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Validation of the CDC-RTI Diabetes  
Cost-Effectiveness Model  
Thomas J. Hoerger, Joel E. Segel, Ping Zhang, and 
Stephen W. Sorensen

Abstract
The purpose of this study was to assess the validity of the CDC-RTI Diabetes Cost-
Effectiveness Model by comparing rates of diabetes incidence and complications 
to existing published results. We performed 47 internal and external validation 
exercises comparing the model-simulated outcomes with the outcomes from 24 
published trials. To simulate the outcomes for each published study, we input a 
cohort with similar baseline characteristics and treatment and then modeled the 
development of diabetes and its complications for the same follow-up duration 
as in the trial. Outcomes measured included diabetes incidence, renal disease, 
neuropathy, retinopathy, cardiovascular disease, and mortality. The results of our 
model simulations were generally close to published outcomes. To determine 
how well our model was able to simulate the published outcomes, we ran three 
sets of simple regressions (actual outcome = b0 + b1 × simulated outcome)—
one for the internal validation studies, one for the external validation studies, and 
one for the external validation studies of diabetes incidence. For the 17 internal 
validation analyses, the R2 value was 0.992 and the slope of the regression line 
was 1.001. For the 24 external validation analyses that did not include diabetes 
incidence, the R2 value was 0.969 and the slope of the regression line was 0.991; 
the six external validation analyses of diabetes incidence had an R2 value of 
0.913. In conclusion, the CDC-RTI Diabetes Cost-Effectiveness Model accurately 
models the development and progression of diabetes and can be used to 
evaluate the cost-effectiveness of potential diabetes prevention and treatment 
programs.
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Introduction
The CDC-RTI Diabetes Cost-Effectiveness Model 
was designed to simulate the development and 
progression of type 2 diabetes to assess the cost-
effectiveness of various prevention and treatment 
interventions. To provide results useful for guiding 
public health policy, the model should accurately 
represent the experience of the diabetes population. 
Model validation helps ensure the accuracy of the 
model and is an important step in the construction 
of any disease model. The American Diabetes 
Association (ADA) Consensus Panel1 described 
the importance of validating diabetes models and 
provided steps to guide researchers in the validation 
process.

The model has undergone informal and formal 
validation exercises, but these exercises have not 
been presented systematically. In addition, the model 
has been revised over the years to incorporate new 
data, revised parameters, and new functions. For 
example, we have incorporated the United Kingdom 
Prospective Diabetes Study (UKPDS) risk engines 
for coronary heart disease (CHD) and stroke in place 
of Framingham equations, and we have added a 
module for prediabetes (defined here as persons with 
impaired fasting glucose or impaired glucose tolerance 
who are at high risk of developing diabetes). Recently, 
we updated the model to incorporate recent data on 
costs, diabetes incidence, and mortality. Therefore, 
the objective of this analysis is to present the results 
of the validation of the CDC-RTI Diabetes Cost-
Effectiveness Model, Version 6.2.

Methods

The CDC-RTI Diabetes Cost-Effectiveness 
Model
The CDC-RTI Diabetes Cost-Effectiveness Model is 
a Markov simulation model of disease progression 
and cost-effectiveness for type 2 diabetes. To reflect 
the chronic nature of diabetes, the model follows 
patients from diagnosis to either death or age 95 
years. The model simulates development of diabetes-
related complications on three microvascular 
disease paths (nephropathy, neuropathy, and 
retinopathy) and two macrovascular disease paths 

