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Key Findings
•	 Images acquired by sensors placed on satellites 

provide valuable information on crop acreage, 
health, and yields.

•	 Recent progress in artificial intelligence and 
high-performance computing makes it possible 
to obtain agricultural information at low cost 
and in near-to-real time.

•	 Unmanned aerial vehicles lessen the burden 
for ground-truth data collection required for 
satellite image classification.

•	 Continuous public and commercial support 
for improvements in the satellite infrastructure 
and in the development of robust models for 
information extraction will pay dividends for 
food security and sustainability.

Despite notable progress in reducing global poverty and 
hunger in recent decades, about one out of nine people in 
the world currently suffers from hunger and malnutrition. 
The share of undernourished people in the world population 
may have even started to rise again, reversing the earlier 
trend.1 Addressing the grand challenge of achieving global 
food security for a growing population within land and 
other resource constraints requires significant advances in 
the efficiency and sustainability of food crop production.2,3 
Stakeholders charged with making decisions pertaining to 
agricultural production, development priorities, and policies at 
a region-to-country scale require quantitative and up-to-date 
information on the types of crops being cultivated, the acreage 

under cultivation, and crop yields. However, many low- and 
middle-income countries (LMICs) lack the infrastructure and 
resources for frequent and extensive agricultural field surveys 
to obtain this information. As a result, data pertaining to food 
production may be incomplete, be out of date, be located 
within disparate sources, and/or lack accurate geospatial 
referencing; therefore, such data are of limited value for 
agricultural decision-making.

Technology supports a change of paradigm. Traditional 
methods of obtaining agricultural information through field 
surveys are increasingly being augmented by data acquired 
from other sources,4 including images of the Earth obtained 
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through sensors placed on satellites.5 Recent years brought 
the launch of publicly supported Sentinel satellites carrying 
imaging sensors with the greatly improved—in comparison 
with their antecedents—resolution of 10 m,6 as well as 
commercial satellites with an even higher resolution.7 The 
new capability, aided by the establishment of open-access 
infrastructure for processing the high-resolution images8,9 
and the recent revolutionary progress in artificial intelligence 
(AI),10 now makes it feasible to obtain the information at low 
cost and in near-to-real time.

In this brief, we discuss the use of satellite images to provide 
information about agricultural production in LMICs, and 
we comment on research challenges and opportunities. We 
highlight the near-term potential of the methodology in the 
context of Rwanda, a country in sub-Saharan Africa whose 
government has recognized early the value of information 
technology in its strategic planning for food security and 
sustainability.11,12

From Data to Information
Figure 1 is a conceptual schematic of the process flow for 
extracting information about agricultural production from 
satellite images. The methodology shown in Figure 1 is a 
collective outcome of the work of many research groups and 
organizations worldwide over the last three decades and 
is the subject of extensive literature (Atzberger13 provides 

a good introduction). The inputs are data embedded in 
satellite images. Optical images represent reflectance of light 
(solar radiation) from the Earth’s surface as a function of the 
wavelength of the light. For crops, this spectral reflectance 
is determined by the plant’s biophysical and biochemical 
properties, such as the leaf area, biomass, chlorophyll content, 
water content, and canopy structure, as well as external factors 
such as background soil.14 Synthetic aperture radar (SAR) 
images represent reflectance of electromagnetic radiation in 
the microwave range. For crops, this reflectance is primarily 
a function of the canopy architecture such as the size, shape, 
and orientation of canopy components (leaves, stalks, fruit); 
the dielectric properties of the crop canopy; and the cropping 
characteristics such as plant density and row direction.15 The 
potential output of a collective analysis of the optical and/or 
SAR satellite images is information about crop acreage, crop 
health (including incipient damage from pests; see, e.g., Zhang 
et al.16), and crop yield. Typically, satellite sensors acquire 
reflectance information for specific wavelengths (bands). 
Continuing development in sensor technologies is increasing 
the number of bands and their combined spectral range, 
enhancing the ways in which satellite images can be used to 
create knowledge products.

The information extraction process, illustrated in the bottom 
box of Figure 1, relies on algorithms (models) that are 
developed (trained) using data representing the relevant 

Figure 1. Data acquired by imaging sensors placed on satellites can provide valuable information on crop acreage, health, and 
yields
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“ground-truth” (i.e., ground reference data17). The ground-
truth data are obtained in selected locations using field 
surveys and, more recently, are augmented by unmanned 
aerial vehicles (UAVs).18 Using auxiliary data, such as weather 
station reports, can increase accuracy of the algorithms.19 
Although deep machine-learning models are increasingly 
being used for information extraction,20 more traditional 
parametric methods, illustrated later in this brief, are still 
commonly applied and remain a standard for benchmarking 
classification experiments.21

Once fully developed, the AI models depicted in Figure 1 
typically function on their own—they do not require a 
continuous ground-truth data stream. They do need to be 
re-parameterized whenever there are substantial changes in 
biophysical conditions of the agricultural production (e.g., the 
introduction of new cultivars or significant changes in weather 
patterns). The models extract information from satellite images 
as the images become available, resulting in dynamic maps 
that not only capture the state at a specific time but can also be 
used to monitor change—a feature particularly important for 
agriculture, where information is worth little if it comes too 
late.

