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Abstract
There has been growing interest in climate-smart agriculture among many national 
governments and the international donor community. An array of policies and 
programs could potentially be considered climate smart, but for the purposes of this 
paper, we define climate-smart agriculture as an approach that strives to meet the 
following criteria: (1) increase agricultural productivity in a sustainable manner, (2) 
improve the resilience of agricultural production and food systems to environmental 
change, or (3) reduce net greenhouse gas emissions associated with the agriculture 
and forestry sectors. This definition encompasses, but goes beyond, the traditional 
agricultural development policy concerns of increasing incomes and reducing 
rural poverty, thus increasing the complexity of the policy agenda and modeling 
that supports policy-making. The goal of the paper is to provide policymakers and 
program designers with an overview of the primary types of economic models 
that could be used to inform policy design and implementation. The most specific 
audience for the paper is international development practitioners who design 
projects, pilots, and other efforts to advance climate-smart agriculture, and who 
may wish to inject modeling sensibilities and approaches into such efforts. The 
readership of the paper is assumed to be subject matter specialists and generalists 
who are not economists but may need to consume the results of economic 
modeling. We describe alternative economic modeling approaches relevant for 
analyses of climate-smart agriculture approaches and provide general principles for 
selecting an approach for a specific application. 
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Introduction
As global populations and economies grow, less 
land is available to meet the rising demand for food, 
fiber, forestry products, energy, and ecosystem 
benefits such as carbon sequestration. Yield growth 
on existing agricultural lands is not as fast as in 
previous decades. In addition, we face the present 
and future threats posed by climate change. Recent 
manifestations of this new reality include food 
price spikes and price volatility and the increasing 
frequency of extreme weather events (Porter et al., 
2014). Some projections show global yield declines 
for major agricultural commodities, more pests and 
diseases, and higher commodity prices (e.g., Brown 
et al., 2015). The food and agriculture paradigm 
is changing and will disproportionately affect the 
world’s poorest populations—those least able to cope 
with shocks. 

Accordingly, food security and agriculture, including 
climate-smart or sustainable approaches, have 
received more attention and funding from the 
international community in recent years, including 
the finalization of the United Nations’ Sustainable 
Development Goals, with specific reference to food 
and agriculture in late 2015. The Malabo Declaration, 
passed in 2014, was an unprecedented commitment 
of African leaders to improve agricultural 
productivity and reduce hunger. It calls on the 
use of data and analysis to “develop mechanisms 
to enhance Africa’s capacity for knowledge and 
data generation and management to strengthen 
evidence based planning and implementation.” The 
Malabo declaration renewed a commitment to the 
Comprehensive Africa Agriculture Program as a 
means to transform African economies through 
agriculture (originally adopted in Maputo in 2003).

Food security and agriculture also featured 
prominently in the United Nations process that led to 
the Paris Climate Agreement, adopted in December 
2015. The agreement includes language that speaks 
to promoting climate resilience and low greenhouse 
gas (GHG) emissions in “a manner that does not 
threaten food production.” As part of the agreement, 
each country developed “intended nationally 

determined contributions” (INDCs) that include 
emission reduction targets as well as broader climate 
change mitigation and adaptation strategies. Of the 
188 countries that submitted INDCs, 94 percent 
of them include the agriculture sectors in their 
mitigation strategies, adaptation contributions, or 
both. Developing countries put a particularly strong 
emphasis on the agricultural sector within their 
INDCs (Food and Agriculture Organization of the 
United Nations [FAO], 2016). 

Climate-smart agriculture (CSA) has emerged as the 
dominant paradigm for agricultural development 
that incorporates climate considerations. The Global 
Alliance for Climate-Smart Agriculture (GACSA), 
hosted by the FAO, already has more than 100 
members, including 22 countries.1 The three top-line 
aspirational outcomes of GACSA are

•	 sustainable and equitable increases in agricultural 
productivity and incomes,

•	 greater resilience of food systems and farming 
livelihoods, and

•	 reduction or removal of GHG emissions associated 
with agriculture (including the relationship 
between agriculture and ecosystems), where 
possible.

As implied in the “sustainable” wording in the 
first aspirational outcome above, CSA programs 
are typically concerned with other environmental 
sustainability aspects that may not be encompassed 
the second two outcomes, such as soil erosion, soil 
degradation, agricultural runoff, and eutrophication 
of water bodies. Other CSA-related efforts tend to 
have overall goals that are very similar to GACSA, 
although not identical.

