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Abstract
Wearable sensors (“wearables”) provide a mechanism to monitor the health of 
service members and first responders continuously and remotely. Several wearables 
are commercially available, with different configurations, sensors, algorithms, and 
forms of communication. Choosing the “best” wearable depends on the information 
you need to make decisions, how often you need this information, and the level 
of accuracy required. In this article, we review six use cases for wearables that are 
relevant to the military and first responders. We examine the metrics measured and 
the wearables used. We conclude with recommendations for requirements and 
wearable selection given the constraints imposed by various use cases.
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Introduction
The US Department of Defense (DoD) and other 
government agencies are investing in wearable 
sensors for monitoring the health and readiness 
of service members (SMs) and first responders. 
Wearable sensors (“wearables”) are broadly defined 
as self-contained devices that combine typical 
characteristics of point-of-care systems with onboard 
analytics and wireless connectivity (Ates et al., 
2022). These devices measure several physiological 
signals, from physical activity to heart rate (HR) 
and peripheral oxygen saturation (SpO2). Wearables 
are available in a variety of configurations, such as 
watches and fitness bands, chest straps, rings, and 
even earbuds or eyeglasses (Ates et al., 2022). Flexible 
sensing technology in the form of textiles, bandages, 
or patches is also being applied to monitor biofluids 
and certain biosignals, such as the electrocardiogram 
(ECG) (Ates et al., 2022).

Wearables can continuously monitor individuals 
during training and deployment. This monitoring 
takes several forms, including (1) evaluating 
immediate health status (e.g., heat strain, 
hypothermia, altitude sickness, chemical or 
biological exposures), (2) assessing longer-term 
health indicators (e.g., performance optimization, 
fatigue/stress/recovery, and illness detection), 
and (3) triage and remote symptom observation 
(e.g., major trauma and sepsis) (Friedl, 2018). 
Although researchers and medical personnel may 
want access to high-resolution data over weeks to 
provide a comprehensive assessment of health, care 
for SMs and first responders requires that the rich 
information from wearables be distilled into binary 
alerts (Figure 1). This distillation necessitates that 
the raw physiological data move quickly and securely 
from skin to data processing and display in non-
ideal situations (e.g., during high levels of physical 
activity or in resource-constrained environments). 
Algorithms clean and combine information from 

Figure 1. Creating actionable information from the physiological signals acquired using wearable health sensors

How can I measure it?

What can I do with this data?

What does this mean?

Algorithms
Acute mountain sickness, heat strain, 

hypothermia, fatigue, illness, sepsis, etc.

Assessments
Is action, intervention, or 

treatment needed?

Sensors
Smartwatch, wrist/arm band, ring,

chest strap, patch, etc.

Physiological Signals
Activity, blood pressure, heart rate, 

heart rate variability, respiration rate, 
oxygen saturation, temperature, etc.
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several physiological signals to indicate risk level, 
and the results of individual algorithms can aggregate 
into actionable information to determine whether 
someone is fit for duty or can continue to perform a 
given task (Friedl, 2018).

To meet the needs of SMs and first responders, 
wearables must be robust (water resistant, able to 
withstand crushing forces, etc.); have an extended 
battery life and easy charging solution (especially for 
deployed scenarios); be able to communicate over 
military networks; and be small, lightweight, and 
comfortable while not interfering with job duties 
or any equipment being worn (Buller et al., 2021; 
Friedl, 2018). Unfortunately, there are no DoD-wide 
or common first responder requirements definitions 
for wearable sensors and monitoring platforms. 
This leaves the burden of selecting wearables on 
researchers, vendors, and leaders within the military 
and first responder communities and has resulted in 
a collection of disparate systems that are either used 
within a specific population or fulfill the needs of 
niche application. Optimizing wearables’ usefulness 
for monitoring the health and safety of SMs and first 
responders will require definition of common data 
elements and system attributes.

Literature Review—Concepts of Operation
To frame requirements for wearable sensors 
and platforms for the SM and first responder 
communities, we highlight recent examples below 
of how wearables are currently being leveraged. We 
review requirements for six different concepts of 
operation (CONOPS), including immediate (e.g., heat 
strain and hypothermia and acute mountain sickness) 
and longer-term (e.g., fatigue and recovery and illness 
detection) health status, triage, and remote symptom 
observation (e.g., major trauma and sepsis). Although 
we focus on CONOPS for SMs and first responders, 
several of these examples relate to the general public 
as well. This literature review is not meant to be 
all-encompassing, and we did not establish a formal 
review protocol. We focused on recent publications 
and articles (2019 to date) that were specific to 
the military or first responder populations and on 
wearable sensors that were commercially available 
and could be fielded.