Although the basic concepts shown in Figure 1 were 
established as early as the 1970s and the methodology has 
been implemented since then in an increasingly sophisticated 
way to provide a variety of agricultural information products 
at the global and continent scales,22,23 only recently have the 
satellite image resolution, data processing capability and cost 
of the data acquisition and processing reached the levels that 
make it feasible to characterize regional and even field-scale 
agricultural production in the situation where smallholder 
farms dominate, as is often the case in developing countries. 
The regional and field-scale, as contrasted with a global- or 
continental-scale, assessment is critical, given the high spatial 
variability of agricultural practices in smallholder systems, 
compounding the variability of climatic and soil conditions.

The seminal work of Burke and Lobell tracked maize grown 
on smallholder farms in western Kenya, using a combination 
of high-resolution satellite imagery and field survey data.24 
They constructed a crop acreage map for maize by using field 
data collected on both maize and nonmaize crops to train 
an AI model—a crop classifier—that can distinguish maize 
pixels from nonmaize ones. Then they applied a regression 
model that related data embedded in satellite images to field-
measured yields to produce a field-scale maize yield forecast 
that they found to be roughly as accurate as the traditional 
field survey measures. These results indicate a substantial near-
term potential to generate useful datasets on productivity in 
smallholder systems.24

Use of UAVs for Ground-Truth Collection
Modern technology can further simplify the task of developing 
the models by opening doors to using UAVs in ground-truth 
data collection. A fixed-wing UAV can cover an area of 100 ha 
in a flight lasting less than 1 hour, obtaining an aerial image 
with a resolution on the order of centimeters, in which each 
pixel is geo-referenced—a much faster, less costly, and typically 
more accurate process than is possible on the ground.18

As an example, Figure 2 shows georeferenced aerial images 
of approximately 80 ha of land in the Kamonyi district of 
Rwanda, obtained in late October 2018 using an eBee Plus 
UAV, manufactured by SenseFly and operated by a Rwandan 
UAV services company, Charis Unmanned Aerial Solutions. 
The UAV includes a built-in data-link connection to a base 
station, which makes it possible to georeference the images 
with the accuracy of 10 cm in both horizontal and vertical 
directions. For this flight, the eBee UAV was equipped with 

Figure 2. Georeferenced aerial images of agricultural land 
in the Kamonyi district of Rwanda from an unmanned aerial 
vehicle flight

Figure 2a is the image obtained by the RGB camera. Figure 2b is a map of the 
normalized-difference vegetation index, derived from images obtained by the 
multispectral camera.
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SenseFly S.O.D.A. RGB [red, green, and blue] and Sequoia 
multispectral cameras. Figure 2a is the image obtained by the 
RGB camera at 3 cm resolution. Figure 2b shows a map of 
the same area that is derived from an image obtained by the 
multispectral camera. Specifically, the map shows values of the 
normalized-difference vegetation index (NDVI), a simple but 
effective index for quantifying the greenness of vegetation and 
other land cover. NDVI can be calculated for each pixel using 
the equation NDVI=(ρNIR-ρR)/(ρNIR+ρR), where ρNIR and 
ρR represent the surface reflectance in the near-infrared and 
red bands of the optical spectrum, respectively.25 The index 
normalizes green-leaf scattering in the near-infrared band and 
chlorophyll absorption in the red band.

By inspecting UAV-acquired high-resolution RGB images, like 
the one in Figure 2a, a human analyst can create a ground-
truth dataset that e.g. identifies the type of land cover. For 
example, it might be of interest to classify the land cover 
into two basic categories: category 1, “Active Agriculture,” 
corresponding to land under cultivation, and category 2, 
“Nonactive Agriculture,” corresponding to land with no/little 
plant growth or the land occupied by buildings and other 
impervious structures in otherwise agricultural areas. From 
the inspection of the UAV images shown in Figure 2, one can 
then attempt to correlate the land cover category with a range 
of NDVI values. Using NDVI threshold values, a computer 
program can then automatically classify a much larger area 
using a satellite image. Figure 3 shows results of such simple 
classification model applied to the multispectral image of the 
whole Kamonyi district acquired by the Sentinel-2 satellite 
within a few days of the UAV flight. In 
the image, nonagricultural areas—like 
urban areas, forests, or water bodies, and 
pixels covered by clouds—were masked.

We estimated the accuracy of the 
classification by testing the model against 
a ground-truth dataset, again extracted 
from UAV images. For this test dataset, 
we selected different pixels (locations) 
than the ones that were used to develop 
the model. Again, a human analyst 
inspected UAV images and identified the 
land cover category. We found that the 
model correctly classified satellite image 
pixels in 88 percent of the cases.

