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Quantitative Real-Time Polymerase 
Chain Reaction (qPCR) of Filamentous 
Fungi in Carpet  
Jonathan Black

Abstract
We developed a protocol for the rapid identification and quantitation of fungi 
by quantitative real-time polymerase chain reaction (qPCR) in carpet. The fungi 
used in this study are field isolates of Alternaria alternata, Aspergillus versicolor, 

Cladosporium cladosporoides, and Stachybotrys chartarum. The modified spore 
extraction method provided superior quality, high-molecular-weight genomic 
DNA as assayed using SYBR Green I qPCR. The species-specific target sequences 
were selected from the highly conserved nuclear ribosomal RNA (rRNA) region 
of fungi. Primer sets produced consistent species-specific PCR products, and 
we confirmed the target by melt-curve analysis. The qPCR assay had a range of 
detection of 40 to 25,000 spores per reaction and required less than 60 minutes 
to run, and the results were reproducible (average r = 0.95). The use of this 
method for genomic DNA isolation from fungi spores coupled with the qPCR 
using the primer sets we designed will enable quicker identification of disease-
causing fungi in the built environment.
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Introduction
Carpet, especially when dirty, can create a suitable 
environment for fungal growth, especially under 
damp conditions.1 Exposure to mold (fungi) in the 
indoor environment represents a major conduit of 
respiratory disease in humans, with asthma and 
allergy being the two most recognized illnesses.2-4 
Because inhalation of fungi has been shown to 
increase nonspecific bronchial reactivity in asthmatics 
and has been implicated in the exacerbation of 
allergy and chronic infection,5,6 quickly identifying 
fungi at the species level is crucial for implementing 
appropriate disease treatment. However, fungi 
infestation is frequently composed of a mixed 
population of genera that tends to interfere with the 
timely identification of the disease-producing fungus. 

Although considerable knowledge about fungi has 
been amassed, they are not rapidly identified by 
culture morphology because of their prolonged 
growth requirements and fastidious nature.7 These 
factors undoubtedly lead to an understatement of the 
actual diversity of the indoor fungal community. The 
need for rapid identification of the species of fungus 
has led to the development of various molecular 
technologies; the quantitative real-time polymerase 
chain reaction (qPCR) lies at the forefront of these 
technologies.

qPCR can both detect and quantify organisms based 
on a specific sequence of DNA in the sample. As PCR 
product accumulates in the reaction, it is quantified 
in real time. The most common method to detect 
PCR product is through the use of the fluorescent 
dye SYBR Green I. SYBR Green I dye intercalates in 
the double-stranded DNA, amplified by the PCR; 
quantity is directly proportional to the amount of 
fluorescence. 

A favorite target for designing a qPCR assay is the 
repetitive and highly conserved nuclear ribosomal 
RNA (rRNA) region of fungi.8-13 Although highly 
conserved, the variation in the intron spacer 
segments of the rRNA region is sufficient to allow for 
specific and rapid PCR-based speciation. Although 
qPCR is a particularly promising molecular tool 
because of its simplicity, specificity, and sensitivity, 
qPCR does have some important limitations. These 

limitations include the availability of sequence data, 
adequate preparation of inhibitor-free target DNA, 
and judicious primer design. Users of qPCR must 
give considerable attention to the DNA purification 
process, especially when microorganisms are 
difficult to lyse. Inefficient lysis leads to substandard 
nucleic acid purification and insufficient removal of 
compounds inhibitory to PCR.14,15 

Spores of fungi are favored for laboratory analyses 
because they are relatively large and easily isolated, 
have distinguishable characteristics, are countable, 
and have long viability. However, use of spores for 
molecular studies like PCR is challenging. Spores 
are highly resistant to lysis, and several studies have 
been devoted to the development of procedures to 
efficiently extract genomic DNA from fungi and 
bacteria spores.16-24 Although the methods for 
genomic DNA isolation are variable, all but one of 
these previous studies17 utilized serial dilution of a 
singular genomic DNA preparation for PCR, and 
none demonstrated the nature of the genomic DNA 
that was isolated by agarose gel electrophoresis. 