Immediate Health Status—Heat Strain and 
Hypothermia
Exposure to extreme environmental conditions can 
affect the body’s ability to maintain homeostatic 
conditions (i.e., core temperatures between 36 and 
38°C). Conducting physical activity in hot or humid 
environments, or when wearing personal protective 
equipment (PPE), can interfere with the body’s ability 
to dissipate heat. Water loss, HR, and core body 
temperature (Tc) climb, which can result in heat-
related illness (HRI). In the case of hypothermia, 
the body attempts to generate heat through a shiver 
mechanism. Blood flow to the skin is decreased, 
and HR and respiration rate (RR) initially increase. 
If exposure to cold temperatures continues and the 
body cannot counteract heat loss, muscle temperature 
drops, activity level (including shivering) drops, and Tc 
falls. Models can accurately predict Tc if activity level, 
environmental conditions, and material properties 
of the clothing are well characterized (Buller et al., 
2021; Dolson et al., 2022; Friedl, 2018; Shakerian et al., 
2021). However, using population-level physiological 
information can render these models inaccurate on 
an individual level (Dolson et al., 2022; Friedl, 2018; 
Runkle et al., 2019; Shakerian et al., 2021).

Accurate measurements of Tc are the most 
straightforward way to assess HRIs or hypothermia. 
Invasive measurements (i.e., esophageal, rectal, 
gastrointestinal) are the most accurate, but are 
impractical for continuous measurements outside 
of the clinic (Dolson et al., 2022; Roossien et al., 
2021). Of noninvasive techniques, tympanic (i.e., 
ear) measurements most closely reflect Tc because 
the hypothalamus is responsible for maintaining Tc 
(Roossien et al., 2021; Shakeel et al., 2022). Tympanic 
measurements are typically taken with infrared (IR) 
sensors, which can be incorporated into earpieces (e.g., 
Cosinusso oTemp) for continuous measurement that 
does not interfere with helmets or other PPE (Roossien 
et al., 2021; Shakeel et al., 2022). The probes must be 
properly shielded from the environment to be accurate, 
and individual correction factors may be needed if 
the individual uses an off-the-shelf device or wears 
PPE (PPE can result in local warming around the 
ear) (Rossie et al., 2021). Measuring skin temperature 
(Tskin) is another non-invasive option, although Tskin 
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typically reflects local environmental conditions. If 
measured under a garment in regulated conditions 
(e.g., a space suit), assessing Tskin at multiple points 
on the body can be effective (Palacios et al., 2020). 
Additionally, when combined with HR, Tskin can be 
used to estimate rectal temperature (Shakerian et al., 
2021). Dolson et al. recently reviewed technologies and 
methods for measuring Tc and predicting heat strain 
(Dolson et al., 2022).

HR, RR, electrodermal activity (EDA), accelerometry, 
and Tskin may also be used alone or in combination 
to assess risk for HRI (Buller et al., 2021; Friedl, 2018; 
Runkle et al., 2019; Saidi & Gauvin, 2023; Shakerian 
et al., 2021). Multimodal algorithms can achieve 
high accuracy (Buller et al., 2021; Friedl, 2018; Saidi 
& Gauvin, 2023; Shakerian et al., 2021), and several 
prototype garments for specific populations of workers 
that incorporate some or all of these types of sensors 
have been proposed; see Saidi and Gauvin (2023) for 
a comprehensive listing. However, sustained high HR 
alone measured using smartwatches (Runkle et al., 
2019), armbands (Buller et al., 2021), or chest straps 
(Buller et al., 2021; Friedl, 2018; Saidi & Gauvin, 2023) 
can also be used to indicate heat strain. For example, 
the ECTemp™ algorithm uses HR to accurately 
predict Tc under a variety of conditions experienced 
by active-duty SMs (Buller et al., 2021; Friedl, 2018). 
Several monitoring systems for military personnel have 
incorporated this algorithm (e.g., the ARMOR Heat 
Monitor developed by the Netherlands Armed Forces) 
(Buller et al., 2021). Although Tc or HR alone can be 
used to indicate risk for HRI, this is insufficient for 
detecting hypothermia because large drops in Tc have 
been observed without consequence and HR is within 
physiologically normal ranges (Friedl, 2018).

Immediate Health Status—Acute  
Mountain Sickness
It is critical to monitor the health of individuals 
operating in high-altitude environments because the 
onset of acute mountain sickness (AMS) can happen 
quickly and be life-threatening without treatment 
(e.g., stopping ascent or administering medications 
or oxygen). AMS is difficult to diagnose because 
the symptoms are nonspecific (headache, vomiting, 
fatigue/weakness, etc.) and the pathophysiology is 
poorly understood (Muza, 2018). Although models 

have been developed to assess risk for developing 
AMS (Muza, 2018), these population-based 
models are insufficient for knowing whether an 
individual will develop symptoms. Activity intensity, 
acclimatization, and other physiological factors, such 
as age and respiratory illness, can affect risk (Muza, 
2018; Tang et al., 2022).