From the map shown in Figure 3, one 
can estimate the area of agricultural land 
that was under cultivation at the time 
when the satellite image was obtained. 
After applying a correction factor for 

the presence of clouds, this active area was calculated to be 
approximately 35,000 hectares (35 kha). This number is close 
to our active area estimate of 36.5 kha from the Seasonal 
Agricultural Survey for Season A 2019, published by the 
National Institute of Statistics of Rwanda.26

By applying AI techniques to satellite images acquired at 
different points in time—in different years, seasons, and 
during a growing season—one can track changes in the extent 
of agricultural cultivation. This type of information can also 
be used to monitor the start of the planting season to provide 
early warning of, for example, weather-related delays and 
accelerate potential interventions.

Future Work
District-scale cropland-extent maps are starting points to 
develop higher-level information products. In our work 
pertaining to Rwanda, we are developing models to identify 
land cultivated by a specific crop and extend this classification 
to the whole country. For Rwanda, priority food crops are 
maize, beans, cassava, Irish potato, rice, and wheat.27 To 
develop an AI model that distinguishes, for example, maize 
pixels from nonmaize pixels, we need a training dataset 
comprising multispectral satellite images of fields cultivated 
with maize and a training dataset composed of multispectral 
images of other type of crops in cultivation in a given time 
period.24 The use of UAVs as high-throughput ground-truth 
collectors enables the required large training-data volume. We 
have obtained ground-truth data in several different ecological 
zones in Rwanda to capture variations in the spectral 

Figure 3. Map of the Kamonyi district with the binary classification into active 
agricultural land and nonactive agricultural land
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signatures of maize with soil and weather conditions and at 
several times during the growing season to obtain time-series 
data to increase the accuracy of the crop classification.28–32

Longer-term objectives include the development of AI models 
for forecasting yields of strategic crops and the timing of 
harvests, based on changes in physical characteristics of the 
plants reflected in multispectral satellite images collected 
during the growing season.

Challenges and Opportunities
Acquiring satellite-driven data has inherent limitations. One of 
the most important ones is the effect of clouds. Clouds block 
images acquired using light in the visible and infrared ranges. 
For Rwanda, cloud cover during the two main growing seasons 
is significant. For example, we found that only 10 percent of 
the Sentinel-2 35-MRT image tiles (covering one-third of 
Rwanda), available for 2018 (1/1/2018 to 12/04/2018) were 
cloud free (cloud free describes an image in which fewer 
than 5 percent of pixels are blocked by clouds). The partial 
solution is the process of mosaicking and filling, in which 
a composite image is formed using cloud-free portions of 
the tiles acquired on different dates. SAR satellite systems 
that use electromagnetic radiation that is not absorbed by 
clouds offer the potential for additional solutions. The work 
on the development of a robust SAR image interpretation 
methodology for agricultural applications is progressing.33

There are also challenges and opportunities inherent in the 
type of agricultural system. For Rwanda, many smallholder 
farmers plant more than one crop on the same parcel of land. 
The intercropping may change optical and SAR signals from 
the plot as compared with the main crop and influence the 
accuracy of land classification, crop monitoring, and yield 
forecast models.34 Plots are also very small and may require 
satellite images with the resolution better than 10m. However, 
one opportunity for better crop classification in Rwanda is that 
there are many consolidated land-use areas where only one 
crop is planted in a large area, making it more conducive to 
identification via machine learning.

Like any process of acquiring and processing data, extracting 
information through automated, computer-driven analysis 
of satellite images comes with uncertainty.35–37 The most 
direct way of assessing the uncertainty is to test the model 
predictions against a ground-truth test dataset, as shown in an 
earlier example. A way to limit the uncertainty and increase 
the model robustness is to increase the quantity and quality 
of ground-truth training data, acquisition of which is a major 
bottleneck. We believe that the increasing availability of UAVs 
will accelerate data collection, whereas ongoing improvements 
in open-source data processing platforms will continue to 

decrease the burden of data preprocessing and further increase 
the pace of the development of analytical tools.

Impact
The agricultural sector is the backbone of Rwanda’s economy—
it contributes more than 33 percent of GDP and is the biggest 
employer.12 The country’s food demand continues to grow, 
reflecting fast population growth, and agricultural productivity 
and total production need to increase dramatically to meet 
the demand. Satellite systems have the near-term potential to 
provide stakeholders in countries where smallholder systems 
dominate with information on crop production, status, and 
yield that is timely, covers large areas, captures spatial and 
temporal detail, and can be obtained at a low cost. Based on 
the information, stakeholders will be better prepared to make 
intervention decisions earlier in the growing season if needed 
and will have tools to assess long‑term impacts of policies and 
investments. The information could also be used to detect 
pockets of rapidly increasing food insecurity, sparking a 
response that could alleviate political instability in areas that 
rely heavily on agricultural production. Continued public and 
commercial support is needed, not only for improvements 
in the satellite infrastructure and the development of robust 
models for information extraction, but also for implementing 
the new data analysis tools to address development 
challenges.38 United Nations Pulse Laboratory Kampala 
provides an example of an effective initiative.39 The continued 
support will pay dividends for food security and sustainability.
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