bla, which contains the variables and the aforementioned sections,
the modelib, which allows customization of the variable and page makeup, the menu file (BMF), which
allows customization of the menu bar and the datamodelproperties file, which is used to define some of
the properties of categorical variables. This separation of the code makes the development of a complex
DEP somewhat of a struggle. In fact for highly customized and interactive designs Blaise can be as time-
consuming to use as any normal programming language. This is especially the case if a reasonably small
number of variables is used in a complicated design, as was the case in the variable data DEP.

Another problem with Blaise is that including external files into the data model can be rather complicated,
a fact that is made more troublesome by the fact that Blaise has no debugger, as opposed to Manipula and
Maniplus. Moreover, external tables, which are imported through a boi file into a DEP are completely put
into memory even though only one of the external records is needed. For our project this meant that by
opening one record in the variable data required opening the full panel and respondent data. This resulted
in an unacceptable performance loss. The solution was to gather into a separate table all relevant external
data for a record, data which is already opened in the main editing window. This table was then used as an
external within the DEP, which improved the performance to an acceptable level.

Finally, if the data model is used in combination with a boi file, as we did, changing rules may invalidate
the boi link. For this problem, however, there is a solution: reservechecks may be used as ‘false’ rules, but
they require a strict bookkeeping.

4.2 Experiences using Manipula

Manipula was used in our project for calculating the index, for the data I/O and also for various smaller
functions, mostly in cooperation with Maniplus. We found Manipula to be a versatile tool, which can
access a wide range of file types, especially through the boi files. Moreover, the property that Manipula
automatically links input and output variables of the same name, reduces the number of lines of code. The
aggregation (sort section) is unusual as it combines ordering and aggregation of data, but it works and is
rather fast.

However, we found that it had three main limitations, all associated with boi files. Firstly, it was found
that joining data from two tables, either bdb or boi files, is very slow. For text files this problem doesn’t
exist, but for the sake of data integrity databases were preferred. In our system data joining was often
needed, which made this a big problem. The solution was that we generated a number of views, which
performed the necessary joining within the database and which we could access through new boi files.
The resulting performance was much better.

 282

The second limitation was that while reading data through a boi file has a decent speed, writing data to a
database table is very slow. This problem was acute for the importing of data, which is performed daily
and could take up to two hours. We haven’t found a workaround to improve the performance. The import
is now performed at night through a batch job.

The third problem was that, while the boi files allow version control on records, this capability makes
database interaction even slower. This also affected the main editing window and the DEP’s, all of which
need to interact with the database. In the end, to maintain a decent performance for our system, version
control was dropped. We decided to use daily version control by making a backup of the main data tables
each night before the new import.

4.3 Experiences using Maniplus

Maniplus was used for defining the main menu and the different editing screens. A Manipula menu
defines a menu bar onto the main window. It may adopt different forms, depending on the operational
rights of the user. The advantages of using Maniplus are that it can communicate with Manipula and
Blaise. Moreover it is relatively simple to set up. The main disadvantages are that it is somewhat limited
and doesn’t allow a full integration with other screens, like office applications, where the menu bar is
always shown in all opened windows..

All screens, except for the DEP screens are in effect graphical user interfaces, which in Maniplus are
called Dialogboxes. Four types of objects may be defined within a dialogbox, buttons, texts, controls and
lookups. Buttons and texts are functional, but not special when compared to other GUI builders. Controls
are ways of presenting and editing variables and as such may take different forms (radiobuttons,
dropdowns, editfields). They are a robust way of accessing data and actually force the user to use values
within the type definition. The lookup is a good way of presenting list. They automatically align the data
and return the primary key of the selected record.

The main problems with Maniplus screens are that most properties of the elements are hardcoded. No
relative positioning may be used and no wildcards may be used for the other properties such as colouring.
This can make setting up and changing a window rather time consuming. Also, refreshing Maniplus
windows is difficult. At the beginning of the project the Evaluateonchange setting did not work. A new
build was rolled out by the Blaise team, fixing this problem. However, this property remains somewhat
difficult in use and might slow down an application. We found that a good way of refreshing a window is
performing a (dummy) writing action on the underlying databases. This triggers a refresh of the values of
that source and it can be implemented in a refresh button.

5. Conclusions

In this project we have build a complex data processing tool, which uses the Blaise Suite in an unusual
manner. While Blaise has been designed to perform data collections for surveys, we have elected to only
use it for the editing of separately collected data. Thus, we did not use one of the primary strengths of
Blaise, interactively collecting data, while using rules to force only correct responses. We did find that it
is certainly possible to perform data editing in Blaise. However, given the size of our data set and the fact
that we had to use relational databases for storing our data. As a consequence the performance of the
system was a major issue. Moreover, the complexity of the editing process, especially the work
distribution and the classification management meant that we had to build much functionality in
Maniplus. It did support these functions, but for this purpose it is not a particularly powerful tool.

