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Exploring Some Uses for Instrumental-
Variable Calibration Weighting
Phillip S. Kott

Abstract
The WTADJX procedure incorporated into the 2012 release of SUDAAN 11® does 
instrumental-variable calibration weighting using a flexible nonlinear weight-
adjustment function. We review the theory behind this procedure and discuss 
two potential uses. The first tends to reduce mean squared errors in the absence 
of unit nonresponse or coverage errors. The second adjusts for unit nonresponse 
when the variables governing the response mechanism differ from the variables 
used to calibrate the weights. This occurs either because the survey variables of 
interest cannot be roughly modeled as a linear function of the response-model 
variables or because the values of the response-model variables are known only 
for the respondents.
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Introduction
Brewer (1995) proposed using instrumental 
variables in a calibration-weighted estimator for a 
finite-population total as a way of integrating the 
prediction form of model-based sampling theory 
with (design-based) randomization consistency. We 
explore instead more practical uses of instrumental-
variable calibration, such as (1) adjusting for 
nonresponse when the variables governing the 
response/nonresponse mechanism are not always 
the same as the calibration variables and (2) creating 
nearly optimal weights under probability sampling 
theory that never fall below unity and (if desired) are 
bounded from above. 

We first briefly review calibration weighting and the 
generalized exponential form of Folsom & Singh 
(2000). We then discuss the hows and whys of 
instrumental-variable calibration as implemented 
with the WTADJX procedure incorporated into 
SUDAAN 11® (RTI International, 2012). This 
is fleshed out with two numerical examples. 
Throughout the text, SUDAAN and its procedures 
appear in upper case.

Calibration Weighting

Linear Calibration Weighting
When there is no nonresponse, calibration is a 
weight-adjustment method that creates a set of 
weights, {wk}, with two important properties. Given 
a p-vector zk with known population totals and 
probabilities of selection {πk}, the new weights:

1. Are asymptotically close to the original design 
weights dk = 1/πk (i.e., as the sample size grows 
arbitrarily large, wk converges to dk) and therefore 
nearly unbiased under probability-sampling 
theory. 

2. Satisfy a set of calibration equations (one for each 
component of zk): 

∑Swkzk = ∑Uzk,

where S denotes the set of units in the sample, and U 
is the set of units in the finite population.

When a total T = ∑U yk is estimated with t = 
∑S wkyk or a mean ȳU = T/N with ȳU = ∑Swkyk/∑Swk, 
calibration weighting will tend to reduce mean 
squared error when yk is correlated with components 
of zk. Real surveys usually have more than a single 
y-value of interest. It is not uncommon, however, for 
an establishment survey to have a main survey value 
of interest. For example, in the Drug Abuse Warning 
Network survey (US Department of Health and 
Human Services, 2011), that variable is annual drug-
related hospital visits. 

One way to compute calibration weights is linearly 
with the following formula:

wk = dk[1+(∑Uzj – ∑Sdjzj)T (∑Sdjzkzj
T)–1 zk]

 = dk[1+gTzk],

where g = (∑SdjzjzjT)–1 (∑Uzj – ∑Sdjzj). Observe that 
as the sample size grows arbitrarily large, gTzk (which 
means g) converges to 0.

This is the weighting scheme implied by the 
generalized regression estimator (GREG) since

∑Swk yk = ∑Sdkyk +(∑Uzj – ∑Sdjzj)T 

 (∑Sdjzjzj
T)–1 ∑Sdkzkyk 

 = ∑Sdkyk +(∑Uzj – ∑Sdjzj)Tb,

where b = (∑SdjzjzjT)–1 ∑Sdkzkyk is a survey-weighted 
estimated linear-regression coefficient. 

Linear calibration weighting can be easily adapted 
to handle unit nonresponse by simply replacing the 
sample S with respondent sample R and redefining 
the GREG estimator and g as:

tGREG = ∑Rwkyk +∑Rdk (1+gTzk)yk.

In this context, gT can be either

gT
 = (∑Uzj – ∑Rdjzj)T (∑Rdjzjzj

T)–1,

which requires that ∑Uzj be known, or
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gT
 = (∑Sdjzj – ∑Rdjzj)T (∑Rdjzjzj

T)–1,

which requires that ∑Sdjzj be known. The first is 
called “calibrating to the population” and the latter 
“calibrating to the original sample.” 