Artificial intelligence and machine learning (AI/
ML) modeling techniques can combine periodic vital 
sign measurements with demographic information 
and altitude level to evaluate an individual’s risk 
of developing AMS (Tang et al., 2022). Although 
lower SpO2 is predictive of AMS, findings related 
to the relationship between blood pressure (BP), 
HR, and heart rate variability (HRV) and AMS are 
mixed (Muza, 2018). However, the consensus is that 
continuous measurements are better at distinguishing 
risk than spot checks of vital signs (Muza, 2018).

Although wearables can continuously measure 
vital signs, SpO2 in particular may be difficult to 
obtain using commercially available sensors. SpO2 is 
traditionally measured when an individual is at rest 
using a finger-worn sensor or ear clip that operates 
in transmissive mode, but this is impractical for 
continuous wear (Telfer et al., 2017). Wearables 
using reflectance-based optical sensors may not have 
the needed accuracy to measure the physiological 
changes associated with AMS. Motion artifact 
at the wrist leads to high inaccuracy in the SpO2 
measurements obtained using smartwatches (Schiefer 
et al., 2021; Telfer et al., 2017). For example, the 
Garmin Fenix 5X Plus (Garmin Ltd., Switzerland) 
smartwatch measured higher SpO2 values than 
tools using arterial blood gas analysis, leading to an 
underreporting of hypoxia (Schiefer et al., 2021). 
Monitoring cerebral blood flow is of interest because 
headache is a classic symptom of AMS (Muza, 2018). 
Sensors worn in other locations (e.g., forehead) 
may also have better signal quality, but packaging 
and powering these devices for wear in harsh 
environmental conditions remain a challenge (Telfer 
et al., 2017). Optical sensors can accurately monitor 
other health status information, such as HR and HRV 
during sleep (Castiglioni et al., 2022).
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Longer-Term Health Status—Fatigue and Recovery
Fatigue management for SMs received prominent 
attention after fatigue was the root cause of the 
deaths of 17 sailors and damage to two warships in 
2017 (Brager et al., 2022). Fatigue can result from 
a variety of sources, from disrupted sleep to high 
levels of physical exertion, cognitive overload, and so 
on. These circumstances are unavoidable in current 
military contexts (Brager et al., 2022). Assessment 
strategies for fatigue rely on questionnaires or 
surveys, performance-related metrics (e.g., motor 
performance on specific tasks), models of the 
circadian cycle, or behavioral indicators (e.g., 
yawning, blinking, and head nodding) (Adão Martins 
et al., 2021; Brager et al., 2022; Friedl, 2018; Kniffin 
et al., 2021; Kodithuwakku Arachchige et al., 2022). 
These strategies lack specificity, especially for early 
detection of fatigue at the individual level (Adão 
Martins et al., 2021; Kniffin et al., 2021). Changes 
in physiological signals can indicate fatigue, and 
supervised AI/ML models that combine data from 
several sensors can achieve high accuracy. Fatigue is 
multifaceted, and there is consensus that longer-term 
studies conducted outside of a laboratory environment 
are needed and that greater standardization is required 
when designing approaches to assess fatigue (Adão 
Martins et al., 2021).

Electroencephalogram (EEG) measurements are 
considered the gold standard for assessing and 
diagnosing vigilance and drowsiness (Adão Martins 
et al., 2021; Friedl, 2018; Kniffin et al., 2021). 
Wearable headband or cap-based EEG systems 
can measure changes in spectral power bands and 
event-related potentials (Adão Martins et al., 2021; 
Kodithuwakku Arachchige et al., 2022). Inertial 
measurement units or near-infrared spectroscopy 
sensors can be used with EEG sensors to monitor 
head movement and cerebral blood flow, respectively, 
to increase detection accuracy (Adão Martins et al., 
2021). Optical eye-tracking and electrooculogram 
systems have been used to unobtrusively monitor 
fatigue and provide information about cognitive state 
(Friedl, 2018; Kodithuwakku Arachchige et al., 2022), 
but commercially available systems are not accurate 
enough for use with SMs operating in the field 
(Schweizer et al., 2022).

Other groups have used HR, HRV, RR, EDA, Tskin, 
and electromyogram signals either singularly or 
in combination to predict physical/mental fatigue 
or drowsiness (see Adão Martins et al., 2021, for a 
comprehensive review). HR and RR increase with 
workload, and HRV also increases greatly because 
of heightened parasympathetic activity (Kniffin et 
al., 2021; Kodithuwakku Arachchige et al., 2022). 
Several of these cardiorespiratory biomarkers also 
can be used to assess circadian misalignment (Brager 
et al., 2022; Friedl, 2018). Highlighting studies that 
were conducted with military personnel, Markwald 
et al. found that both the Oura ring (Oura Health 
Ltd., Finland) and the ReadiBand wrist-worn device 
(Fatigue Science, Canada) can accurately measure 
total sleep time, sleep efficiency, and daily activity 
(Brager et al., 2022; Markwald et al., 2022). Total 
sleep time is correlated with self-reported measures of 
fatigue and exhaustion (Markwald et al., 2022).

