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Abstract 
Predictive models based on past data could be good 
predictors of the future outcomes; however, they 
usually don't explain the causal and feedback 
relationships leading to the outcome. Conversely, 
mechanistic models could uncover complex 
interaction between underlying processes, but 
sometimes their calibration and validation could be 
unrealistic. Combining the two approaches into a 
semi-mechanistic model can lead to a winning 
combination. We present examples of historic 
epidemic data as well as simulated data, where a 
combination of neural networks with a mechanistic 
Susceptible, Exposed, Infected and Recovered (SEIR) 
model produces more reliable predictions with less 
parameterization.  

Background   
Predicting future data is usually based on a premise that 
similar inputs will produce similar outputs under a 
particular model. Thus, researchers predict future outcomes 
using past input data and corresponding output data, and 
they assume that the input-output model remains valid both 
in the past and in the future. One of the main challenges is 
identifying a space of “similar inputs.” This challenge is 
not only related to very complex systems where one needs 
to choose the governing factors out of hundreds of 
variables. Even simple systems, especially with chaotic 
and noisy behavior, could complicate the prediction base. 
Regression models assume that the outcome is related to 
the value of other variables at the same (or past) times, and 
autoregressive models also consider past outcome values. 
This principle remains true for spatial and functional 
prediction. For example, in social sciences the concept of 
Blau space assumes that the decision making of individuals 
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not only depends on individual characteristics but also 
group characteristics, such as those of neighbors and other 
individual that share characteristics such as education, 
marital status, and type of job. These factors define 
distance in the Blau space. Although the need for 
identifying similar inputs is ubiquitous, the approaches 
could differ significantly depending on the understanding 
of what the criterion of good prediction is. Prediction and 
explanation approaches are sometimes contrasted to each 
other. Predictive models are often focused on predicting a 
number with some confidence intervals, while causal 
models are focused on the explaining what happens, under 
certain assumptions, when the system is perturbed in a 
particular way. For example, a simple predator-prey model 
(e.g., foxes and rabbits) could produce cyclic population 
dynamics. If a researcher is given a single time series for 
foxes, then a simple sine wave would fit the data perfectly. 
However, this fit will not explain why the dynamics is as 
such, what determines amplitude and periodicity, and how 
the system could be controlled in the future. Knowing the 
dynamics of rabbit populations and the relationship 
between the rabbits and foxes will not add anything to the 
numeric prediction, but will add a lot to the understanding 
of the processes controlling the populations. Much more 
complex infectious disease models in populations could 
provide good insight on complex causal and feedback 
relationships between hosts and pathogens, but when asked 
to predict the number of sick people during an influenza 
epidemic season, the models would not be refined enough 
to the make the forecast.  

In this presentation, we would like to elaborate more on 
an approach proposed by Ellner et al. (1998) and Bobashev 
et al. (2000), where mechanistic models are combined with 
the predictive time series models to produce better 
prediction and to have some explanatory power.   

Predicting Historic Epidemic Data 
Consider a Susceptible, Exposed, Infected, Recovered 
(SEIR) epidemic model that is quite standard for many 
infectious diseases such as influenza, measles, smallpox, 
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mumps, etc. In this model, the population is divided into 4 
SEIR compartments, and after birth, an individual 
sequentially passes through each of these compartments 
with certain transition rates. Assuming a homogeneous 
mixing (i.e., everyone has an equal chance to meet 
anyone), the model is represented as a system of 
differential equations where individuals “flow” between 
the compartments. The basic equations are: 

dS/dt=-�(t)SI+m 
 dE/dt=�(t)SI-�E-mE             (1) 
 dI/dt=�E-�I-mI 
 dR/dt=-�I-mR,

where S,E,I, and R are the proportions of SEIR 
populations, respectively. �(t) is a seasonally varying 
contact rate, � is 1/average length of the latent period, � is 
the 1/average length of the infected period, and m is the 
birth/mortality rate. The population size is assumed to be at 
an equilibrium and the mortality rate is equal to the birth 
rate, and both are constant.  

Depending on the parameter value, this model could 
exhibit a steady state, periodic behavior, and the cascade of 
period doubling into chaotic regimes. Historic measles 
epidemic data (Figure 1) suggests that it could correspond 
to the chaotic regime of the SEIR model (Ellner et al. 
1995, Grenfell et al., 1995).  

Figure 1. Measles incidence data for Liverpool before mass 
immunization. 