Either way, the estimate is also nearly unbiased under 
a quasi-probability theory that treats response as a 
second phase of random sampling as long as each 
unit’s probability of response has the form:

 (1)

and g is a consistent estimator for γ. Put another way: 

tGREG = ∑Rwk zk +∑R dkpk–1zk.

Notice that when calibration weighting is used to 
adjust for unit nonresponse, neither (∑Uzj = ∑Rdjzj)T 

nor (∑Sdjzj – ∑Rdjzj)T converges to 0T, and so neither 
does gT. This, at the time surprising, use of calibration 
weighting for nonresponse adjustment was proposed 
by Fuller et al. (1994).

Nonlinear Calibration Weighting
The problem with the probability-of-response 
function in equation (1) is that it can exceed unity 
or even be negative. A useful nonlinear form of 
calibration weighting suggested by Folsom & Singh 
(2000) finds a g (through repeated linearization, i.e., 
Newton’s method) such that 

 ∑Rwkzk ∑Rdkα(gTzk)zk = ∑U zk

   or (2)

 ∑Rwkzk ∑Rdkα(gTzk)zk = ∑S dkzk,

where α(gTzk) is a function of the form, 

 (3)

and A = (u–ℓ)/[(u–c)(c-ℓ)]. The inclusion of A in 
equation (3) makes finding the derivative of α(gTzk) 
easier (which is needed for implementing Newton’s 
method). 

The weight adjustment α(gTzk) is centered at c in the 
sense that α(0) = 1 with a lower bound ℓ ≥ 0 and an 
upper bound u > c > ℓ, which can be infinite. The 
user sets these centering and bounding parameters. 
Equation (3) is a generalization of both raking, where 
ℓ = 0, c = 1, u = ∞ (and the components of zk are 
binary); and the implicit estimation of a logistic-
regression response model, where ℓ = 1, c = 2, u = ∞.

When c = 1, equation (3) is the generalized-raking 
adjustment introduced by Deville and Särndal (1992) 
so that the range of α(gTzk) could be bounded (and 
the components of zk continuous). Centering at 1 
was a requirement of calibration weighting in that 
landmark paper (α'(0) = 1 was required as well), 
but setting c > 1 with ℓ = 1 is more sensible when 
adjusting for unit nonresponse so that the implicitly 
estimated probability of response is never greater 
than 1. 

Folsom & Singh (2000) proposed using the following 
generalized exponential form: 

which generalized equation (3) by allowing separate 
weight functions for each k but found a common 
g chosen to satisfy one of the two versions of the 
calibration equation (the population or original-
sample version). This form of calibration weighting 
has been incorporated into the SUDAAN procedure 
WTADJUST (RTI International, 2012). See Kott 
and Liao (2012a) for a more rigorous treatment of 
this version of nonlinear calibration weighting. Kott 
(2009) provides a good background on calibration 
weighting in general. 

Although WTADJUST allows αk(gTzk) to be 
k-specific, when adjusting for nonresponse (or 
coverage), it is sensible to select a single value for 
the ck parameter and a very limited number of ℓk 
and uk values since different parameter values across 
the population elements mean different response 
functions are being fit. When each of the three 
parameters has a single value, it is not hard to see that 
the choice of c becomes irrelevant (again, see Kott & 
Liao, 2012a).
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Instrumental Variables 

Nonresponse
Now suppose unit response follows a model of the 
form: 

(4)

where some components of the response-model vector 
xk governing the unit response mechanism need not 
coincide with the components on the calibration 
z-vector. In other words, replace equation (2) by 

 ∑Rwkzk =∑Rdkαk(gTxk)zk = ∑U zk

   or (5)

∑Rwkzk =∑Rdkαk(gTxk)zk = ∑S dkzk,

such that g again estimates γ. 

Mathematically, finding a g that satisfies either the 
first or second line of equation (5) can often be done 
as long as the number of response-model variables 
in xk is no greater than p, the number of calibration 
variables in zk. A routine to do that is available in 
SUDAAN 11: WTADJX. It applies most simply when 
the numbers of model and calibration variables 
coincide so that one of the two sets of calibration 
equations in (5) holds. Otherwise, there are more 
equations than unknowns, and the vector equations 
in (5) cannot hold exactly. See Chang and Kott 
(2008) for a discussion of minimizing the difference 
between, say, ∑Rdkαk(gTxk)zk and ∑Uzk as a means for 
estimating γ.