Clearly, a distinctive approach for the rapid isolation 
of quality high molecular weight genomic DNA 
from fungi spores is not at all well defined. Although 
commercial kits are available for DNA isolation from 
many different types of organisms and cells, none will 
isolate DNA from fungi spores very well. 

This report describes the experimental procedures we 
used to overcome the unique difficulties in isolating 
genomic DNA from fungi spores. We combined 
several techniques to isolate high-molecular-weight 
genomic DNA from the inoculum. We then used the 
purified DNA successfully in qPCR, which correctly 
identified and quantitated each of the fungi isolated 
from carpet by spore number. 

Methods and Materials

Reagents and Kits 
We used a Qiagen Plant kit (Valencia, California) 
for genomic DNA isolation. The kit and components 
were stored at room temperature until they were 
needed for our work. We stored the SYBR Green 
Supermix (BioRad, Hercules, California) used for 
qPCR at –20°C until it was needed.
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Fungi
The test organisms were field isolates of Alternaria 
alternata, Aspergillus versicolor, Cladosporium 
cladosporoides, and Stachybotrys chartarum 
filamentous fungi. We cultured all test organisms 
for 14 to 21 days at room temperature under 
incandescent light on 2 percent malt extract agar 
(MEA). We gently rolled a swab wetted with sterile 
water across the surface of growth to collect the 
spores. We then eluted the material collected on 
the swab into sterile water and verified spores using 
light microscopy. Finally, we adjusted spores using 
hemacytometer to 107 spores/mL in sterile water and 
stored them at 4°C until needed.

Carpet Inoculation and Extraction 
We punched circles approximately 5 cm in diameter 
from commercial-grade nylon carpet and sterilized 
them by autoclaving. Then we rolled autoclaved, 
sieved vacuum cleaner dust onto sterile carpet at 0.09 
mg/cm2. The carpet samples were placed back into 
an autoclave pouch and stored at room temperature 
until ready for use. We mixed each fungi suspension 
well before pipeting 50 μL on triplicate carpet 
punches. Punches were inoculated with 40, 200, 
1,000, 5,000, or 25,000 spores. We prepared triplicate 
sets of controls for each inoculum level. 

We extracted spores by shaking a wrist-action shaker 
in phosphate-buffered saline. We plated the controls 
on 2 percent MEA and incubated them until colony-
forming units (CFUs) could be determined. The 
CFUs were later used as indicators of spore numbers 
for extraction of DNA and qPCR tests.

DNA Preparation 
We subjected extracted spores to glass bead 
milling for 5 minutes in the lysis buffer supplied 
with the Qiagen kit. Cell debris and glass beads 
were removed from the milled lysate by passing 
the lysate through Whatman cellulose filter paper 
(Whatman Inc., Florham Park, New Jersey) at low-
speed centrifugation (Eppendorf Centrifuge 5415D, 
Westbury, New York). We then subjected the cleared 
lysate to further DNA purification following the 
manufacturer’s suggested protocol. All extractions 
were eluted in sterile distilled water, concentrated 

(Centrivap DNA Systems, Labconco, Kansas City, 
Missouri), and stored at –20°C until needed.

qPCR Primers 
We designed all rRNA primers from the following 
National Center for Biotechnology Information 
loci: AF314580 (Alternaria alternata), L76745 
(Aspergillus versicolor), AJ244241 (Cladosporium 
cladosporoides), and AM180510 (Stachybotrys 
chartarum). Primers were validated using 
two software packages, Oligo 3.0 (free Web 
software) and Molecular Beacon (Premiere 
Biosoft International, Palo Alto, California). The 
primers were synthesized by Qiagen Operon 
(Germantown, Maryland), suspended in sterile 
water, and stored at –20°C until needed. 