The CSA paradigm is in its early stages, but as 
programs and policies are developed, there is a 
great need for appropriate economic policy tools to 
help guide this decision-making. Issues related to 
sustainable agriculture, sustainable food systems, 
and sustainable value chains are not new, but the 
simultaneous consideration of both the impact of 

1 	 See Global Alliance for Climate-Smart Agriculture (GACSA) (2016).
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climate change on agriculture and the contributions 
of agriculture to climate change add additional 
layers of complexity. Climate change necessitates 
consideration of long-term outcomes and resilience of 
agricultural investments to a changing climate. 

There are several major challenges in identifying 
effective CSA solutions. Agricultural practices and 
related forestry and natural resource management 
(NRM) practices are diverse and context-specific. 
Compounding the complexity is the fact that climate-
smart investments can have feedback effects, and 
producer decision-making is sometimes poorly 
understood or predicted. A practice deemed effective 
on a research plot could have low replicability 
or scalability in farm conditions. Alternatively, 
a productivity-enhancing practice may have 
unintended impacts on output prices when widely 
adopted, reducing farmer profit and ultimately 
limiting the area of cropland on which the practice 
can be profitably adopted. 

CSA is not restricted to cropping actions and 
solutions; it involves the whole value chain for 
commodities produced by agriculture and other land-
based sectors, such as food, fuel, fiber, forest products, 
and feed. This breadth of concerns involves options 
for sustainably producing pre-farm inputs as well as 
post-farm processes such as post-harvest handling, 
storage, processing, aggregating, packaging, and 
adding value. All aspects of the post-farm processes 
harken back to the whole food system. 

Lack of quality data further bedevils decision-
making around agricultural policies. Despite recent 
improvements in agricultural data collection and 
availability, high-quality data remain difficult to 
access, aggregate, and process, particularly for 
developing countries. Efforts to reduce the costs of 
data collection while increasing the standardization 
and accessibility of agricultural sector data present 
a major opportunity to expand and improve the 
available base of knowledge used for policy modeling 
and decision making. One of the best ways to 
organize data and make the data tell policy stories is 
to do so around modeling efforts. Modeling forces 
discipline in the sorts of data to gather, and in how 

to put the data together in a meaningful way. At 
the same time, those doing the modeling must be 
cognizant that modeling efforts should not necessarily 
put extra pressure on data producers to come up with 
more data, unless the situation truly warrants it. 

Another challenge is related to the nature of policy 
making. As in other sectors, agricultural policy 
makers often respond to short-term pressures in ways 
that do not account for the all potential consequences 
(e.g., shutting down food exports in response to a 
domestic food security crisis, not accounting for 
loss in income to farmers and the potential of higher 
prices to stimulate investment and production). 
They are often unable to quantify the trade-offs 
associated with alternative policy actions, or of 
the trade-offs between satisfying particular groups 
versus the overall welfare of the general public. 
Although policies are partly the result of complex 
political machinations and messy consensus-building, 
policy-making is not entirely bereft of rational 
and systematic analysis. Economic modeling can 
help inform decisions by illustrating the trade-offs 
between goals, the unintended impacts of policies 
on various groups, and the long-term dynamics 
unleashed by policies aimed at resolving short-term 
problems. 

The additional complexity of bidirectional climate 
impacts requires more sophisticated modeling 
and analysis. Tools exist that can incorporate this 
complexity, but the modern analytical techniques 
may not be readily accessible to CSA decision 
makers who are not specialists in modeling. Thus, 
this paper provides a “consumer’s guide” to help the 
nonspecialist understand some of the applications, 
pros, and cons of the array of modeling techniques 
available. In particular, we focus on economic 
models that will help policy makers pursue the 
three aspirational outcomes of the CSA: sustainable 
productivity improvements, resilience, and mitigation 
of GHG emissions. 
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Use of Economic Models 

General Motivation for Model-Based Analysis
The agricultural agenda of the 1950s through 
1990s, increasing production and fighting poverty, 
was complicated and often fraught with inefficient 
policies. Incorporating food security and climate 
considerations only further complicates policy 
making. Understanding the effects of agricultural 
policies and programs can be greatly aided by the 
use of modeling and similar analytical techniques 
because models are a simplified and controlled 
version of reality in which to experiment. Real-
world experimentation is expensive and risky 
for populations who may experience unintended 
consequences. Models represent a means to predict 
intended and unintended consequences of policy 
and project interventions ex ante (or in some 
cases concurrently or ex post). Table 1 shows a few 

illustrative examples of policies that could be aided by 
modeling.