The components of xk that are not components of zk 
are called instrumental variables. The name derives 
from the linear-calibration form where 

∑Swkyk = ∑Sdkyk + (∑Uzj – ∑Sdjzj)T 

 (∑Sdjxjzj
T)–1 ∑Sdkxkyk

 = ∑Sdkyk + (∑Uzj – ∑Sdjzj)TbIV

when xk, like zk, is a p-component vector. In the 
prediction-model framework where instrumental 
variables originated, E(yk|zk, xk) = zkβ, and bIV is an 
unbiased estimator for β. 

For an establishment survey with a main survey 
variable of interest, it often makes sense to calibrate 
to a size variable—call it qk—known for all members 
of the population because the main survey variable 
is nearly linear in the size variable. Although the 
probabilities of response vary by size, all other things 
being equal, response may be better modeled as a 
logistic function of the log of the size variable, so that 
a one-percent increase in the size variable results in 
a c-percent change in the odds of response. Thus, 
log(qk) is an instrument used in place of qk. 

Deville (2000) noted that it is possible for a response-
model variable to be known only for respondents (i.e., 
a function of the main survey variable itself rather 
than the associated size variable). That is, it is possible 
for nonresponse to not be missing at random. 

Nearly Pseudo-Optimal Calibration
Instrumental-variable calibration can be profitably 
used in the absence of nonresponse and coverage 
errors. A linear estimator often better (i.e., more 
efficient) than the usual GREG also calibrates 
on zk but sets xk = (dk −1)zk. This produces the 
nearly unbiased linear estimator with the smallest 
asymptotic mean squared error under Poisson 
sampling and similarly under stratified simple 
random sampling with large stratum samples sizes. As 
a result, it has been called the optimal estimator under 
Poisson sampling (Rao, 1994) and the pseudo-optimal 
estimator more broadly (Bankier, 2002).

With WTADJX centered at 1, we can bound the 
weights and retain the asymptotic properties of 
the optimal estimator by setting xk = (dk −1)zk. In 
particular, when dk > 1, we can set ℓk = 1/dk to ensure 
that all wk are at least unity. If some dk = 1, we can set 
wk = 1 and remove k from U and S before applying 
equation (2) (see Kott, 2011a). Alternatively, we can 
simply set ℓk at any value less than 1 for elements with 
dk = 1 since xk will be 0, forcing wk to be 1 as well. 
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We have some freedom in setting the uk as long 
as they are each greater than 1 and the calibration 
equation (∑Swkzk = ∑Uzk)can be satisfied. Sometimes, 
rather than bounding the weight adjustment, a 
SUDAAN user may want to bound the weight itself 
by creating an upper bound of the form uk = U/dk. 
Often with establishment surveys, it is desirable to 
set an upper bound of the form uk = U/(dkqk) so that 
(wkqk) is bounded. 

Two Examples
As has been noted, the WTADJX procedure in 
SUDAAN 11 can perform instrumental-variable 
calibration. SUDAAN 11 is also able to compute 
(asymptotic) standard errors properly for means, 
totals, and ratios with weights adjusted by one round 
of WTADJX or WTADJUST calibration (Witt, 2010). 
When the adjustment is for nonresponse (or coverage 
error), this assumes that the underlying response (or 
coverage) model has been specified correctly—that 
is, the model in equation (4) holds and that response 
is independent across primary sampling units. When 
the logistic response model is correct, SUDAAN 
will also compute standard errors properly when the 
LOGISTIC procedure (RLOGIST in the SAS-callable 
version of SUDAAN used here) is used to estimate 
the probabilities of response and the inverses of those 
estimates employed to adjust the weights. 

An Example With No Nonresponse or 
Coverage Error
For purposes of this exposition, we created a 
stratified simple random sample of 364 fictional 
hospital emergency departments using the public-
use data set of the Drug Abuse Warning Network 
(US Department of Health and Human Services, 
2011) as a starting point. The sample, stratified on 
size, location, urbanicity, and ownerships (public or 
private), with some collapsing and varying selection 
probabilities across strata, can be found in SUDAAN 
11 Examples (WTADJX examples) on the SUDAAN 
website (http://www.rti.org/sudaan/). Much of the 
SAS-callable SUDAAN code discussed in this section 
can be found there as well. 

Each hospital on the frame has attached to it a size 
variable: the number of emergency-department visits 
in a previous year, which we call frame visits. There 
are also indicators on the frame of each hospital’s 
census region, whether it is publicly owned, and 
whether it is in a metropolitan area. Our goal is to 
estimate the total number of drug-related emergency-
department visits in the survey year both across the 
United States and within each census region. 