 283

Even though we did have some problems using the Blaise Suite, the support team was always very
helpful. We usually contacted them through the normal Blaise support e-mail and they usually came back
to us within a day. This aided significantly in making this project a success.

Concluding we can say that if most of the data collection is performed in Blaise, the last bit of data
editing can very well be done in this tool too. It is a very good package for quickly building those types of
tools. However, if the data collection is not done in Blaise and the complexity of the required solution
becomes higher, Blaise is not the ideal tool for further data processing.

 284

Post-Collection Processing with Blaise in a Distributed
Environment

Mary Laidlaw, Mike Rhoads and Jane Shepherd, Westat

1.0. Introduction
The processing, quality review, and delivery of survey data for a recent longitudinal study was
particularly challenging due to the need to support multiple users in a distributed processing environment
with highly structured levels of data access. As on most longitudinal studies, the need to re-field data
swiftly to drive the subsequent protocol for each participant competed against the need to deliver clean
and consistent data for analyses. Our data processing solution had to meet both requirements
simultaneously. In addition, the data that required post-processing was collected in multiple modes:
Blaise CAPI, Blaise CATI, and hardcopy forms scanned through data capture software. Reviewing the
data with an eye towards consistency between instruments was essential due to the need to determine the
appropriate next steps in the specific participant’s protocol.

In order to meet the needs of this and other Blaise projects, we enhanced and integrated a set of Blaise-
based tools that could be used for a variety of data processing tasks at multiple locations. This paper
describes our experience with the implementation of the Blaise Data Processing and Quality Assurance
system (BDPQA) we developed. We discuss: the initial requirements of the projects; the system and
database architecture; the flow of data to and through the system; and the view of the tool from the users’
perspectives. We conclude with some lessons learned from our experience.

2.0. The Post-Processing Requirements
Westat has used Blaise post-processing tools for many years. In recent years, a number of projects have
required more extensive post-collection processing. Some of the requirements addressed by BDPQA
include:

• The division of collection and editing responsibilities between a central office and distributed
sites, each of which was responsible for the quality of its collected data.

• Multiple views of the data so that staff at the distributed sites could access only the data for that
site’s cases. The staff at the central office could access all collected data.

• The sequencing and division of post-collection processing tasks to be performed by the sites and

the central office. For example, while interviewer field comments were most appropriately
reviewed and resolved by the sites which were responsible for that staff, coding of text responses
was conducted by the central office in order to ensure project-wide data consistency.

• Two levels of review – the editor and the supervisor – with appropriate task authorization in order

to ensure high data quality and the validity of updates.

• Documentation of all data decisions across data collection sites and the central office in a
comprehensive Data Decision Log. Again, the site staff could view only the decisions that
pertained to the site’s cases. The central office staff would need to view the decisions across all
centers.

 285

• Integration of data processing for hardcopy form data. All editing of data collected via hardcopy
would need to occur during post-data collection processing and would be documented in the data
decision logs along with decisions about CAPI and CATI data.

• Easy update of the post-processing tool as new versions of hardcopy forms as well as the Blaise
instruments and their data models were fielded. It was also required that the tool be adaptable to
any new instruments added to the study protocol.

• An efficient flow through all post-processing steps at both the sites and the central office with

ongoing support for all instruments. Because the progress of the protocol for each respondent
depended on the likelihood and timing of medical events, the sequence of data collection would
result in a flow of data from all instruments into the study’s systems on an ongoing basis; there
was no specific end date for the use of any instrument and the start up of the next phase of the
study. Collected data was expected to complete processing by both the site and central office
within three to four days of collection.

• Capability for a wide range of ad hoc and predefined reports to be used for multiple workflow

and analytic purposes including evaluating the flow of the data through the system, the
consistency of coding, the status of each case’s data across instruments at any one time, etc.

• The processing approach needed to manage the storage of the original data file (data as collected

and passed to any post-process) and all other data files generated as a result of BDPQA
activities. All file versions needed to be immediately accessible for a period of at least one year
in case of the need for additional processing.

• The process and flow of each instrument’s data for each case (referred to as a production unit
throughout this paper) must be independent of all others. To accommodate a variety of protocols
for each household and respondent, the existence of one instrument in the BDPQA did not
necessarily require the existence of another instrument in the system at the same time.

Given these requirements, Westat leveraged an in-house Blaise editing system as the base for a new
distributed approach, BDPQA. The editing process within BDPQA centers on the review and resolution
of decision log entries. Decision log entries are created for field comments, Blaise edits, and reported
data issues. This paper addresses our experience with the initial version of the distributed processing
BDPQA system.

3.0. BDPQA System Architecture
The BDPQA system consists of two primary components: a server-based batch process called Workflow
Manager that manages the flow of data within the system, and a Windows desktop interactive application
that is used by editors and verifiers. There are also two administrative tools. One of these (BES Setup) is
used to generate an initial instance of the system and to manage the deployment of system updates, while
the other (Manage Users) is used to control user access and roles within the system.