PCR Conditions 
We evaluated several thermalcycling parameters 
for optimal performance at amplifying DNA from 
these fungi spores. Generally, the most effective 
procedure utilized 5 μL of the purified DNA 
preparation added to a 20-μL master mixture 
(made immediately before use) containing 
12.5 μL PCR SYBR Green I Supermix (BioRad), 
0.25 μM of each primer, and 6.25 μL nuclease-
free water (Promega, Madison, Wisconsin). The 
iCycler (BioRad, Hercules, California) parameters 
were the following: 3 minutes at 95°C (to denature 
double-stranded DNA) followed by 40 cycles each 
of 10 seconds at 94°C, 10 seconds at 57°C, and 10 
seconds at 72°C, and a final extension cycle for 5 
minutes at 72°C. In addition, we performed a melt 
curve to confirm that we had generated only the 
desired amplicon. 

Results 
Inoculation, elution, culture, and enumeration 
of the fungi spores extracted from the carpet 
samples proved to be very consistent (Table 1). 
This consistency across these variables was  
important because it provided a basis for 
determining how many spores were actually 
extracted for the DNA assays. In this study, the 
standard deviations were lower in the higher 
inoculums (2.30–4.40) and higher in the lower 
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inoculum (1.60). This was somewhat expected based 
on previous experimentation in which loss of a single 
spore in lower inoculations resulted in larger error 
(data not shown).

Although the Qiagen Plant kit is designed to 
extract DNA directly from plant material, we 
could not extract the DNA from the fungi spores 
by following the manufacturer’s instructions alone 
(data not shown). Instead, we had to modify the 
manufacturer’s protocol by milling the spores in lysis 
solution before DNA extraction. In addition, the 
milled lysate required centrifugation through filter 
paper at low speed to remove cell debris and beads. 

The DNA that we purified from all four genera 
after these modification steps was determined by 
agarose gel electrophoresis to be well-defined, high-
molecular-weight genomic DNA (Figure 1). The 
milled spores photograph (right panel of Figure 1) 

shows long DNA smears with high-intensity DNA 
bands at the top of the gel. The majority of the 
purified genomic DNA corresponds to between 
10 and 20 kilobases, as compared with the DNA 
ladder (lane 1). Conversely, the unmilled spores 
photograph (left panel of Figure 1) demonstrates the 
complete absence of detectable genomic DNA in the 
preparation. 

The thermalcycling parameters and primer sets 
used for this study resulted in qPCR specificity (+) 
for each of the fungi (Table 2). Each qPCR reaction 
contained DNA from all four fungi but primers 
specific for only one. When we ran qPCR, detection 
of a single amplified product of the same kilobase 
molecular weight as that of the positive control of 
the single organism and specific primer set indicated 
specificity (+). A negative control reaction that 
contained specific primers but no DNA was included 
in every qPCR. In each case, the positive control 

Table 1.  Organism, initial inoculate, and recovered mean inoculum colony-forming units  per carpet piece

Organism

Hemacytometer-Verified Inoculum (Log10)

1.60 2.30 3.00 3.70 4.40

Actual Recovery (Log10, ± sd, n=3)

Alt. alternata 1.62 ± 0.18 2.43 ± 0.02 3.08 ± 0.03 3.70 ± 0.07 4.39 ± 0.04

Asp. versicolor 1.61 ± 0.11 2.33 ± 0.17 3.04 ± 0.03 3.66 ± 0.04 4.41 ± 0.13

C. cladosporoides 1.64 ± 0.11 2.30 ± 0.06 3.07 ± 0.07 3.69 ± 0.11 4.34 ± 0.06

S. chartarum 1.56 ± 0.11 2.16 ± 0.06 3.16 ± 0.03 3.61 ± 0.06 4.43 ± 0.10

Note: sd = standard deviation. 

Figure 1. Gel 
electrophoresis of 
Alternaria alternata (lanes 
2,6), Aspergillus versicolor 
(lanes 3,7), Cladosporium 
cladosporoides (lanes 
4,8), and Stachybotrys 
chartarum (lanes 5,9), 
unmilled and milled DNA 
extractions  

MilledUnmilled

23,130

2,322

2,027

4,360

6,557

9,416

2 63 74 85 91

Note: A DNA ladder (lane 1) provides size in base pairs, which are specified on the left.
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Table 2.  Primer specificity in quantitative polymerase 
chain reaction

Organism Tested

Specificity Results for Each Organism

Al
t. 

al
te

rn
at

a

As
p.