In addition to computing the estimates directly with 
their probability weights, we raked the weights—
using WTADJUST with a center of 1, a lower bound 
of 0, and no upper bound—so that the following 
calibration-weighted totals equaled the corresponding 
frame counts: the number of hospitals in each region, 
the total number of publicly owned hospitals, and the 
number of hospitals in a metropolitan area. That is to 
say, the calibration vector zk had six components, four 
regional indicator dummies (δk1, δk2, δk3, δk4), an 
indicator dummy for public ownership (δk5), and an 
indicator dummy for a metropolitan location (δk6). 

As can be seen in Table 1, raking did not improve 
the coefficients of variation (CVs) in any of the 
regions (computed using SUDAAN 11, as were all the 
estimates in this section). If anything, the CVs were 
slightly higher than when using the direct estimator. 
That is because a hospital’s annual number of drug-
related emergency-department visits is not nearly a 
linear function of its region, ownership status, and 
urbanicity. 
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A variant of raking for establishment surveys—
introduced by Hidiroglou and Patak (2006)—is 
more applicable in this setting. Size raking calibrates 
the weights so that the weighted-total of the size 
variable (qk) within each region equals the actual 
number on the frame, with analogous equalities 
holding for public and metropolitan hospitals. This 
variant on raking should decrease the standard 
errors of estimates for drug-related emergency-
department visits at the US and regional levels if these 
survey variables are roughly linear functions of the 
calibration variables. 

Size raking was done in WTADJX by letting the 
region, public, and metropolitan indicator dummies 
remain as the MODEL variables (with a “/NOINT” 
option since there was no intercept), while each of 
those indicator dummies times the number of frame 
visits made up the calibration variables, or CALVARS. 
Here, the “model” in MODEL refers to the weight-
adjustment model, α(gTxk) = exp(gTxk), used in 
WTADJX, where xk = δk = (δk1 δk2 δk3 δk4 δk5 δk6)T 
is the vector of the six indicator dummies, while the 
vector of calibration variables was zk = qkδk. There 
was no response (or coverage) model.

Employing size raking decreased the CVs by region 
noticeably. Better still, as can be seen in Table 1, were 
the two variants of nearly quasi-optimal (NQO) 
calibration weighting. In one, the same CALVARS 

were used as in size raking (zk = qkδk), but the 
MODEL variables included these calibration variables 
times dk – 1 (i.e., xk = (dk – 1)qkδk). In the other, an 
intercept was added (NQO intercept). The vector of 
calibration variables was zk = (1 qkδkT)T, while the 
vector of model variables was xk = (dk – 1)(1 qkδkT)T. 
(Note that when WTADJX is run, the “/NOINT” 
option must still be used, since dk – 1 appears in the 
MODEL statement in place of an intercept.) 

Finally, Table 1 shows what happens when the last 
vector of calibration variables, zk = (1 qkδkT)T, is used 
in WTADJUST without any instrumental variable. 
The CV results are similar to the quasi-optimal 
analogue, but mostly not as good—as expected. 
Surprisingly, they are mostly smaller than the CVs 
from size raking.

An Example With Nonresponse
We then used the same data set as in the previous 
example, but generated unit nonresponse as a logistic 
function of the log of drug-related emergency-
department visits. Assuming first that response 
was a function of the log of the frame visits (zk = 
(1 log(qk))T), we employed SUDAAN to estimate 
survey-variable totals applying first RLOGIST and 
WTADJUST. We then applied WTADJX, again letting 
the log of frame visits be the MODEL variable (xk 
= (1 log(qk))T), but having frame visits become the 
calibration variable in CALVARS (zk = (1 qk)T). The 
resulting CVs are shown in Table 2.