(CHD and stroke). The model also contains modules 
for diabetes screening and prediabetes. Model 
outcomes include disease complications, deaths, 
costs, and quality-adjusted life years (QALYs). In 
the model, progression between disease states is 
governed by transition probabilities that depend on 
risk factors—including glycemic level (measured 
by HbA1c levels), blood pressure, cholesterol, 
and smoking status—and duration of diabetes. 
Interventions affect the transition probabilities and 
resulting complications. For example, tight glycemic 
control lowers HbA1c, slowing progression on the 
microvascular complication paths. With slower 
progression, fewer microvascular complications 
occur, deaths are delayed, QALYs increase, and 
the costs of complications are reduced. The model 
has been used to estimate the cost-effectiveness of 
treatment interventions for patients with diagnosed 
diabetes,2 evaluate optimal resource allocation across 
interventions,3 assess whether screening for diabetes 
is cost-effective,4 show that lifestyle modification 
is cost-effective in delaying or preventing diabetes 
among persons with prediabetes,5 and estimate the 
cost-effectiveness of screening for prediabetes.6 
Additional details about the model can be found in 
the study of the cost-effectiveness of treatments for 
patients with diagnosed diabetes2 or in the technical 
report accompanying the model (available upon 
request).

Validation Procedures
We follow general validation procedures outlined by 
the International Society for Pharmacoeconomics 
and Outcomes Research (ISPOR) Task Force7 and by 
the ADA Consensus Panel1 on computer modeling 
in diabetes as well as methods used in validation 
studies of the Archimedes Diabetes Model8 and 
the CORE Diabetes Model.9 For the validation, we 
input baseline model parameters from studies that 
were used to create the model (internal validation) 
and those that were found from a review of the 
literature (external validation). We then ran the 
model and compared the overall outcomes in the 
model to those reported by the validation studies. We 
performed internal and external validation using 47 
outcomes/complications from a mix of 24 published 
randomized trials and cohort studies, and one disease 
progression and cost-effectiveness model. For internal 
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validation, we included only those studies that were 
used to construct the model; for external validation, 
we examined the existing literature to find studies 
that were not used to design the model parameters. 

For external validation, we first examined the studies 
used to validate the Archimedes Diabetes Model8 

and the CORE Diabetes Model.9 For each of these 
studies, we included only those studies where the 
study population was appropriate to use in the CDC-
RTI Diabetes Cost-Effectiveness Model, namely the 
population with type 2 diabetes. To supplement the 
studies used in the validation of the Archimedes 
and CORE Models, we performed a PubMed search 
of diabetes and each of the model complications 
(microalbuminuria, macroalbuminuria, end-stage 
renal disease [ESRD], neuropathy, lower extremity 
amputation [LEA], blindness, myocardial infarction 
[MI], angina, stroke, all-cause mortality, and 
progression from prediabetes to diabetes). For each 
of the diabetes complications, we included only 
studies that had outcomes for persons with type 2 
diabetes. For prediabetes, we included only studies 
that measured the incidence of diabetes within a 
population with impaired glucose tolerance (IGT). 

We performed internal and external validation by 
comparing complications and outcomes from the 
model to those observed in each study included in 

the validation exercises. For each validation exercise, 
we created a cohort with descriptive statistics similar 
to those of the population in the comparison study. 
Based on the existing structure of our model, we used 
the following variables to create the cohorts: age, 
sex, race/ethnicity, blood pressure, total cholesterol, 
and smoking status. After running the model for the 
simulated cohort, we compared the model outcomes/ 
complications to the outcomes/complications 
described in the comparison study. Some of the 
comparisons included conventional glycemic control, 
while others involved intensive glycemic control. We 
assessed the goodness-of-fit for the model by plotting 
model results against the published results and then 
calculating R2 values to measure how much of the 
actual variance our model can explain.

Results
Information on each study and the comparison 
between model outcomes/complications and 
validation study results are shown in Table 1.10-34 
The results in Table 1 show that, overall, the model 
accurately simulates the natural history of the 
diabetes population and predicts the progression 
from prediabetes to diabetes. For the majority of 
complications, the model results closely match the 
published results.