Longer-Term Health Status—Illness Detection
The COVID-19 pandemic sparked interest in remote 
symptoms monitoring and detecting illness before 
symptom onset. Several recent studies and review 
articles have focused on using wearables to detect 
influenza (Radin et al., 2020) and influenza-like 
illnesses, including COVID-19 (Cheong et al., 2022; 
Mitratza et al., 2022; Nestor et al., 2021). Most of these 
analyses have been done retrospectively using data 
from wrist-worn wearables (Fitbit devices and the 
Apple watch are most frequently used) (Cheong et al., 
2022). AI/ML models have been applied to the data 
using participant-reported symptoms and diagnostic 
data for labeling (Mitratza et al., 2022). Most models 
included some measure of changes in resting HR 
(Cheong et al., 2022; Mitratza et al., 2022). Other 
metrics that showed good discrimination for detecting 
influenza-like illnesses in some studies were changes 
in HRV, RR, SpO2, Tskin, and activity level (Cheong 
et al., 2022). Generally, including more metrics 
improved the detection accuracy; however, these 
models do not achieve high sensitivity for detecting a 
specific respiratory virus or influenza-like illness (i.e., 
influenza versus COVID-19) using wearables data 
only, especially in the presymptomatic phase (Mitratza 
et al., 2022; Nestor et al., 2021). The models are likely 
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detecting physiological changes that are indicative of 
an immune response and track with symptom severity.

Focusing on a few unique studies, Natarajan et al. 
were among the first to show that resting RR, HR, 
and HRV measured with smartwatches (i.e., Fitbit 
devices) could be used for the early detection of 
COVID-19 (Natarajan et al., 2020). Temple et al. 
also found that HR and HRV could be used to detect 
influenza before symptom onset, and that continuous 
assessment could be achieved by standardizing 
these metrics for the known influences of physical 
activity (Temple et al., 2022). The TemPredict study 
focused on the addition of temperature and used 
data from the Oura ring to accurately identify (82 
percent sensitivity) COVID-19 onset (Mason et al., 
2022). Performance was best when all data streams 
(HR, HRV, RR, metabolic equivalent of task, and 
dermal temperature) were included, and the addition 
of dermal temperature (especially during sleep) 
improved performance by nearly 5 percent. The Rapid 
Analysis of Threat Exposure study combined data 
from Garmin smartwatches and Oura rings to predict 
COVID-19 in SMs an average of 2.3 days before 
diagnostic testing (Conroy et al., 2022). This study 
highlighted the differences between hospital-grade 
measurements of SpO2 and temperature and those 
measured from a wearable, finding that the features 
could not simply be substituted in models developed 
from clinical data. Pivoting from HR and temperature, 
Miller et al. specifically focused on RR (measured using 
the WHOOP strap) and derived several measures 
to capture nighttime RR changes over different time 
scales, achieving a classification accuracy of 80 percent 
by the third day of symptoms (Miller et al., 2020).

Triage and Remote Symptom Observation— 
Major Trauma
Patient triage is critical for providing timely 
life-saving emergency care, especially in mass 
casualty scenarios where first responders need to 
manage large numbers of people with little time 
for preparation. Trauma patients are typically 
evaluated using vital sign measurements, and several 
existing tiered scales can be used to prioritize 
care (Nino et al., 2020). This method of triaging 
has several problems that wearables can address, 
including (1) monitoring vital signs continuously 

and quantitatively after initial admission to detect 
changes in health status and (2) supplying additional 
information or higher precision measurements.

Once an individual is assessed and assigned to a 
priority group, vital signs are not currently routinely 
checked to determine whether their health status 
changes while they are waiting for care (Nino et 
al., 2020). Additionally, priority group assignments 
are not evenly distributed over the triage scales 
used, so it is difficult for medical personnel to 
accurately determine who is in greatest need of care 
at that moment (Nino et al., 2020). A survey of first 
responders indicated that pulse (highest priority), BP, 
temperature, RR, SpO2, peripheral vascular perfusion, 
metal state, and ECG waveform characteristics 
were important measurements to obtain (Nino et 
al., 2020). Battlefield medics prioritized BP, HR, 
and SpO2 measurements for triage (Carius et al., 
2022). Several research and commercially available 
systems have been proposed for triage applications 
(Ng & Bennett, 2022; Nino et al., 2020), but most of 
these are focused on HR, RR, and temperature and 
omit BP. Hemorrhage is the most common cause of 
death following major trauma and is mainly assessed 
through BP and HR measurements (Convertino et al., 
2020; Zia et al. 2020). BP is difficult to measure under 
battlefield conditions because of the noisy and chaotic 
environment and lack of access to equipment (Carius 
et al., 2022). Medics often rely on arterial palpitation, 
which is not an accurate estimator of hypotension and 
overestimates BP in patients with the lowest actual 
pressures (Carius et al., 2022). There is a need for 
comprehensive sensing platforms that are accurate, 
robust, and easy to apply when patients are being 
evaluated and moved.