Table 1. Comparing direct estimation to raking and nearly quasi-optimal (NQO) calibration

Region Direct Raking Size Raking NQO NQO Intercept WTADJUST Only
Estimate (in 10,000s)

All 538 537 553 552 553 552 

East 73 73 79 79 79 78

South 175 175 184 183 183 183

Midwest 137 137 143 143 143 143

West 152 152 148 147 148 149

Coefficient of variation (standard error/estimate as a percentage)

All 6.47 6.48 2.16 1.91 1.87 1.94

East 5.67 5.71 3.32 3.27 3.28 3.41

South 13.92 13.94 3.49 2.02 1.95 2.10

Midwest 7.55 7.55 3.23 3.22 3.26 3.22

West 14.58 14.58 5.77 5.69 5.61 5.70
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Table 2. CV for estimated number of drug-related 
emergency department visits by weight adjustment 
method

Weight Adjustment Method CV
RLOGIST 7.33

RLOGIST + WTADJUST 8.30

RLOGIST + WTADJX 

 Calibrating to the frame visits in the original 
sample 

6.39

 Calibrating to the frame visits in the population 3.40

It may come as a bit of a surprise that adjusting for 
nonresponse using RLOGIST was estimated to be 
more efficient than adjusting with WTADJUST. 
Given the nature of the data, however, it should be 
no surprise that using WTADJX and calibrating 
on frame visits rather than the log of those visits 
appeared more efficient than using either RLOGIST 
or WTADJUST even though the same variable (log of 
frame visits) was used to model response by all three. 
Moreover, calibrating to frame totals rather than full-
sample totals increased the estimated efficiency even 
more. 

The WTADJX procedure can also be used to test 
whether there is a significant difference between 
estimates derived under different assumed response 
models. In this case, the estimated relative bias 
(roughly 1.2 percent)—from incorrectly assuming 
response was a logistic function of the log of the 
frame variable rather than the log of the survey 
variable—was significant at the .08 level. 

It may be tempting to conclude that bias was not an 
issue here because the statistical significance did not 
reach the magic .05 level. When testing for possible 
bias, however, we need to be more concerned with 
Type 2 error (failing to recognize a bias when it 
exists) than Type 1 error (finding a bias when none 
exists). As a result, statistical significance at the .08 
level should be viewed as problematic. 

In practical application, we rarely know the true 
response model. Even so, the test we used can be 
applied to determine whether different response 
models lead to significantly different estimates. 
To conduct the test, SUDAAN users should first 
duplicate each record, assigning the first version 
to a domain governed by one assumed response 
model and the second version to a domain governed 
by a different assumed model while keeping both 
in the same primary sampling unit; and then test 
the difference between domain estimates, treating 
the sample as if it were drawn with replacement. 
A test like this was proposed by Fuller (1984) for 
determining whether failing to incorporate sampling 
weights into a linear regression would produce biased 
coefficient estimates. Although not as powerful as 
a Hausman test (Hausman, 1978), which requires 
stronger assumptions, this test does benefit from 
using the same data twice. 

Concluding Remarks
Although calibrating to the population is more 
efficient than calibrating to the full sample, it is better 
to calibrate in two steps, adjusting first to remove 
nonresponse bias (assuming one’s response model is 
correct) and then to reduce variance (Kott & Liao, 
2012b), using nearly pseudo-optimal calibration in 
the second step to make up for any inefficiency from 
instrumental-variable calibration in the first step. 

Kott (2011b) points out that instrumental-variable 
calibration can aid in replication-based variance 
estimation when a bounded version of WTADJUST 
or WTADJX calibration is used. Empirical research 
on this use of WTADJX is under way.



8  Kott, 2013  RTI Press

Bankier, M. (2002, July). Regression estimators for the 
2001 Canadian Census. Paper presented at the 
International Conference in Recent Advances 
in Survey Sampling, Carlton University, Ottawa, 
Ontario, Canada.

Brewer, K. R. W. (1995). Combining design-based 
and model-based inference. In B. G. Cox, D. A. 
Binder, B. N. Chinappa, A. Christianson, M. J. 
Colledge, and P. S. Kott (Eds.), Business Survey 
Methods (pp. 586–606). New York: Wiley.

Chang, T., & Kott, P. S. (2008). Using calibration 
weighting to adjust for nonresponse under a 
plausible model. Biometrika, 95, 557–571.

Deville, J. C. (2000). Generalized calibration and 
application to weighting for non-response. In 
J. G. Bethlehem & P. G. M. Van der Heijden 
(Eds.), COMPSTAT: Proceedings in computational 
statistics; 14th symposium held in Utrecht, The 
Netherlands (pp. 65–76). Heidelberg: Physica 
Verlag. 

Deville, J. C., & Särndal, C. E. (1992). Calibration 
estimators in survey sampling. Journal of the 
American Statistical Association, 87, 376–382.