Table 1. Summary comparison of published study results with results from the CDC-RTI Diabetes 
Cost-Effectiveness Model

Study Population Studied

Treatment 
Group—Type 
of Glycemic 
Control

Years of 
Follow-
Up

Outcome  
[n] = identifier number  
for Figures 1–3

Study 
Result

Model 
Result

Internal Validation Studies

UKPDS 33,10 
UKPDS 6411

Ages 25–55 with newly diagnosed type 
2 diabetes recruited between 1977 and 
1991

Combined 
intensive and 
conventional 
glycemic 
control

15 Microalbuminuria (survivor 
incidence) [1]

28% 26.3%

15 Macroalbuminuria (survivor 
incidence) [2]

7.1% 5.7%

 Intensive 12 Neuropathy (survivor 
incidence) [3]

30.2% 27.1%

Conventional 12 Neuropathy (survivor 
incidence) [4]

32.8% 31.0%

Intensive 15 Photocoagulation (events per 
1,000 patient years) [5]

7.9 8.4

Conventional 15 Photocoagulation (events per 
1,000 patient years) [6]

11.0 10.7
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Table 1. Summary comparison of published study results with results from the CDC-RTI Diabetes 
Cost-Effectiveness Model

Study Population Studied

Treatment 
Group—Type 
of Glycemic 
Control

Years of 
Follow-
Up

Outcome  
[n] = identifier number  
for Figures 1–3

Study 
Result

Model 
Result

UKPDS 33,10 

UKPDS 6411 
(continued)

Ages 25–55 with newly diagnosed type 
2 diabetes recruited between 1977 and 
1991 (continued)

Intensive 15 Myocardial infarction (MI) 
(events per 1,000 patient 
years) [7]

14.7 16.9

Conventional 15 MI (events per 1,000 patient 
years) [8]

17.4 18.0

Intensive 15 Angina (events per 1,000 
patient years) [9]

6.8 8.8

Conventional 15 Angina (events per 1,000 
patient years) [10]

6.7 8.8

Intensive 15 Stroke (events per 1,000 
patient years)  [11]

5.6 4.7

Conventional 15 Stroke (events per 1,000 
patient years) [12]

5.0 4.4

UKPDS 8012 Long-term UKPDS follow-up Intensive 17.7 MI (events per 1,000 patient 
years) [13]

16.5 17.0

Conventional 17.7 MI (events per 1,000 patient 
years) [14]

20.0 21.4

Intensive 17.7 Stroke (events per 1,000 
patient years) [15]

6.3 7.7

Conventional 17.7 Stroke (events per 1,000 
patient years) [16]

6.9 7.4

Diabetes 
Prevention 
Program (DPP)13

Over age 25, body mass index (BMI) > 
24, elevated plasma glucose, recruited 
from 27 health centers, 1996–1999

Conventional 4 Cumulative incidence of 
diabetes [17]

37% 35.0%

External Validation Studies

Eastman et al.14 Model of ages 25–74 with type 2 
diabetes 

Conventional 25 Cumulative incidence of 
microalbuminuria [18]

40% 47.7%

  25 Cumulative incidence of 
macroalbuminuria [19]

27% 22.1%

  25 Cumulative incidence of end-
stage renal disease (ESRD) [20]

6% 6.7%

25 Cumulative incidence of 
blindness [21]

17% 19.1%

Ravid et al.15 Ages 40–65 in Tel Aviv with type 2 
diabetes of less than 5 years’ duration, 
beginning in 1990–1991

Conventional 8 Cumulative incidence of 
microalbuminuria [22]

35.0% 32.7%

Ravid et al.16 Ages 40–65 in Tel Aviv with type 2 
diabetes of less than 10 years’ duration, 
beginning in 1990–1991

Conventional 6 Cumulative incidence of 
microalbuminuria [23]

19.0% 18.4%

Ansquer et al. 
(DAIS)17

Middle-age persons in France with type 
2 diabetes, normoalbuminuria, and 
mild/moderate lipid abnormalities 

Tight glycemic 
control

3 Cumulative incidence of 
microalbuminuria [24]

3.0% 2.9%

Bruno et al.18 Residents in northwest Italy with 
known type 2 diabetes, baseline exam 
1991–1992