All system components are primarily written in VB.NET. The system makes use of numerous Blaise
capabilities, including the Data Entry Program (DEP), Manipula, Blaise Datalink, and the Blaise
Component Pack (BCP). We use Microsoft SQL Server 2005 for data storage, and utilize SQL Server
triggers and stored procedures to implement such functions as change auditing. In addition to these
primary technologies, BDPQA uses various COTS software to perform certain functions. These include
Microsoft Access (generating reports), eDocPrinter PDF Pro (converting reports to PDF format), Adobe
Reader (viewing PDF documents), and Microsoft Word Viewer (viewing audit trails).

 286

Since the system was designed for access by widely distributed site-based staff, we thought about whether
we should use Blaise Internet as the basis for the user interface component. We decided against this
option for two primary reasons. First, as we have discussed in previous papers (Allan, et al., 2001;
Dulaney and Allan 2001; Gowen and Clark 2007; and Frey and Rhoads 2009), Westat has evolved an in-
house Blaise editing system over many years, and we wanted to take as much advantage as possible of
that desktop-based user interface code. Second, while we have used Blaise Internet for several
interviewing projects, we did not have any experience with it for data editing applications. Although we
certainly did not rule out the possibility that Blaise Internet could be used as a suitable case review and
updating tool for data editors, we did not have nearly enough time for research and development in this
area given the tight time pressures of the initial project.

Since we decided to stay with a desktop client rather than implementing a Blaise Internet solution, we
needed an alternate way to make the system available to site-based staff. Fortunately, Westat had already
implemented a highly-secure Citrix platform for other project purposes. We were thus able to implement
the user interface component as an application on the Citrix desktop, which was then available to
authorized site-based and home office staff.

3.1 Workflow Manager Component
The Workflow Manager component of the BDPQA application controls the flow of all data into and
within the system. It is a nightly batch process, although it can also be run on-demand if special needs
arise. Workflow Manager performs the following tasks:

1. Loads all newly completed Blaise interview data into interview data tables in the site-level SQL
Server database

2. For all new cases, correctly names (by instrument and ID) and loads all acceptable audit trails
into the system.

3. Updates the site’s decision log table by going through all non-closed out cases in the interview

data site tables and adding an entry for:

a. all new interviewer comments found by invoking the GetRemarks method from the
Blaise API

b. all new errors found by invoking the Blaise API’s CheckRecord method

4. Loads the interview data from all newly closed out site office cases into interview data tables in
the central office SQL Server database

5. Loads the decision log site office table entries for all newly closed out site office cases into the
decision log table in the central office database

6. Updates the central office decision log table by going through all non-closed out cases in the

interview data central office tables and adding an entry for all new errors found by invoking the
Blaise API’s CheckRecord method

All of the data loading steps listed above are performed by Manipula programs, which take advantage of
Blaise capabilities for accessing and storing data in multiple formats—native Blaise, SQL Server, and
XML (which is used to bring in records from the data capture system). Workflow Manager also uses

 287

Blaise API routines to extract interviewer remarks and to identify any violations of Blaise editing rules in
incoming cases.

3.2 User Interface Component
Section 5 below describes the interactive component of BDPQA from a user perspective in terms of its
look and feel and its functionality. From a systems perspective, an essential element of this component is
its integration with Blaise through the use of the Blaise Component Pack (BCP). The system invokes the
Blaise DEP both for data updating and for data browsing. The use of DEP ensures that the user of the
system cannot make any changes to the data that violate the rules of the data model.

The user interface component also interacts with the SQL Server database tables that Blaise uses to store
its data. We set up an insert trigger on each of these tables, which is activated whenever a data change is
made (causing a new row to be inserted into the table). The trigger then invokes a stored procedure that
compares “before” and “after” values to identify which specific data items were changed. For each
difference that is found, we insert a new row into a separate table that includes the case ID, variable name,
and newly-assigned value.

3.3 Data Storage
All data within BDPQA is stored in Microsoft SQL Server. Typically three separate databases are used:
one for each of the two phases of editing (site and central office), and a third database that contains
various types of metadata that are used by the system. This is configurable at the time an instance of the
system is created, so that all of this information could be stored within a single database if desired.

Within the site and central office databases, some of the tables are effectively “owned” by the Blaise
Datalink component. Workflow Manager uses Blaise to initially load case data into the system, and the
Data Entry Program that is invoked from the interactive component of the system uses the data in these
tables to replay and update cases. These tables are read by non-Blaise modules of the system for report
generation and other purposes, but they are written to only by Blaise. Blaise Datalink offers a number of
data storage options, which it refers to as data partition types, and it also provides a capability it refers to
as “generic” storage. For BDPQA, we use the Flat Blocks data partition type. We also selected the generic
data storage option so that we could take advantage of versioning. This data storage structure is described
in much more detail in an earlier paper (Frey and Rhoads, 2009).