Simply tracking vital signs measurements, even 
continuously, is inadequate for improving current 
methods of triage. Medics need algorithms to 
synthesize the vital signs information into a triage 
score so they can properly prioritize patients. 
Additionally, medical personnel need alerts when 
an individual’s status has changed. A few algorithms 
have been proposed for objectively assigning 
and dynamically shifting individuals waiting to 
receive care, including the Dynamic Grouping and 
Prioritization Triage Algorithm, eTriage, Electronic 



6  Hegarty-Craver et al., 2024 RTI Press: Occasional Paper

RTI Press Publication No. OP-0090-2402. Research Triangle Park, NC: RTI Press.   https://doi.org/10.3768/rtipress.2024.op.0090.2402

Triage System, and the Soterion Rapid Triage System 
care (Nino et al., 2020). The algorithms use vital 
signs measurements, demographic information, 
pain level, and primary injury or compliant care 
(Nino et al., 2020). Convertino et al. suggested an 
improved method of triaging and tracking trauma 
patients over time using compensatory reserve 
measurement (CRM) (Carius et al., 2022; Convertino 
et al., 2020; Zia et al., 2020). This method focuses on 
hemorrhage; vital sign changes are a lagging indicator 
of hemorrhage. CRM is assessed using continuous 
measures of change in the arterial pressure waveform 
morphology, which can be measured outside 
of clinical environments using optical sensors 
(Convertino et al., 2020). Zia et al. demonstrated 
a wearable sensing system for assessing CRM that 
achieved similar results to gold-standard monitoring 
tools for assessing hemorrhage (Zia et al., 2020). They 
also found that time-domain HRV measures were 
sensitive indicators of hemorrhage (Zia et al., 2020).

Triage and Remote Symptom Observation—Sepsis
Sepsis is a life-threatening condition resulting from 
an acute infection. Studies related to using wearables 
for sepsis monitoring mainly focused on remotely 
acquiring vital signs data within a clinical environment 
(Ghazali et al., 2022; Joshi et al., 2022) and using this 
data with AI/ML models to predict sepsis (Choi et al., 
2022; Sadasivuni et al., 2022). Remote monitoring and 
prediction using wearables are especially important 
in low- and middle-income countries (LMICs) where 
access to clinical equipment and trained medical staff 
is limited (Garbern et al., 2019; Ghiasi et al., 2022). 
One prospective study used a wearable patch sensor 
(Sensium, The Surgical Company, United Kingdom) 
that measured HR (from ECG), RR (from impedance 
techniques), and temperature (from a probe placed 
under the armpit). The sensor issued alerts if one or 
more of these vital signs was outside of the expected 
range. Of the 50 patients monitored, 18 patients 
had alerts, and 2 of the patients went on to develop 
sepsis (Joshi et al., 2022). This same sensor warned 
hospital staff of a patient’s deteriorating condition that 
resulted in sepsis (Ghazali et al., 2022). Garbern et al. 
also used a patch sensor (VitalPatch, Vital Connect, 
United States) that measured HR (from ECG), RR, 
and Tskin in combination with a mobile app (physIQ, 

Inc., United States) to monitor patients with suspected 
sepsis who were admitted to a representative LMIC 
emergency department (Garbern et al., 2019). They 
found that clinically significant vital sign changes 
could be detected hours before they were entered into 
the patient’s record. Timely treatment is critical for 
preventing septic shock and further deteriorations 
in health. The HR and RR measurements from 
the wearable also agreed with the nurses’ manual 
management, and data could be transmitted 97 percent 
of the time.

In terms of sepsis prediction, Choi et al. explored using 
the HiCardi (Mezoo Co, Ltd., Wonju-si, Gangwon-do, 
Korea), which is a wearable patch sensor that measures 
HR (from ECG), RR, and temperature in combination 
with vital signs measurements taken hourly to predict 
sepsis (Choi et al., 2022). This strategy effectively 
predicted sepsis up to 9 hours before onset. Ghiasi et 
al. used HR and HRV metrics extracted from a single-
lead wearable ECG sensor (ePatch®, Delta Electronics, 
Denmark) in a ML model and were able to accurately 
predict mortality from sepsis (Ghiasi et al., 2022). They 
found average HR and nonlinear measures of HRV to 
be most predictive. Sadasivuni et al. also explored an 
ECG-only solution and achieved 95 percent accuracy 
in terms of sepsis prediction within 1 hour of onset 
(Sadasivuni et al., 2022). When combined with basic 
demographic and comorbidity information from 
electronic medical records, sepsis could be predicted 
up to 6 hours before onset.