Conventional 6.7 Incidence of ESRD per 1,000 
patient years [25]

1.0 0.8

Partanen et al.19 Ages 45–64 in Finland with newly 
diagnosed type 2 diabetes, evaluated 
1979–1981

Conventional 10 Cumulative incidence of 
neuropathy [26]

22.0% 24.1%

(continued)
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Table 1. Summary comparison of published study results with results from the CDC-RTI Diabetes 
Cost-Effectiveness Model

Study Population Studied

Treatment 
Group—Type 
of Glycemic 
Control

Years of 
Follow-
Up

Outcome  
[n] = identifier number  
for Figures 1–3

Study 
Result

Model 
Result

Humphrey et al.20 Rochester Diabetes Project— 
individuals diagnosed with diabetes 
between 1945 and 1979 then followed 
up until 1985. No information about 
demographics, so used demographics 
from Moss, Klein, and Klein.21

Conventional 25 Cumulative incidence of lower 
extremity amputation (LEA) 
[27]

6.9% 6.6%

Haffner et al. 22 Ages 45–64 with diabetes, from two 
Finnish hospital districts, 1982–1984

Conventional 7 MI (events per 1,000 patient 
years) [28]

32.0 32.0

Stroke (events per 1,000 
patient years) [29]

16.0 4.3

Lee et al.23 WHO multinational follow-up study 
from 10 of 14 international centers, 
1983–1990

Conventional 8 MI (incidence rate per 1,000 
patient years) [30]

10.7 11.3

Cumulative incidence of 
angina [31]

11.1% 4.0%

Cumulative incidence of stroke 
[32]

8.0% 1.4%

Calhoun et al.24 
(CARDS) 

Ages 40–75 in UK or Ireland with 
type 2 diabetes and one cardiovascular 
disease (CVD) risk factor but no history 
of CVD. Randomized cholesterol 
control trial, 1997–2001.

Conventional 4 Cumulative incidence of MI 
[33]

4.6% 5.4%

Cumulative incidence of stroke 
[34]

2.8% 1.7%

Kahn et al. 
(ADOPT)25 

Ages 30–75 from US, Canada, and 
Europe with type 2 diabetes and no 
pharmacological treatment, 2000–2002

Intensive 4 Cumulative incidence of MI 
[35]

1.5% 3.9%

Cumulative incidence of stroke 
[36]

1.3% 1.1%

ACCORD26 Ages 40–79 with type 2 and A1c 
over 7.5% and CVD, or ages 55–79 
with atherosclerosis, albuminuria, 
left ventricular hypertrophy, or two 
additional CVD risk factors, 2001–2003

Intensive 3.5 Cumulative incidence of MI 
[37]

4.9% 4.8%

Cumulative incidence of stroke 
[38]

1.4% 1.45%

ADVANCE27 Ages 55 or older with type 2 diabetes, 
from 20 countries beginning in 2001

Conventional 4 Cumulative incidence of stroke 
[39]

3.9% 2.3%

Gu et al.28 Ages 35–74 with self-reported diabetes 
in NHANES I, 1971–1975

Conventional 8.5 All-cause mortality (deaths per 
1,000 person years) [40]

51.3 56.0

Sasaki et al.29 Persons with type 2 diabetes in Osaka, 
Japan, first seen in the clinic between 
1960 and 1979

Conventional 15 All-cause mortality (deaths per 
1,000 person years) [41]

31 28

Li et al.30 Adults with impaired glucose tolerance 
(IGT) in Da Qing, China

Conventional 6 Cumulative incidence of 
diabetes [42]

65.8% 48.2%

   20 Cumulative incidence of 
diabetes [42]

92.8% 82.6%

Tuomilehto et al.31 Finnish subjects at high risk for 
diabetes (IGT)

Conventional 7 Cumulative incidence of 
diabetes [43]

43% 51.2%

Ramachandran 
et al.32 

Indian subjects with persistent IGT Conventional 3 Cumulative incidence of 
diabetes [44]