In addition to the tables used by Blaise Datalink, the databases also contain numerous other tables that are
managed by the system entirely outside of Blaise. These include tables that are used to store and manage
decision log entries, maintain user information and log system access, and hold various items of metadata
that are used by the BDPQA system.

3.4 Access Control and Security
The BDPQA implements a highly granular user access control model. Access is controlled by site, by
instrument, and by function. For example, some users may be provided with read-only access so that they
can view case data but not change any values, and only designated users may be allowed to view Blaise
audit trails. User access information is stored in SQL Server tables, and there is an interactive interface
module (Manage Users) that allows the system administrator to add and remove users and to modify
access rights. System users can access the SQL Server database only through the interactive component of
the system, which enforces the access constraints described above. As an additional precaution, the case
data from each site is segregated into a separate schema and set of tables.

 288

The BDPQA can operate within an overall environment that provides additional security measures. For
instance, the system can be reached only through a Virtual Private Network (VPN), and access to it
requires the use of two-factor authentication.

3.5 Configuration and Customization
BDPQA includes a setup tool that is used to generate an initial instance of the system and to manage the
deployment of system updates. This tool, combined with a set of initialization (INI) files, provides for
identifying the necessary network data locations, SQL Server databases, Blaise data models, and sites.
The primary function of this module is to create the necessary schemas, metadata, BOI files, instrument
tables, and other objects within the databases.

Since the BDPQA is a corporate system intended for use on multiple projects, it was designed to be
highly customizable. This is achieved through a combination of INI files and metadata tables within SQL
Server; as much of the system logic as possible is implemented through table-driven programming.
Among the aspects of the system that can be customized for each project are the following:

• Verifier Role – Whether the user who edits a decision log entry can also verify the same entry

• Edit Check Exclusion – Which edit checks, if any, should not produce decision log entries

• Critical Data Items – Which fields, if any, should be included in or excluded from the Critical
Item report

• NonDeliverable Items – Which fields, if any, do not need to be included in deliverables

• Watch Window – Whether the Blaise watch window should appear on the screen during replay

• Field Audit Trails – Whether field audit trails will be provided to system users

• Name to be used for instrument (form) in UI screens and report headings

• Name to be used for study in UI screens and report headings

• Internal security – List of the login IDs and roles of all individual users

4.0. The Data Flow within BDPQA
As indicated above, the Workflow Manager module of the BDPQA ran daily to pick up the new
production units transmitted from the field and made them accessible to the editor (site office) level of the
BDPQA. Once the site had completed all work on the production unit, the Workflow Manager moved the
closed production unit into the database accessible to the Supervisor (or central office) view. This
movement is illustrated in the following diagram:

 289

The diagram illustrates the centrality of the Decision Logs to the movement of the data through the
system. Because the BDPQA centers on the decisions, a case cannot be closed out of the system – either
at the site (editor) or central office (supervisor) level - until all decision log entries have been reviewed
and resolved. This review and resolution process normally involves the following four steps for each
decision log entry:

1. Review and resolution by an editor level editor

2. Review and resolution by an editor level verifier

3. Review and resolution by a supervisor level editor

4. Review and resolution by a supervisor level verifier

The resolution at any step overrides the resolution made at any previous step; this gives the supervisor
level verifier the final say. There are some coding-related and other circumstances in which a decision
log entry is not generated until the production unit reaches the supervisor level. For these entries, the
review and resolution process is limited to only the last two steps.

5.0. The Users’ Perspective: Two Views of the Tool
The overall approach for the initial project’s data processing was to give each site office primary
responsibility for the accuracy and completeness of its collected data and the home office responsibility
for the consistency of the processing of the data across all sites. Therefore, in terms of post-processing
division of labor, the site offices were to perform the following tasks:

• Documenting in the system any issues reported to the office that might affect case data;

• Reviewing comments entered into the CAPI and CATI instruments;

• Updating the case data, if necessary, in accordance with issues and comments;

• Running the edits programmed into the Blaise data models to check that the transmitted and
edited data was recorded as expected by Blaise;

 290

• Reviewing case data as needed to support inquiries from the field or to validate interviewers’

work; and

• Releasing the data to the home office for finalization.

For the initial study, Westat served as the central office. Westat’s responsibilities for post-processing
included:

• Establishing and documenting a consistent body of editing rules (based on situations encountered)
to be implemented by the site offices;

• Reviewing all data updates and data decisions made by the site offices to ensure standardization
of data processing across the study;

• Coding text responses as required by the study;

• Reviewing frequencies and cross tabulations to identify unusual data patterns; and

• Finalizing the data and corresponding documentation for delivery in preparation for analysis.