Modeling is often viewed simultaneously as both too 
simplistic and too complex. Models are simplified 
versions of reality and, by nature, cannot account for 
every detail, yet they are operated using complicated 
mathematical equations that can be opaque to 
nonexperts. George Box’s aphorism that “Essentially, 
all models are wrong, but some are useful” (Box 
& Draper, 1987) is a good clue to this dichotomy. 
Models are indeed useful precisely because they 
simplify, but this also makes them “wrong” in some 
sense. A model can be viewed like a map: with as 
much detail as reality, it would be useless. Yet with 
too little or too much detail, or the wrong detail, it 
would likewise not be useful. Consumers of modeling 
should ask of those carrying out the model, as one 
would ask a cartographer, “Does the model have the 
appropriate level of complexity, and does it focus on 
the right things?” 

Table 1. Policies, possible effects, and modeling response

Common agricultural policy Intended effects Unintended (potential) effects that could be assessed and 
quantified with modeling

Promote farmer adoption 
of climate-smart crops or 
practices through training and 
demonstration

•	 Increased profits 
•	 Reduced crop loss from extreme 

climate events 
•	 Reduced or avoided GHG emissions
•	 Increased farmer resilience 

•	 Low adoption because of perceived or real risk or lack of 
complementary inputs, and lack of knowledge of which 
complementary inputs matter most

•	 Lower yields or profits when scaled up
•	 Certain policies oriented at farmer income in short-run 

may lead farmers to adopt cropping patterns or practices 
that are not climate-smart because they reduce net GHG 
emissions or decrease resilience

Input subsidies (e.g., seeds, 
fertilizers)

•	 Improved productivity •	 Reduced agricultural diversification, leading to lower 
resilience

•	 Reduced diet diversity
•	 Higher GHG emissions (either aggregate or net) depending 

on the technology being subsidized

Trade barriers during food crises 
(e.g., restricted exports)

•	 Lower domestic prices for 
consumers

•	 Lower prices for producers, which fails to stimulate 
production

•	 Net loss of welfare

NRM improvements through 
demonstration and education

•	 Improved environmental 
stewardship without having to 
rely on subsidies and payment for 
ecosystem services

•	 Low uptake of practices because of high upfront investment 
and transaction costs or lack of analysis as to which new 
practices are the most profitable

Incentives and subsidies for 
NRM or Reduced Emissions from 
Deforestation and Degradation+ 
(REDD+)

•	 Improved environmental 
stewardship and NRM through 
subsidies or direct payments

•	 Land-use changes, including less land available for food, 
leading (possibly) to higher food prices and expansion of 
agricultural area outside the project area, which will impact 
net GHG emissions reductions provided by NRM or REDD+
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Finally, modeling is not the only deep analytical 
technique useful for advising CSA policy. Although 
the focus of this paper is modeling, certain questions 
about farmer or resource manager behavior and 
barriers to behavior change (e.g., adoption of climate-
smart practices) may be better addressed through 
multidisciplinary techniques based on ethnography 
or economic anthropology. Furthermore, in 
understanding the effect size of specific interventions, 
impact evaluations using experimental or quasi-
experimental designs may be more appropriate 
than modeling, although modeling can help one 
understand the “how” aspects and supplement the 
“how big” aspects and the causal attribution that 
experiments can produce. Experimental approaches 
can work with or without modeling. A simple 
approach to impact evaluation might only consider 
whether there is an impact rather than using 
modeling or other techniques to determine why the 
impact occurred. Thus, modeling has its place in the 
arsenal of the CSA policy analyst, particularly when 
it comes to analyzing likely consequences before 
large, complex, and often irreversible actions are 
taken, or in understanding ex post facto why certain 
consequences occurred.

Key Principles to Consider in Choosing a 
Model or Designing an Approach
In this section, we outline the key factors to consider 
when selecting a modeling technique or analytical 
approach to CSA policy formulation. 

Type of intervention. Policy makers or practitioners 
may be interested in assessing the degree to which 
an agricultural intervention may be climate smart, or 
whether an intervention intended to be climate smart 
achieves the climate-smart objectives. Three main 
categories of potential interventions are as follows:

1.	 Policy changes. Governments may consider 
policy shifts to encourage greater production, 
more-resilient agriculture, or lower emissions (or 
emissions intensity). Such policy shifts may include 
providing credit, subsidies, or incentives for certain 
kinds of crops or technologies; allowing carbon 
offsets from the agricultural or forestry sectors; 
passing trade restrictions for crops important to 
food security; or subsidizing the production of 
maize or sugar cane for biofuels. 