55% 28.6%

Kosaka et al.33 Japanese males with IGT screened from 
1990 to 1992

Conventional 4 Cumulative incidence of 
diabetes [45]

9% 35.4%

Chiasson et al.34 Ages 40–70 from multiple countries 
with BMI 25–40 and IGT

Conventional 3.3 Cumulative incidence of 
diabetes [46]

42% 31.6%

BMI = body mass index; CVD = cardiovascular disease; ESRD = end-stage renal disease; IGT = impaired glucose tolerance; LEA = lower extremity amputation; 
MI = myocardial infarction.

(continued)
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To further assess how well the model matches actual 
results, we also compared the collective fit across 
complications by plotting model results against 
the study results and estimating the correlation. 
The collective results for the internal validation 
and external validation (excluding prediabetes) are 
shown in Figures 1 and 2, respectively. The model 
results fit the actual data well, with most of the values 
from the internal and external validation falling 
close to the 45-degree line, which represents perfect 
correlation between the model and actual results. We 
report regression line slopes and R2 values from the 
regressions using the methods described by Palmer 
et al.9 Although some R-squared values may be very 
close to 1.000 (i.e., the slope of the 45-degree line), 

this does not necessarily mean that each outcome 
from each study was exactly matched; rather, the 
overall match is close. The results from the internal 
validation (only those studies used in creating the 
model) closely match the actual data—the regression 
line slope of 1.001 is close to 1.000, and the R2 value 
is 0.992, which indicates that the model explains 
approximately 99 percent of the variance in the actual 
data. The external validation showed the model also 
matched the results from studies not used to create 
the model. The external validation (which focuses 
on studies that were not used in creating the model) 
had a regression slope of 0.991 and a high R2 value 
of 0.969; for this regression, we excluded prediabetes 
outcomes.
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Figure 1. Comparison of modeled diabetes 
complication incidence rates to results from the 
internal validation study (only those studies used in 
creating the model)

Figure 2. Comparison of modeled diabetes 
complication incidence rates to results from the 
external validation study (not including prediabetes 
results)

Note: Numbers correlate to Outcome numbers from Table 1. Event rates per 
1,000 patient years were converted to incidence rates by multiplying the event 
rate by the number of years of follow-up.

The external validation (which focuses on studies that were not used in creating 
the model) had a regression slope of 0.991 and a high R2 value of 0.969.

Note:  Numbers correlate to Outcome numbers from Table 1. Event rates per 
1,000 patient years were converted to incidence rates by multiplying the event 
rate by the number of years of follow-up.

The results from the internal validation (only those studies used in creating 
the model) closely match the actual data—the regression line slope of 1.001 is 
close to 1.000, and the R2 value is 0.992, which indicates that the model explains 
approximately 99 percent of the variance in the actual data.
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Microvascular Complications
We assessed the model fit for three categories 
of microvascular complications: nephropathy, 
neuropathy, and retinopathy. The model accurately 
predicts these specific microvascular complications 
overall, with an R2 value of 0.986. The model 
is similarly accurate for the three nephropathy 
complications (microalbuminuria, macroalbuminuria, 
and ESRD), with an R2 value of 0.981. Because 
of the complicated nature of kidney disease, the 
model predicted the outcomes for the earlier stages 
(microalbuminuria) better than for the later stages 
(macroalbuminuria or ESRD). Few studies were 
available to validate the neuropathy and retinopathy 
complications, so, although the model fit the actual 
data well, we did not calculate an R2 value for each of 
these specific complications.

For internal validation, we also analyzed how well 
the model matched the UKPDS results across each 
time period. We compared the UKPDS trial results 
with the model results for the incidence of peripheral 
neuropathy, microalbuminuria, and proteinuria (see 
Appendix Figures 1, 2, and 3). In general, the model fit 
the UKPDS results well over time, although the model 
fits the data better in earlier years and then slightly 
underestimates the rates of peripheral neuropathy, 
microalbuminuria, and proteinuria in later years. 