5.1 The Users’ View: Editor Level
It was intended that the site offices would use the editor view of BDPQA. After the user signed in to
BDPQA, and connection and loading were complete, the user selected the instrument to be worked.
Regardless of the instrument selected, BDPQA users at each site office were limited to the data for their
PSU and role only. We worked with the sites to ensure that only appropriate staff had only the access they
needed. After the instrument was selected, the system displayed the BDPQA Editor Main Menu.

 291

As you can see on the illustration, the BDPQA Editor Main Menu presented options in the order of
expected workflow. (For this version of the tool, Manage Sample was not active, because this function
was not required for the initial phases of the study.) Within the editor view, BDPQA site office users
could select:

• Pending Work to review, resolve, and document in the Decision Log all field interviewer
comments, post-data collection data issue reports, and edit checks;

• Browse Instrument to replay the instrument in read-only mode;

• Verify Work to review and verify data decisions at the 100% level, to run the reports that
could assist in the verification of work, and to update the status of the data decisions to close
them out individually;

• Add Data Issue to enter into the decision log any data issues as reported to field supervisors
and data managers. The Add Data Issue screen functioned as an electronic template and all
fields were required so that issue documentation would be consistent and interpretable;

• Run Reports to run the programmed monitoring reports to track and supervise workflow
through data processing. The user had the option of viewing the report on the screen, saving
the report in PDF format or printing the report; and

• Editor Case Close Out to release the production unit to the next level of processing – the
supervisor level.

 292

The core of the system is the Pending Work module, which allows users to review the details of a
field comment, data issue, or edit check, and to document their resolution in the decision log.

The Pending Work screen has three main sections. The items displayed in the Heading section include:

• Subject ID (here, a Dwelling Unit or DU ID) with which the decision log entry is associated.

• Question and Variable fields which act as filters. Filters can identify all work related to a
particular question or variable.

• The Source of the issue; this could be a Field Comment, an Added Data Issue or an Edit Check
failure.

• The Replay Instrument button takes the user to the instrument in data collection mode to review

and update data.

The next screen area is the Comment/Data Issue section and displays:

• Question and Variable with which the comment/issue is associated.

• Source - the original value for the variable.

• Edited - the current value. If the data has not been changed within BDPQA, the Source and
Edited values will be the same.

 293

The lower portion of the screen is the Decision section and includes:

• The Change Association button is used to change the Question and Variable with which the
comment or issue is associated. Often in the field, an interviewer will need to enter a comment at
a later point that does not directly relate to the relevant question. In order to include the most
relevant associations in the data decision log for reporting and sorting purposes, this functionality
was included in the processing options.

• The Decision Category is initially blank. It is used to indicate the level of action (or inaction)
required to resolve the issue. The selections include Leave As Is, Action Required, or Supervisor
Review. It should be noted that if Decision Category is set to Supervisor Review, the
Comment/Issue Status of the issue will remain “In Queue” and cannot be changed. A verifier will
have to look at the issue before it can be resolved and the status updated.

• Rule indicates the standard rule that was followed to resolve the issue and update the data, if

required. It was intended that the set of rules would build throughout the course of the study as a
variety of data issues were encountered.

• Decision Description is the detailed description of the action that was taken.

• The Case Updated box and the Date Updated field are related. If the box is checked by the user

to indicate a data change, the system fills the date.

• The system populates Editor with the current user’s ID when the user saves work and auto-fills
the date in Last Update.

• Comment/Issue Status describes the point to which the issue has been worked. Status begins as

“In Queue.” Once the user completes work on the comment/issue/edit, he or she changes Status to
“Ready for Verification” and the issue moves to the Verify Work queue. The system auto-
populates Last Status Update whenever the Status is set.

• Save is activated, not grayed out, when the user has updated any of the information in the

Decision section of the screen.

The Verify Work screen functions in the same way as the Pending Work screen; however, the screen
includes a Verifier field (which is automatically filled in when the Verifier saves his/her work – this field
functions like the Editor field in Pending Work) and the Comment/Issue Status selection is “Ready for
Verification” and “Complete.” When all comments/issues/edits (decision log entries for the production
unit are “Complete,” the unit is available in Case Close Out. Units are available for close out only when
all associated decisions have a status of Complete. If a unit in BDPQA had no field comments or data
issues and has passed all editing and QA/QC reporting, it is immediately available for close out. Once a
unit is closed out at the editor level, it was no longer available for update within the individual site’s
version of BDPQA.

5.2 The Users’ View: Supervisor Level
Once a case is Closed Out at the editor or site office level, it is available to the central office or supervisor
level. The options at the supervisor level are similar to those at the editor level but are arranged a bit

 294

differently based on typical workflow at the central office. Here, Run Reports appeared first, followed by
Add Data Issue, Pending Work, Edit Case--which allows changes to the instrument data; in effect,
what “Replay Instrument” was to the editor, Verify Work and central office Case Close Out. Running
reports was particularly important to the central office because, in addition to supporting the same
functions as the reports at the editor level, reports were also necessary for the coding function to be
performed by the central office only. Due to the need for coding of text responses, the central office view
of the BDPQA relied on an updated data model with additional fields for coded values.