Folsom, R. E., & Singh, A. C. (2000). The generalized 
exponential model for sampling weight 
calibration for extreme values, nonresponse, and 
poststratification. In Proceedings of the American 
Statistical Association, Survey Research Methods 
Section (pp. 598–603). Retrieved January 15, 
2013, from http://www.amstat.org/sections/srms/
Proceedings/

Fuller, W. A. (1984). Least squares and related 
analyses for complex survey designs. Survey 
Methodology, 10, 97–118.

Fuller, W. A., Loughin, M. M., & Baker, H. D. (1994). 
Regression weighting for the 1987–88 National 
Food Consumption Survey. Survey Methodology, 
20, 75–85. 

Hausman, J. A. (1978). Specification tests in 
econometrics. Econometrika, 46(6), 1251–1271.

Hidiroglou, M., & Patak, Z. (2006). An application 
to the Canadian Retail Trade Survey. Journal of 
Official Statistics, 22, 71–80.

Kott, P. S. (2009). Calibration weighting: Combining 
probability samples and linear prediction models. 
In D. Pfeffermann, & C. R. Rao (Eds.), Handbook 
of statistics 29B: Sample surveys: Inference and 
analysis (pp. 55–82). New York: Elsevier.

Kott, P. S. (2011a). A nearly pseudo-optimal method 
for keeping calibration weights from falling 
below unity in the absence of nonresponse or 
frame errors. Pakistan Journal of Statistics, 27(4), 
391–396.

Kott, P. S. (2011b). WTADJX is coming: 
Calibration weighting in SUDAAN when unit 
nonrespondents are not missing at random and 
other applications. Proceedings of the American 
Statistical Association, Survey Research Methods 
Section (pp. 1746–1752). Retrieved January 15, 
2013, from http://www.amstat.org/sections/srms/
Proceedings/allyearsf.html

Kott, P. S., & Liao, D. (2012a). Providing double 
protection for unit nonresponse with a nonlinear 
calibration-weighting routine. Survey Research 
Methods, 6(2), 105–111.

Kott, P. S., & Liao, D. (2012b, May–June). One step or 
two? Calibration weighting for a complete frame 
with nonresponse. Paper presented at the Fields 
Institute Symposium on the Analysis of Survey 
Data and Small Area Estimation in Honour of the 
75th Birthday of Professor J. N. K. Rao, Carlton 
University, Ottawa, Ontario, Canada. Manuscript 
also submitted for publication.

Rao, J. N. K. (1994). Estimating totals and distribution 
functions using auxiliary information at the 
estimations stage. Journal of Official Statistics, 25, 
1–21.

RTI International. (2012). SUDAAN language 
manual, Release 11.0. Research Triangle Park, NC: 
RTI International. 

References

http://www.amstat.org/sections/srms/Proceedings/
http://www.amstat.org/sections/srms/Proceedings/
http://www.amstat.org/sections/srms/Proceedings/allyearsf.html
http://www.amstat.org/sections/srms/Proceedings/allyearsf.html


 Instrumental-Variable Calibration Weighting  9

US Department of Health and Human Services. 
(2011). Drug Abuse Warning Network (DAWN), 
2008. Computer file of survey conducted by the 
Substance Abuse and Mental Health Services 
Administration, Center for Behavioral Health 
Statistics and Quality. Ann Arbor, MI: Inter-
University Consortium for Political and Social 
Research.

Witt, M. (2010). Estimating the R-indicator, its 
standard error, and other related statistics with 
SAS and SUDAAN. Proceedings of the American 
Statistical Association, Section on Survey Research 
Methods (pp. 5654–5668). Retrieved January 15, 
2013, from http://www.amstat.org/sections/srms/
Proceedings/

http://www.amstat.org/sections/srms/Proceedings/
http://www.amstat.org/sections/srms/Proceedings/




Acknowledgments
The author thanks two referees for their numerous suggestions which greatly 
improved the quality of the final manuscript.



RTI International is an independent, nonprofit research organization dedicated 
to improving the human condition by turning knowledge into practice. RTI 
offers innovative research and technical solutions to governments and businesses 
worldwide in the areas of health and pharmaceuticals, education and training, 
surveys and statistics, advanced technology, international development, 
economic and social policy, energy and the environment, and laboratory and 
chemistry services.

The RTI Press complements traditional publication outlets by providing another 
way for RTI researchers to disseminate the knowledge they generate. This PDF 
document is offered as a public service of RTI International. 

www.rti.org/rtipress  RTI Press publication OP-0012-1302

www.rti.org/rtipress