Macrovascular Complications
We also assessed the model fit for macrovascular 
complications, which included CHD (angina and 
MI) and stroke. The model fit was better for CHD 
(R2 = 0.982) than for stroke (0.800), although the 
worse fit for stroke was due primarily to several 
older studies used in the comparison. Overall, the 
model fit the macrovascular complications well, 
with an R2 value of 0.958. For the macrovascular 
complications, we also examined how well the model 
results matched the UKPDS results over time. The 
model appears to model the incidence of MI and 
stroke well in the earlier years (see Appendix Figures 
4 and 5). However, in the later years, the model 
underestimated the incidence of MI and stroke. 

Development of Diabetes from Prediabetes
We plotted the model results and the published 
results for the percentage of individuals with 
IGT against time in Figure 3. We connected the 
model results with a line to indicate how the 
model predicted incidence of diabetes over time. 
The specific points in the figure are based on the 
duration time reported in the results for each trial. 
For that time, we plotted the published cumulative 
incidence of diabetes from the trial (diamonds) and 
the cumulative incidence predicted by the model 
(triangles). As expected, the model most closely 
matched the results from the Diabetes Prevention 
Program (DPP), which was used in constructing the 
model. Although the model does not perfectly match 
the published results, the model fit well (R2 = 0.913), 
with the published results evenly distributed above 
and below the model prediction.

Figure 3. Model vs. published data comparison of the 
percentage progressing from prediabetes to incident 
diabetes

Mortality
The model accurately predicts the total-cause 
mortality for the Japanese diabetes population in 
Sasaki et al.29 and the American diabetes population 
in Gu, Cowie, and Harris.28 Despite the difference 
in country, the model is within 10 percent of the 
published estimate for Japan.
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Discussion
As the ADA Consensus Panel indicated, validation 
is an essential part of designing any diabetes model. 
The process helps define the population for which 
the model is applicable and demonstrates the model’s 
accuracy in representing actual diabetes progression. 
Although the model has been continuously validated 
throughout the model construction process, primarily 
by checking for programming errors and using 
internal validation, results of systematic validation 
have not been presented. This comprehensive 
validation process by the developers of the model 
shows that the model accurately simulates the 
development of diabetes and its complications. 

The external validation also indicates that the 
model can accurately simulate the progression of 
diabetes for populations not used directly in model 
construction. This is particularly important because 
it demonstrates that the model can be applied to 
similar populations to estimate the cost-effectiveness 
of new interventions. However, our model is limited 
to the populations for which we have data, primarily 
people from clinical trials in the United States and the 
United Kingdom. The more a population differs from 
the one used to build the model, the less accurate the 
model will be in simulating that population. 

We excluded several studies from the validation 
results because the study populations did not fit the 
model structure and were therefore not appropriate 
to use in the model. For example, the Parving et al. 
study,35 Reduction of Endpoints in NIDDM with 
the Angiotensin II Antagonist Losartan (RENAAL) 
study,36 and Irbesartan in Diabetic Nephropathy 
Trial (IDNT)37, 38 only included populations with 
somewhat advanced kidney disease. Because our 
model primarily used UKPDS data, the model 
parameters are set to match a more heterogeneous 
group and not a population that exclusively has 
kidney disease. We also excluded the Wisconsin 
Epidemiological Study of Diabetic Retinopathy 
(WESDR) study39 because the study was relatively old 
and the population had very poor glycemic control. 
As diabetes care has improved, the rate of diabetes 
complications has decreased, so the data on which the 
model was built may not be applicable to the older 
WESDR study. 