6.0. Lessons Learned
It is advisable when designing a Blaise instrument that will be used for by BDPQA to avoid using within
the data model:

• Time stamps that depend on today’s date and/or time

• Sampling criteria that can be changed by data value changes

• Auxfields that can give the impression of a non-existent error during replay (this can happen with
auxfields, as opposed to fields, because their values are not stored in the database)

• Walls within the instrument that prevent interviewers from returning to previously-answered

questions

• Field names that conflict with reserved words in SQL Server

For existing instruments with any of the above problematic features, workarounds can usually be devised.
Within the context of the decision log and various reports, Blaise fields are identified by a variable name
(the actual Blaise field name) and a question name (the tag value associated with the field in the Blaise
data model). For this reason, tags should be carefully chosen. You may want a unique clearly-named tag
for each field and possibly shared tags for related fields.

In addition to paying attention to tags when programming the original Blaise data model, you are also
advised to provide unambiguous wording with each potentially complicated edit check. When no explicit
wording is programmed with an edit check, Blaise uses by default the relevant programming logic. This
programming logic can be confusing and will appear by default in a decision log entry if no explicit
wording has been programmed.

For field data collected via hardcopy forms and stored in a SQL table, an appropriate Blaise data model
must be produced. This can be done using the Blaise OLE DB Toolbox to produce a data model from the
SQL table and subsequently adding question text and tags.

7.0. Conclusion
The BDPQA met the challenges of this longitudinal, multi-mode, and distributed data collection effort.
By leveraging the Blaise metadata available through the instrument authoring process and customizing
our existing in-house tool to meet the requirements enumerated at the start of this paper, we were able to
ensure that secure and high quality data processing ran right on the heels of data collection. The tool can
be adapted for use on other projects in which raw field data are stored in either Blaise or SQL Server
databases. The system edits and cleans the data using a two-level review process.

 295

BDPQA offered a number of advantages in addition to those that accrue from using the superb editing
capability offered by Blaise. These advantages include:

• Automatic versioning that can be used to ascertain for each production unit the date of any data
changes and the values stored in the database at any given date.

• Ability to store and retrieve field audit trails for each production unit.

• Ability to generate a wide variety of reports

• Ability to provide internal security that identifies users and limits their roles

• Ability to use different data models at the editor and supervisor levels. This can support an

approach whereby coding or other tasks can occur only at one of the two levels.

• Ability to provide decision log information either electronically or in hardcopy format to meet
standard client requirements.

8.0. References
Allan, Boris, O’Reagan, Kathleen, and Lohr, Bryan. “Dynamic ACASI in the Field: Managing All the
Pieces.” Proceedings of the 7th International Blaise Users Conference. September 2001.

Dulaney, R. and Allan, B. “A Blaise Editing System at Westat.” Proceedings of the 7th International
Blaise Users Conference. September 2001.

Frey, R. and Rhoads, M. “Blaise Editing Rules + Relational Data Storage = Best of Both Worlds?”
Proceedings of the 12th International Blaise Users Conference. June 2009.

Gowen, L. and Clark, P. “Lifecycle Processes to Insure Quality of Blaise Interview Data.” Proceedings of
the 11th International Blaise Users Conference. September 2007.

 296

Validation of Survey Data in Xml

Leif Bochis Madsen, Statistics Denmark6

Abstract

In a number of surveys conducted by Statistics Denmark all or part of the data collection is carried out
outside the office and delivered in some kind of electronic format.

Increasingly, xml is used as format of delivery and this offers some opportunities to push validation of the
data towards the supplier. For example, an Xml Schema may be used by the data supplier in order to
assure the correct format before submitting the data.

However, other xml technologies are available which provide different means of validating the data in
even more sophisticated ways.

The paper will discuss some technologies available and the possible role of Blaise.

Introduction

In a paper written for the IBUC/20077 an outsourcing project for the Danish Labour Force Survey (LFS)
is described. The requirements and architecture of this project is fully described in this paper and I shall
only summarize briefly.

Due to legal causes Statistics Denmark could not require the use of specific software – i.e. Blaise – by the
organizations offering tenders for this project. Therefore - among other aspects – the outsourcing project
involved specification of a data exchange format and efforts made to check validity of the data transferred
from the organization responsible for conducting interviews to Statistics Denmark. The format chosen
was xml and the work carried out in Statistics Denmark comprised construction of software capable of
validating the xml data and importing the data into Blaise8.

The validation was split into two parts. The first part consisted of checking the conformance to an xml
schema and was the responsibility of the supplier of data. The second part was implemented as a Blaise
data editing instrument and carried out inside Statistics Denmark.

After three years of operation some problems in this setup have been identified and ideas of improving
the data exchange have occurred.