Results
For the CONOPS described, we summarized 
the spectrum of physiological signals that were 
measured and the sensors used to make these 
measurements (Table 1).

We then inventoried the sensors from the referenced 
studies. We summarize the defining characteristics 
for each of these sensors in Table 2 (note: we used the 
specifications for most-recent device model). We also 
included popular wearables used by consumers and 
researchers (if specific models were not provided) 
and completed the same inventory. We included 18 
sensors: 10 smartwatches/wristbands, 1 armband, 1 
ring, 1 chest strap, and 5 patch sensors.
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Table 1. Description of the physiological signals, sensors, and CONOPS for SMs and first responders

Physiological Signal Abbr. Sensor CONOPS

Activity level, gait, posture — Accelerometer, gyroscope, inertial 
measurement unit

HRI, fatigue, illness, sepsis

Blood pressure BP Arm or finger cuff AMS, major trauma

Core body temperature Tc Tympanic (IR) HRI, hypothermia, major trauma, 
sepsis

Cerebral blood flow — Near-infrared spectroscopy AMS, fatigue

Electrodermal activity 
Galvanic skin response

EDA 
GSR

Electrodes located at the wrist, 
palms, fingers, neck, or shoulders

HRI, fatigue

Electroencephalogram EEG Headband or cap-based electrode 
array

Fatigue

Electromyogram EMG Dry or wet electrodes placed on the 
arm, leg, or neck

Fatigue

Eye tracking — Eye-tracking headsets Fatigue

Heart rate HR ECG, optical HRI, AMS, fatigue, illness, major 
trauma, sepsis

Heart/pulse rate variability HRV/PRV ECG, optical AMS, fatigue, illness, major trauma, 
sepsis

Peripheral oxygen saturation SpO2 Optical AMS, major trauma

Respiration rate RR Strain gauge, optical Fatigue, illness, major trauma, sepsis

Skin temperature Tskin Axillary probe Fatigue, illness, sepsis

Discussion
When carefully selected, wearables can provide 
valuable insights into the immediate and long-
term health status of SMs and first responders. The 
wearables wirelessly transmit signals to a hub, which 
often forwards the signals to a cloud-based endpoint 
for further processing and storage. If the hub has 
display capabilities (i.e., mobile phone, tablet, or 
desktop computer), it can display signals from the 
wearable. In this way, wearables can create a historic 
record of an individual’s health and actionable 
information based on immediate health threats.

Across several of the CONOPS explored, researchers 
acquired physical activity (or gait or posture), 
HR, HRV, and temperature (core or skin) from 
wearables and used these as inputs to predictive 
models. However, domain-specific needs drove the 
selection of wearables. When immediate feedback 
to an individual or leadership was required (HRI, 
hypothermia, AMS, etc.), the “health signal” (HR, 

temperature, etc.) needed to be acquired, processed, 
and transmitted in near real-time so that an 
intervention could be administered quickly. These 
CONOPS prioritized communication and the display 
of actionable information. These CONOPS also 
needed greater accuracy in event classification so 
symptoms did not progress to an acute state and to 
avoid unnecessary interventions. Many of the sensors 
and systems explored for these CONOPS were still in 
the prototype phase because commercially available 
systems did not provide the needed accuracy or on-
board (versus cloud-based) algorithms for the  
specific use case.

Triage and remote symptom monitoring applications 
also prioritized accuracy and data availability. 
Although monitoring time is more extensive than 
short-term health status applications, individuals 
are not active. All of the reviewed sepsis studies 
used commercially available patch sensors that 
combined several vital sign measurements including 
temperature either via skin or axillary probes for 
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Table 2. Wearable device characteristics

Vendor Model Formfactor Size Battery Memory Comms Data Types Notes
Apple (Apple 
Inc., n.d.)

Apple Watch 
Series 8

Smartwatch 45x38x10.7 mm 
39.1g

18 hours 32 GB BLE, Cellular HR, on-demand 
ECG, skin 
temperature, SpO2, 
sleep

On watch: several sports modes; crash 
detection and emergency services; 
GPS enabled 
In app: additional features through 
Apple HealthKit

BioIntelliSense 
(BioIntelliSense 
Inc., n.d.)

BioButton Patch (water 
resistant)

41.2x37.5x5.7 
mm 
9.4g

16 days 1,440 readings per 
day

BLE Skin temperature, 
HR, RR, and other 
metrics, including 
gait, activity, body 
position, and sleep

Several HIPAA-compliant methods for 
acquiring data, including the BioHub 
(several patients) and BioMobile app 
(1 remote patient)

Empatica 
(Empatica Inc., 
n.d.)