Overall, the internal validation shows that the model 
can accurately reproduce results from the studies 
used to create the model. The two exceptions are 
the results for MI and stroke over time. For MI and 
stroke, the model estimates incidence well for the first 
9 years but then underestimates cumulative incidence 
in the later years. Although the model underestimates 
cumulative incidence, the model appears to be fairly 
accurate in the estimation of MI and stroke events 
per 1,000 patient years. This can be partly explained 
by the use of the UKPDS risk engine in the model, 
which calculates the probability of MI or stroke 
absent mortality from any other causes. However, 
our model includes multiple causes of death, 
which reduce life years and consequently lower the 
likelihood of a person having an MI or stroke during 
his/her lifetime. This may explain the lower incidence 
of MI or stroke in the later years, while the reduced 
life years explain how the model still estimates the 
number of events per 1,000 patient years well.

Stroke is the one notable complication where the 
model does not perform as accurately in external 
validation exercises. However, the rate of stroke 
seems to vary widely within the published results, so 
it would be difficult to match the results from each 
study. One reason for the variation may be secular 
improvements in stroke prevention, especially within 
the diabetes population. As stroke prevention has 
improved, the rate of strokes has decreased. Although 
the model has some trouble modeling the incidence 
of stroke, it does appear that the prediction is better 
for more recent studies than for older studies, as 
shown in Figure 4. Figure 4 presents the rate of stroke 
by the final study year. We made similar graphs using 
the beginning study year and the middle study year 
(graphs not shown), but these changes did not affect 
the basic result. 

In addition to stroke, the model is also not as accurate 
in predicting the progression from prediabetes 
to incident diabetes for the international studies 
included in the external validation exercises. 
However, as Table 1 and Figure 3 show, the published 
results for the incidence of diabetes vary considerably. 
For example, the cumulative incidence of diabetes 
was 9 percent with follow-up of 4 years in the 
Japan Diabetes Prevention Program,33  55 percent 
with 3 years of follow-up from the Indian Diabetes 
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Prevention Program,32 and 42 percent with 3.3 
years of follow-up in the Study to Prevent NIDDM 
(STOP-NIDDM).34 Because of the wide variation in 
published results, it would be difficult to accurately 
predict the results for each individual country. The 
differences in diabetes incidence rates between 
countries may stem from differences in the definition 
of prediabetes across countries; differences in the 
eligibility requirements across studies; or country-
specific factors, such as the potential variation in 
typical care provided for the prediabetes population. 
The model was constructed to accurately predict the 
results for the DPP, which it does, and may be more 
appropriate for predicting the incidence of diabetes in 
an American population.

There are at least two options for improving the fit of 
the model for prediabetes. First, and most simply, we 
could use country-specific data to set the transition 
probability to diabetes every time we wish to study 
progression in a different country. This approach will 
capture country-specific effects on diabetes, but it 
will not reflect patient heterogeneity unless patient-
specific data from that specific country are also 
available. Second, instead of using a single parameter 
to represent the transition probability, we could 
replace the parameter with a function that depends 
on a set of patient characteristics such as those used 
in the Framingham Offspring Study algorithm for 
estimating 8-year diabetes incidence.40 Such an 
approach would incorporate patient heterogeneity, 
although it would not necessarily reflect country-
specific effects on incidence, and it may not fully 
reflect differences in patient populations within the 
United States.41

Conclusions
The CDC-RTI Diabetes Cost-Effectiveness Model’s 
purpose is to assess the cost-effectiveness of various 
prevention and treatment interventions by simulating 
the development and progression of type 2 diabetes. 
However, the cost-effectiveness estimates are only 
useful if the simulation is an accurate representation 
of the true clinical course of diabetes. To ensure 
the accuracy of the model, an essential step in the 
development of any disease model is validation. 