The given conditions are:

1. Data must be exchanged in xml format.
2. It is not possible to require external data providers to use non-standardized software (i.e. Blaise)

6 The opinions and assessments stated in this article are those of the author and do not necessarily reflect opinions and assessments of Statistics
Denmark.
7 See [LBM07]
8 This project was carried out before the Blaise Xml format was published in Blaise 4.8. A lot of work could have been avoided if the
project had been carried out one year later, but that’s life!

 297

Problems

Different survey software offers different sets of properties and possibilities. For example, in Blaise it is
easy to describe rules comprising a computation of dates – e.g., the day six months earlier than today –
and using this computed date in a condition – e.g., comparing this day with the respondent’s start of job –
and this way decide which questions to ask next. This kind of computation was not possible to carry out
in the software used by the interviewing organization. Following this, some forms that were correctly
filled in the interview software turned out to be faultý in the Blaise editing instrument.

Another issue is the treatment of warnings. It will not make sense in post-editing to examine – or re-
examine – all warnings that occurred and may have been suppressed under interviewing. However, a
statistical treatment of the remaining warning conditions may be relevant in order to identify, for
example, weak parts of the questionnaire. This statistical treatment is not straight-forward to carry out
using Blaise tools.

Also, during the three years of operating the LFS a number of misunderstandings concerning routing etc.
has been discovered. It is an assumption that there is a potential for improved documentation of the
survey and better communication between the supplier and receiver of interview data9. This requires a
media that may be used for exchange of metadata.

Eventually, there is a wish to push more validation towards the supplier in order to discover possible
discrepancies at an earlier stage.

Overall, the project has emphasized the need for platform independent tools for validation and formal
description of routing, checks and warnings.

Tools for Validation

In a thesis10 written at the IT University of Copenhagen, a study of different tools for validation of xml
data has been carried out using the LFS outsourcing project as a case study.

The study examines a number of available tools like Xml Schema, RELAX NG11 and Schematron12, that
all support some kind of ‘co-occurrence constraints’.13 The two most comprehensive of the tools are Xml
Schema and Schematron and they will both be briefly discussed here.

Both are so-called schema languages, i.e. languages that describe an xml document type and can be used
in order to test whether a particular xml document conforms to its definition.

Xml Schema is a grammar-based language which means that a grammar describes the structure and
contents of a document. Validation implies that errors are reported if the document does not conform to

9 [LBM09], p. 46.
10 This paragraph is based entirely on [LBM09].
11 RELAX NG home page, URL: http://www.relaxng.org
12 Schematron. A language for making assertions on patterns found in xml documents, URL: http://www.schematron.com/
13 The term ’co-occurrence constraints’ here denotes the set of routing, check and warning constraints in Blaise terminology, i.e. the
rules.

http://www.relaxng.org
http://www.schematron.com/

 298

the grammar. From version 1.1 – released autumn 2009 – Xml Schema incorporates so-called assertions
that may describe co-occurrence constraints. However, it lacks some features that are widely used in
Blaise rules like conditional computations, modularity and the distinction between errors and warnings.14

Schematron is a rule-based language which means that it is used to describe the rules that a particular xml
document must conform to. Schematron supports validation of almost all types of routing and integrity
constraints. However, it is not possible to change the contents of a document so the possibility to define
default values and/or computed values is not present. Also, using the rules-based approach it is possible
but not practical to validate structure and content.

Both of the languages use Xml Path (XPath) as query language for validation of co-occurrence constraints
which suggests that the possible validations are fairly equal. To a certain extent they are, but in Xml
Schema there are a number of limitations that make it almost impossible to use a modular approach. For
example, the XPath expressions are only allowed to query downwards in the hierarchy and it is not
possible to declare local variables to hold intermediate results. In Schematron there is no limitation on the
axes used in XPath expressions and it is possible to declare local variables that may be used to represent,
for example, parameters and auxfields as they are known in Blaise.15

Compared to Blaise, the grammar-based approach (Xml Schema) is well suited for validating the
structures, i.e. fields, types and blocks while the rules-based approach (Schematron) is better suited for
validating the rules.16

Finally, in order to produce reports Schematron provides the best possibilities. The generation of human-
readable error messages to be used in a production environment is fully supported.17

A possible setup

In [LBM09] it is recommended to divide the validation process into three levels:

1. Well-formedness (syntax) is the first level of validation and is equally determined for any xml
document. Checking the well-formedness – and character set – of a document is a basic task and
requires no knowledge on the purpose of the document and its contents.

2. Structure (semantics) is the next level of validation and verifies that a document conforms to a
given schema. Violation of the structure is a sign of errors in the generation of the xml document.