A large body of literature exists where SEIR models are 
fitted to the data and used to produce estimates of future 
outbreaks. However, the question about other factors that 
can impact the prediction could not be adequately 
accounted for within SEIR framework. We suggest that 
once other components of the epidemic process could be 
obtained from even a qualitative fit (i.e. up to some linear 
transformation), these components can be used as 
additional predictors in a statistical model and, thus, 
improve its predictive performance. In SEIR model such 
additional component could be the prevalence of the 
susceptible population. In diseases like pandemic influenza 
at the time of an outbreak all population could be 
considered susceptible. For seasonal diseases, such as 
measles before mass vaccination, or common influenza, 
the proportion of susceptible population is not known a-
priori but could be reconstructed using some basic 
mechanistic assumptions (Bobashev et al, 2000). The 

essence of the reconstruction method is that susceptible is 
being reduced by the epidemic process and being 
replenished by the newborns. Thus, knowing the birth rate 
and the epidemic incidence and assuming that almost 
everyone got measles during their lifetime before mass 
vaccination, it is possible to generate a complimentary time 
series of susceptible prevalence.  

In our study we used a statistical time series model that 
incorporates both seasonal forcing and scaled St. One of the 
underlying assumptions is that the number of newly 
infected individuals depends only on the current number of 
infected and susceptible and the contact rate between them. 
Although we don’t know the exact seasonal shape of the 
contact rate we used sine and cosine waves with annual 
periodicity as model inputs hoping that through the data 
fitting process it would partially account for the true 
seasonal trends. Thus, we considered a model of the form:  

tttt ttSCFC ���� ��� ))cos(),sin(,,( ,     (2) 

where F is an estimated function, periodic components 
represent seasonal forcing, and � t  is a random exogenous 
noise. The simplest form of the model would be a 
regression, however, because we believe that the epidemic 
process is nonlinear, we used a neural network approach, 
with 1 and 2 hidden levels and 2 and 3 nodes per level. As 
the control model we have considered a “more 
phenomenological” model successfully used in Ellner et al. 
(1998):  

tmltlttt ttCCCFC ���� �� ��� ))cos(),sin(,,...,,( ,
(3) 

where function F was also implemented as a neural 
network fit with 1 and 2 hidden levels and combinations of 
2 and 3 nodes per level.  
In both models the quality of fit was measured by using 
Bayesian Information Criterion (BIC) and Akaike 
Information Criterion (AIC). 

We trained the models on the first half of the weekly 
epidemic data and tested them on the second half. In order 
to measure the goodness of fit, we used a so-called pseudo 
R2 criterion (Ellner et al. 1998). The functional form of 
pseudo R2 is  

1-Mean square error(residuals)/Variance(data) 

If pseudo R2 is less than zero, it means that the model 
makes worse prediction than just using the mean. 

We have used mechanistic methodology described in 
Bobashev et al. 2000 to reconstruct the prevalence of the 
susceptible population and used that prevalence as a 
covariate in a neural network model 2. A comparison of 
predictions made by models 2 and 3 shows that model 2 
provides better prediction of future data. (Figure 2) 
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Figure 2. Prediction of Liverpool incidence data several months 
ahead using models 2 (solid lines) and 3 (broken lines).  

As was shown before, (Ellner et al. 1998) addition of 
known mechanistic components improves the forecast 
because it “helps” the predictive model, such as neural 
network, to define the shape of the relationships between 
the set of predictors and the outcome. Long-term 
prediction of chaotic trajectories is known to be 
impossible. However the addition of a known variable that 
reduces the strength of chaotic properties (e.g., reducing a 
Lyapunov exponent) will lead to the forecast improvement. 
For example, the number of susceptibles at the end of an 
epidemic could be quite different for the same peak size 
(Figure 3) and the number of susceptible at the end of the 
epidemic dictates (together with the birth rate) when the 
next epidemic might start.  
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Figure 3. Shapes of relationships between the susceptible and 
infected populations in SEIR model. For two epidemic 
trajectories the value at the peak is the same (marked with the 
star) but the values for the susceptible at the end of the epidemic 
is very different (marked with an x)

Discussion
The presented approach could be used to improve 
prediction of not only real data but could be used to 
differentiate one model from another by fitting neural 
network models to the output of the simulation models, and 

using several outputs could help distinguish which model 
has generated the data. Although the predicted approach 
has been developed to fit epidemic data it could also be 
applied to a broad range of predictive models that are 
based on time series of events and have a theoretically 
valid mechanistic model. Such emulators, for example, 
could be used as simple desk-top predictive models based 
on more complex agent-based models that require 
significant computational resources.  
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