Our validation exercises show that the model 
accurately simulates the development and 
progression of diabetes. The validation results also 
indicate that the model can be effectively used to 
compare the cost-effectiveness of various diabetes 
prevention or treatment programs for the type 2 
diabetes population. Although the model accurately 
simulates the incidence and progression of type 2 
diabetes for most populations, it may not be as well 
suited for several other populations. The model may 
not be appropriate for diabetes populations where 
the entire population already has advanced stages of 
complications (e.g., the population with advanced 
kidney disease) or for populations with very poor 
glycemic control (e.g., the WESDR population). As 
the prediabetes results showed, the model also may 
not be as accurate for non-US populations, because 
medical treatment may differ geographically. In these 
cases, it may be possible to improve model accuracy 
by changing the model’s default parameters while 
retaining the model’s underlying structure. For 
example, when dealing with a known population 
of persons with advanced kidney disease, it may be 
possible to insert transition probabilities associated 
with this population. For persons with prediabetes in 
another country, it may be possible to use a country-
specific probability of developing diabetes. 

As highlighted in the ISPOR disease modeling 
guidelines, models must be continuously updated 
as new information emerges.7 As we update the 
model structure and inputs, we will continue to 
perform validation exercises to ensure that the 
model accurately simulates diabetes incidence and 
progression.
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result for stroke, by year of study
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Appendix A

Microvascular Complications
We assessed the model fit for three categories 
of microvascular complications: nephropathy, 
neuropathy, and retinopathy. The model is 
very accurate in predicting the microvascular 
complications overall, with an R2 value of 0.986. The 
model is similarly accurate for the three nephropathy 
complications (microalbuminuria, macroalbuminuria, 
and end-stage renal disease [ESRD]), with an R2 value 
of 0.981. In general, the model was more accurate 
for microalbuminuria than for macroalbuminuria 
or ESRD. Because of the complicated nature of 
kidney disease, the model was better able to predict 
outcomes for the earlier stages. Limited studies were 
available to validate the neuropathy and retinopathy 
complications, so, although the model appears to fit 
the actual data well, we did not calculate an R2 value 
for each of these specific complications.

For internal validation, we also analyzed how well 
the model matched the United Kingdom Prospective 
Diabetes Study (UKPDS) results across each time 
period. Figures 1 through 3 compare the UKPDS 
trial results with the model results for the incidence 
of peripheral neuropathy, microalbuminuria, and 
proteinuria, respectively. In general, the model 
appears to fit the data well over time, although the 
model fits the data better in the earlier years. For 
peripheral neuropathy, the model appears to fit the 
data very well until 12 years after randomization, 
when the model appears to slightly underpredict 
the incidence of peripheral neuropathy. For 
microalbuminuria, the model appears to slightly 
overpredict incidence for the intensive glycemic 
control group; and for the conventional glycemic 
control group, the model slightly overpredicts during 
the earlier years and then underpredicts during the 
later years. Finally, for proteinuria, the model appears 
to predict the incidence very well for the intensive 
glycemic control group; and for the conventional 
glycemic control group, the model overpredicts 
slightly during the earlier years and underpredicts 
slightly during the later years. Overall, the model 
appears to do a good job approximating the UKPDS 
results over time.

Figure A-1. Internal validation of peripheral 
neuropathy incidence over time

Figure A-2. Internal validation of microalbuminuria 
incidence over time

Figure A-3. Internal validation of proteinuria incidence 
over time
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Macrovascular Complications
We also assessed the model fit for macrovascular 
complications, which included coronary heart 
disease (CHD) (angina and myocardial infarction 
[MI]) and stroke. The model fit was better for CHD 
(R2 = 0.982) than for stroke (0.800), although the low 
model fit for stroke was due primarily to several older 
studies. Overall, the model fit the macrovascular 
complications well, with an R2 value of 0.958.

For the macrovascular complications, we also 
examined how well the model results matched 
the UKPDS results over time. As Figures 4 and 5 
show, the model appears to accurately model the 
incidence of both MI and stroke well in the earlier 
years. However, in the later years, the model appears 
to underestimate the incidence of MI and stroke. 
This may be partially explained by the relatively 
lower number of participants remaining at the 
15-year point—approximately 70 (of 1,096) in the 
conventional treatment group and 188 (of 2,632) in 
the intensive treatment group.

Figure A-5. Internal validation of stroke incidence over 
time

Figure A-4. Internal validation of myocardial infarction 
incidence over time
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