Embrace 
Plus

Wristband 25.9 mm 
diameter

7 days 36 hours BLE HR, RR, EDA, 3-axis 
acceleration, skin 
temperature

Research-grade data

Fatigue Science 
(Fatigue 
Science, n.d.)

ReadiBand 5 Wristband 21x13 mm (pod) 
24g

30 days 28 KB RAM 
128 KB internal 
flash

BLE Sleep, readiness (3-
axis accelerometer)

Uses actigraphy to estimate sleep 
using cloud-based analytics; 
algorithms are compatible with other 
wearables

Fitbit (Google, 
n.d.)

Charge 5 Wristband 0.58x0.86 inches 
(screen 1.04 inch 
diagonal)

7 days 7 days BLE HR, EDA, SpO2, 
skin temperature, 
activity, ambient 
light

HR data at 1s during activity and 5s 
all other times; 60s motion data; sleep 
tracking and stress management; GPS 
enabled

Fitbit (Google, 
n.d.)

Sense 2 Smartwatch 1.5x1.5x0.45 
inches

6+ days; up to 5 
hours with GPS

7 days (30 days of 
daily totals)

BLE HR, EDA, SpO2, 
skin temperature, 
activity, ambient 
light

HR data at 1s during activity and 5s 
all other times; 60s motion data; sleep 
tracking and stress management; GPS 
enabled

Fitbit (Google, 
n.d.)

Versa 4 Smartwatch 1.5x1.5x0.45 
inches

6+ days 7 days (30 days of 
daily totals)

BLE HR, SpO2, activity, 
ambient light

HR data at 1s during activity and 5s 
all other times; 60s motion data; sleep 
tracking and stress management; GPS 
enabled

Garmin 
(Garmin Ltd., 
n.d.)

Fenix 7 Smartwatch 47x47x14.5 mm 
79g

18 days in 
smartwatch mode; 
136 hours max 
battery GPS

16 GB BLE, ANT+, Wi-Fi 
(some models)

HR (optical), RR, 
SpO2, stress, steps

In app: sleep and body battery  
On watch: several sports modes and 
training features; Garmin SDKs for 
high-resolution data; Garmin APIs 
for aggregating data from app; GPS 
enabled

(continued)
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Table 2. Wearable device characteristics (continued)

Vendor Model Formfactor Size Battery Memory Comms Data Types Notes
Garmin 
(Garmin Ltd., 
n.d.)

Vivoactive 4 Smartwatch 45.1x45.1x12.8 
mm 
50.5g

8 days in 
smartwatch mode; 
18 hours in GPS 
mode

200 hours of 
activity data

BLE, ANT+ HR (optical), RR, 
SpO2, stress, steps

In app: sleep and body battery  
On watch: several sports modes and 
training features; Garmin SDKs for 
high-resolution data; Garmin APIs 
for aggregating data from app; GPS 
enabled

Garmin 
(Garmin Ltd., 
n.d.)

Vivosmart 5 Smartwatch 19.5x10.7x255 
mm 
26.5g

7 days in 
smartwatch mode

7 timed activities; 
14 days of activity 
tracking data

BLE, ANT+ HR (optical), RR, 
SpO2, stress, steps

In app: sleep and body battery; 
Garmin SDKs for high-resolution data; 
Garmin APIs for aggregating data 
from app

Mezoo Co., Ltd. 
(Mezoo Co., 
Ltd., n.d.)

HiCardi® + 
Disposable 
SmartPatch 

Type 1

Patch (IP67) 20g 220 hours 
(disposable)

Up to 7 days Data are transferred 
wirelessly to 
a mobile app 
(SmartView) and 
server (LiveStudio)

HR (single-lead 
ECG), RR, Tskin, 
activity

17 different cardiac arrhythmias; fall 
detection; GPS enabled

Oura (Ōura 
Health Oy, n.d.)

Oura Ring Ring 7.9x2.55 mm 
(custom ring 
sizing) 
4–6 g

1 week 7 days BLE HR, HRV, skin 
temperature, SpO2, 
activity, sleep, 
readiness

Subscription-based service for 
different features

Philips 
(formerly Delta 
Electronics) 
(Philips, n.d.)

ePatch Patch (water 
resistant)

40x49x10 mm 
16g

5 days 
(rechargeable)

Up to 14 days Data are 
downloaded via 
USB

Single-lead ECG Analysis conducted by Bio Tel Heart

Polar (Polar, 
n.d.)

H10 Chest strap 65x34x10 mm 
60g

400h (not 
rechargeable)

Up to 30 hours BLE, ANT+ HR (ECG), 
accelerometer

Can be used alone but generally 
paired with a watch; Polar APIs for 
aggregating data from app; third-
party apps for high-resolution HR 
data; considered “gold-standard” 
wearable for HR

Polar (Polar, 
n.d.)