2.	 Direct farmer support programs. Programs 
aimed at improving farmer productivity, income, 
resilience, or emission reductions through 
interventions such as farmer education, training, 
technological transfer, agricultural extension on 
new management practices, or crop or livestock 
insurance. Interventions in this category would 
also incorporate the promotion of practices such 
as conservation agriculture, cover cropping, 
intercropping, or planting drought-resistant seeds. 

3.	 Infrastructure investments. This category 
includes traditional infrastructure investments 
such as building a dam, an irrigation system, or 
micro-hydro infrastructure to increase access to 
water; improving storage or warehousing; building 
infrastructure to reduce post-harvest waste; or 
building waste treatment facilities. Note that 
modeling is most useful when such interventions 
are made at a large scale. 

The category of intervention under consideration 
will determine both the appropriate type of model 
and the level of complexity required. Interventions 
through subsidies and price signals tend to necessitate 
greater complexity because of feedback loops and 
interactions. Modeling can help analyze how much 
climate issues interact (e.g., GHG emissions and 
resilience) with intensified agricultural production; 
what consequences these interactions have for whom; 
and whether subsidies, taxes, or the creation of new 
environmental markets are the most efficient way 
to optimize possible trade-offs. Analysis of discrete 
infrastructure developments tend to be simpler, 
typically requiring relatively straightforward analysis 
of costs and benefits.

Data availability. For small, targeted studies, or for 
urgent actions, reliance on existing data will be a 
constraint. For larger, more-complex studies, or ones 
that will require large investments and significant 
policy changes, a specific household or farm survey 
may be justified. Some models and model types, such 
as trade-off analysis–minimum data [TOA-MD] and 
Bayesian models, require less data or can operate on 
the basis of expert opinion, and can be updated as 
more data come in. Local partner organizations will 
often have access to data or subject matter experts 
that can sometimes provide the minimum data 
necessary for conducting an analysis.
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Externalities. Are there any third parties and 
stakeholders that would be affected by the project 
or policy? In addition to GHG emissions (which are 
explicitly covered by CSA), other externalities such 
as air quality, water quality, or ecosystems may be 
affected by an intervention. For example, if water is 
being diverted through the development of a dam to 
address water availability, how should the people and 
ecosystems downstream be factored into the analysis? 
Or, if a productivity-enhancing policy subsidizes 
fertilizers, what is the cost in terms of eutrophication 
of water bodies, and who should bear that cost? 
What incentives (e.g., payments for environmental 
services) are required to induce farmers to provide 
environmental services such as enhanced biodiversity 
or to contribute to improved water quality, air quality, 
or both by using lower-impact inputs or reducing 
the use of certain inputs (e.g., fertilizer, pesticides) to 
socially optimal levels, accounting for externalities 
associated with their use?

CSA priorities. Which CSA outcomes—sustainable 
productivity, equity, resilience, and mitigation of 
emissions—are most important to the decision 
maker? For interventions that improve productivity 
and resilience but increase GHG emissions, should 
those emissions be considered in terms of net 
emissions, emission intensity, or some other way? 
For interventions that improve productivity and 
mitigate greenhouse emissions, how will resilience be 
measured? Simple models cannot incorporate all of 
these aspects simultaneously (see next section), so the 
policy maker must select which to consider explicitly, 
which to consider implicitly, and which to exclude 
from the analysis, based on the issue at hand. 

Consideration of feedback loops. What important 
feedback loops are generated by the policy or 
intervention? For example, if the project is focused 
on a particular best management practice (BMP) or 
set of BMPs that increases productivity, improves 
resilience, or mitigates emissions, how does that 
affect the price of the commodity and thus future 
participation in the program? Some good ideas can be 
self-limiting if too successful. If there is a chance that 
the BMP increases labor demand (e.g., conservation 
agriculture, or alternate wetting and drying for rice), 

how will the cost and availability of labor increase 
or decrease when the BMP is rolled out? Feedback 
loops, if explicitly taken into account, can help one 
anticipate and mitigate this kind of issue. 

Scale of impact. The larger the anticipated scale of 
impact, the greater the responsibility to consider 
externalities, distributional effects, and impacts on 
general welfare before the policy is enacted. For 
systemic policy interventions that cannot be analyzed 
through techniques such as randomized trials, the 
only way to predict effects is through simulation 
modeling. Although a larger modeling effort will have 
a greater cost, it may be justified relative to the size of 
the intervention.