3. Constraints (pragmatics) may be violated because of inconsistencies in the collected data. For
example, caused by a routing error in an instrument used for interviewing or caused by an
interviewer ignoring a warning from the instrument and carrying on interviewing, thus creating an
inconsistent form. [LBM09, p. 47]

The three levels imply three different strategies – and may be supported by different tools. The first level
is supported by any xml-aware system; the second may be supported by an Xml Schema definition and
the third possibly by a Schematron definition.

14 Ibid., p. 30-32.
15 The languages are compared in ibid., p. 42-44. The conclusions about the use of XPath in Xml Schema 1.1 also refer to later
studies, because there was no implementation available at the time of writing the thesis.
16 [LBM09] suggests using RELAX NG as the language for validation of structure and content. Partly because RELAX NG and
Schematron are standardized in the same suite as complementary tools, partly because RELAX NG provides a representational
(human readable) language as well as its xml equivalent.
17 Ibid., p. 43-44.

 299

The next step is the question of how to achieve this scheme. As it is also concluded:

“None of the languages, however, are particularly user-friendly. (..) (And) none of them
compares to the expressiveness of the Blaise language. Schema languages in xml syntax
are in their wordiness and unreadability userunfriendly by definition while xml is still
crucial for exchanging the schemas across platforms.” [Ibid., p.48]

Therefore an obvious solution would be to generate these definitions from a Blaise source.

From Blaise 4.8 generation of an Xml Schema definition is part of the Blaise package which makes this
part simple, but even earlier versions made it possible to generate an Xml Schema definition with the help
of Cameleon.18

Unfortunately, Cameleon is not capable of handling the rules of a data model why it is necessary to use
the Blaise API in order to generate a Schematron definition comprising the rules of the data model.

Schematron examples

Looking at a few examples may clarify the job. The first example shows a Schematron definition that
reports the number of records in a Blaise xml document:

<rule context="/Database">
 <let name="AntalRecords" value="count(./Datarecord)"/>
 <report test="true()">
 Validating <value-of select="$AntalRecords"/> Datarecord-elements.
 </report>
</rule>

The rule element contains a set of computations, assertions and reports limited by the context which
could refer to a block in a Blaise data model, but in this case refers to the document element of a Blaise
xml document.

The let element declares a local variable identified by its name and a value retrieved using an XPath
expression. The let element may be used to represent parameters, auxfields and locals in a block.

The report element is used to write a message to an output channel (e.g. a file) if the test expression
yields true (which it always does in the example above). There is a quite similar assert element that will
output a message if the test yields false. Asserts should be well known to Blaise users as it is the normal
behaviour of checks and signals.

Let us look at another example19:

<rule context="//Job">
 <let name="currAge"
 value=”ancestor::Datarecord/Person[1]/PersonAge”/>
 <assert test=
 "(year-from-date(current-date()) - (number(./YearOfJobStart))

18 Examples are mentioned in [LBM07] and [LBM09], appendix B.
19 From [LBM09], p. 28-29

 300

 lt number($currAge)">
 You cannot have started your job before you were born!
 </assert>
</rule>

This rule applies to all blocks named Job (i.e. the block Job in all the datarecords in the dataset) , it
defines a local variable which retrieves its value from a list of persons in the household. An assert element
is used to check that the respondent has not been longer in his current job than his actual age allows.

The validation above may be retrieved from the similar rules in a Blaise data model:

FIELDS
 YearOfJobStart "When did you start in your current job?" : 1900..2010
AUXFIELDS
 currAge : 0..120
RULES
 currAge := Person[1].PersonAge
 YearOfJobStart.ASK
 CHECK
 (YEAR(SYSDATE) – YearOfJobStart) < currAge
 "You cannot have started your job before you were born!"

Future work

As the small examples above suggest the logic expressed in Schematron is not very far from the logic
expressed in Blaise. Therefore, it appears practical to convert Blaise rules into a Schematron definition.
Because Schematron is a standardized language, it should be possible to use this solution in order to push
further validation towards the supplier of data leading to cleaner data when transferred. Also, Schematron
may be used to produce reports on the number of suppressed warnings and thus fulfils most of
requirements from the introduction.

Important is the ability to automatically generate Schematron definitions from the Blaise metadata. There
still remains some work in this field.

References:

[LBM07]
Leif Bochis Madsen: Blaise and Xml: Experiences Of An Outsourcing Project, in: IBUC 2007 11th
International Blaise Users Conference, URL: http://www.blaiseusers.org/2007/papers/Z4%20-
%20Blaise%20and%20XML.pdf

[LBM09]
Leif Bochis Madsen: Definition of Validation Rules for Xml Data for Electronic Questionnaires,
Unpublished thesis from the IT University of Copenhagen, 2009, temporarily available at URL:
http://www.itu.dk/people/lbm/Validation_Rules_Thesis.pdf

http://www.blaiseusers.org/2007/papers/Z4%20-
http://www.itu.dk/people/lbm/Validation_Rules_Thesis.pdf

	YOC.pdf
	Business Process Re-engineering using Blaise 4.8 API and Datalink