OH1 Armband Sensor: 
30x30x9.5 mm 
21.5g

12h (rechargeable) 4 MB/ 200 hours BLE, ANT+ HR (optical) Can be used alone but generally 
paired with a watch; Polar APIs for 
aggregating data from app

(continued)
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Table 2. Wearable device characteristics (continued)

Vendor Model Formfactor Size Battery Memory Comms Data Types Notes
The Surgical 
Company 
(The Surgical 
Company, n.d.)

Sensium® Patch (IP54) Unavailable 5 days (disposable) 3 hours Sensor: proprietary 
RF (up to 100m) 
Bridge: Ethernet, 
Cellular, Wi-Fi 
802.11 b/g

HR (single-
lead ECG), RR 
(impedance 
pneumography), 
Taxillary, activity, 
posture

Up to 16 patches communicate with 
a central bridge; data are transmitted 
to the Sensium® Link server that sends 
status notifications (app or desktop) 
and connects to ADT and EMR systems 
via HL7

VitalConnect 
(VitalConnect, 
n.d.)

VitalPatch Patch (IPX7) 13g 7 days (disposable) 10 hours Sensor: Bluetooth 
to a relay device 
(VistaTablet or 
VistaPhone); 
Relay device 
wirelessly sends 
data to the cloud 
(VistaCenter)

HR (single-lead 
ECG), HRV, RR, 
activity

Cloud-based capture and analysis; 
detects 21 unique arrhythmias

WHOOP 
(WHOOP, n.d.)

WHOOP 4.0 Armband or 
wristband 
(pod can 
be used 
separately)

1.7x1.1x0.4 
inches (pod)

2 weeks 4–5 days BLE SpO2, skin 
temperature, HR, 
RR

Subscription-based service to access 
features such as built-in coaching and 
sleep and stress insights

ADT = admit discharge transfer; ANT = adaptive network topology; API = application programming interface; BLE = Bluetooth low energy; ECG = electrocardiogram; EDA = electrodermal activity; EMR = electronic medical record; 
HIPAA = Health Insurance Portability and Accountability Act; HL7 = Health Level 7; HR = heart rate; HRV = heart rate variability; IP = ingress protection; RF = radio frequency; RR = respiration rate; SDK = software development kit; 
SpO2 = peripheral oxygen saturation.

fever monitoring and ECG for monitoring HR, HRV, and arrythmias; 
ECG (versus optical techniques) is considered the gold-standard 
measurement.

For longer-term indicators of readiness (fatigue/recovery, illness detection, 
etc.), some of the same health signals were acquired, but the data did not 
need to be immediately available. Instead, requirements focused more 
on data quality and integrity for long wear periods, and the form factor 
of the device, battery life, and ease of use were prioritized. Even though 
wearables-based databases are extensive, many of the datasets have large 
gaps in data and must be discarded when developing models. To establish 
good baseline data and relevant predictions of health risks, it is critical to 
minimize potential for data loss by ensuring that the device is comfortable, 

keeps the user engaged, and does not need to be frequently recharged (i.e., 
devices are often forgotten on chargers).

The wearable device market continues to grow rapidly. The data from 
wearables need to be benchmarked against gold-standard measurements 
to assess the inaccuracies incurred by moving away from clinical-grade 
equipment (Friedl, 2018). Identifying the causes of poor data quality and 
quantifying the noise floor of these sensors is important when developing 
algorithms and models that use the wearables to make health predictions 
(Zia et al., 2020). Although not listed explicitly in the CONOPS described, 
access to less-processed or higher-resolution data can help researchers 
develop a more robust feature set that is independent of the device used 
for acquisition (e.g., Garmin versus Fitbit smartwatch) and accounts 
for noise sources (e.g., wearables versus clinical-grade equipment). 
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Additionally, researchers can tailor features to the 
population being monitored (e.g., injured older adults 
versus elite athletes) to describe their health status 
more accurately. Although wearables are a powerful 
tool, before using them to make health assessments, 
researchers should carefully think through data 
requirements and management plans.

This literature review identified several common data 
elements (e.g., physical activity, body position, HR, 
HRV, and temperature) used across several CONOPS. 
Additionally, this literature review identified sensor 
features that should be considered when selecting 
devices for these populations (e.g., accuracy, comfort, 

battery life, and timely feedback). Together with 
security considerations, these findings can shape 
DoD and first responder requirements for wearable 
sensor platforms. We recommend defining separate 
requirements for platforms that are predominantly 
used in resource-rich (e.g., garrison setting or civilian 
use cases) versus resource-constrained (e.g., in the 
field) settings as well as those used predominantly 
for short (e.g., training in a hot/humid environment) 
versus longer-term (e.g., general health) monitoring. 
Taking this approach ideally builds a flexible 
wearables toolbox that can be scaled and drawn on to 
satisfy the requirements of several CONOPS.
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