 v
er

si
co

lo
r

C.
 cl

ad
os

po
ro

id
es

S.
 ch

ar
ta

ru
m

Alt. alternata + – – –

Asp. versicolor – + – –

C. cladosporoides – – + –

S. chartarum – – – +

No DNA – – – –

Specific DNA + + + +

+ 	 indicates positive specificity result from qPCR analysis

– 	 indicates negative specificity result from qPCR analysis

Figure 2. Quantitative polymerase chain reaction (qPCR) detection of Alternaria alternata (A), Aspergillus 
versicolor (B), Cladosporium cladosporoides (C), and Stachybotrys chartarum (D) spore preparations 

resulted in specific amplification (+) of the target 
species, while the negative control resulted in no 
reaction at all (−). 

The qPCR analyses of Alt. alternata, Asp. versicolor, 
C. cladosporoides, and S. chartarum are presented 
in Figure 2 (A–D). The curves represent the results 
of three experiments; the Y-axis (C t) is the cycle in 
which SYBR Green I fluorescence was detectable. 
The r value is included for each result, and the spore 
number (X-axis) indicates the number of spores used 
for genomic DNA preparation. For all fungi, as few 
as 40 spores and up to as many as 25,000 spores were 
detectable by qPCR assay; the average r was 0.95. 
The melt curve indicates that a single PCR product 
was generated in each qPCR assay; all peaks align, 
and there is no shift from the center characteristic 
of inefficient PCR and nonspecific amplification of 
multiple targets. 

Note: The quantitative linear regression represents the results of three experiments. The Ct value is the cycle threshold at which SYBR Green I fluorescence was 
detectable. The r value for each line is included. Spore number indicates the number of spores used in the DNA preparation. A melt curve (insert) represents the release 
of fluorescence upon melting of qPCR product: the lowest peak represents fluorescence for 40 spores and the highest peak represents fluorescence for 25,000 spores.
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these difficulties through the modifications defined 
in this study, producing high-quality genomic DNA, 
which led to specifically amplified product in the 
qPCR assays. Furthermore, our use of the multi-
copy rRNA region increased the sensitivity of qPCR 
detection because this region in fungi can have copy 
numbers of 100 or more.32-37 

Detection of fungi contamination in the built 
environment remains problematic, because fungi 
inhabit surfaces such as carpet that becomes dirty. 
This factor makes genomic DNA extraction difficult, 
which in turn often leads to inferior analytical 
results. Our study demonstrates that milling spores 
in lysis buffer and removing cell debris by filtration 
provides high-molecular-weight DNA, which we 
could then use in qPCR assays for quick and accurate 
quantitation of fungi from carpet. Moreover, our 
results were reproducible. The high reproducibility 
of our results indicates that this method may be used 
to reliably identify fungi contamination in occupied 
spaces.

We believe that researchers and commercial firms 
interested in using qPCR for identification of fungi 
in the built environment can adopt the principles 
we describe here. We look forward to working with 
any interested parties in developing these procedures 
further. 

Discussion
The test organisms were field isolates of Alternaria 
alternata, Aspergillus versicolor, Cladosporium 
cladosporoides, and Stachybotrys chartarum. Each 
genus has been identified as a significant agent 
of human disease associated with allergy and 
asthma.25-27 These fungi can persist as mixed 
populations in carpet and are very difficult to identify 
by morphological approaches alone. 

Although the development of molecular technologies 
has expedited identification of different fungi, a single 
consensus approach is lacking. Various protocols are 
available for DNA isolation from fungi spores, but 
they entail cumbersome sonification steps and toxic 
chemical phenol-chloroform extractions. Besides 
being very time-consuming, these methods also result 
in DNA that produces inferior PCR.28-30 One early 
study demonstrated that DNA was released from 
filamentous fungi hyphae after glass bead milling, 
but this process proved unsuccessful when disrupting 
spores.31 

The advent of commercially available DNA isolation 
kits has reduced the cumbersome nature of earlier 
methods, but it has not overcome the adherent 
difficulties in extracting genomic DNA from 
recalcitrant structures such as spores. We overcame 
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