Spatial scale. Is the policy or program likely to 
affect a polity or jurisdiction (national economy, 
province, or state) or a geographical catchment area? 
Policy reforms tend to have broader, country-wide 
scales, whereas specific farmer support programs or 
infrastructural investments will more likely affect 
circumscribed geographies or agro-ecosystems. 
Issues affecting determined agro-ecological zones or 
watersheds are often amenable for CSA analysis, as 
they encompass areas that share certain biophysical 
characteristics such as temperature, precipitation, soil 
characteristics, and pest patterns. 

Temporal scale. For programs of 3–5 years’ duration, 
models should consider projected economic growth 
or commodity prices during that time frame. For 
policies aimed at long-term impacts, such as 20–30 
years or more, climate scenarios or different emission 
pathways will be key for testing sensitivity levels. 

Time and budget. Time and budget are often the 
most obvious and practical constraints to conducting 
any analysis. As the size and impact of the analysis 
increases, the relative cost of the analysis (relative to 
size of the issue or intervention) will likely decrease 
and have greater relevance.

Once the above factors are identified, it becomes 
much easier to identify an appropriate model. The 
next section addresses classification of different kinds 
of economic concepts and models that can be used to 
address CSA issues.
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Which Models for What Purposes? 

Economic Modeling Approaches and 
Examples Pertaining to CSA
A wide range of economic models and economic 
modeling approaches have been applied generally 
to agriculture. There are many different ways of 
classifying them, and each model has relative 
strengths and weaknesses depending on the question 
being posed and the factors outlined in the previous 
section. In addition, different modeling approaches 
may be combined to address different kinds of 
questions. Here we classify some economic modeling 
approaches that have been applied to or could be used 
to assess CSA policies, primarily in an international 
development context. We then describe each model 
type and reference some examples and, where 
possible, how these models have been used to inform 
policies or design programs. 

The modeling approaches we focus on in this section 
include multicriteria decision analysis (MCA), 
statistical models of individual or firm behavior 
(e.g., econometric models), Bayesian networks, 
optimization (e.g., farm or regional/sector-scale 
models, linear or non-linear, positive mathematical 
programming), partial equilibrium (PE), computable 
general equilibrium (CGE) and TOA-MD, and 
agricultural system models (combination of 
biophysical and economic models). Table 2 is 
intended to aid the reader in selecting appropriate 
models by aligning the models to the principles 
described in Section 2. For a description of the 
three types or levels of analysis in column 1, see the 
beginning of section 2.2, Key Principles to Consider 
in Choosing a Model or Designing an Approach. 
Infrastructural investments are typically not subjected 
to modeling as discussed in that section, unless the 
investments are very large.

Table 2. Comparing typical uses of economic models and their relationship to climate-smart agriculture (CSA)
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Multicriteria 
Decision 
analysis

P, R, I No interactions; 
project specific

Low—Expert opinion can 
work, but can be improved 
greatly with survey or 
agronomic or natural 
systems  information

Not typically Low Yes

Statistical 
models of 
individual 
behavior

P, R No or few 
interactions

High—Surveys Not typically Medium No

Bayesian 
network 
models

P, R No interactions or 
feedbacks

Low—Expert opinion can 
work, but can be improved 
greatly with information 
from surveys or agronomic 
or natural systems 
information

Would depend on 
the application

Low–
medium

Yes

Farm or 
regional 
optimization 
models 

P, R Typical farms, 
explicit interactions

High—Surveys, 
experiment station data, 
close farm observation

Yes, if they include 
biophysical features

Medium–
high

Yes

Partial 
equilibrium 
(PE) models

P, R Explicitly integrates 
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only for selected 
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Not typically Medium–
high

No



RTI Press: Occasional Paper	 Developing Climate-Smart Agriculture Policies: The Role of Economic Modeling	 7

RTI Press Publication No. OP-0034-1701. Research Triangle Park, NC: RTI Press. 	  http://doi.org/10.3768/rtipress.2017.op.0034.1701

Multicriteria Decision Analysis
Description. MCA is a relatively simple analytical 
approach to facilitate a choice between discrete 
options to achieve common objectives using agreed-
upon criteria. Take a situation where the objectives 
are to increase farmer incomes, improve women’s 
access to income-generating activities, and reduce 
greenhouse emissions. MCA can weight those criteria 
equally or differently. For example, in one country, the 
goal of improving farmers’ incomes may be weighted 
more heavily than the goal of reducing emissions, 
but in another country, the weighting could be the 
opposite.  In this respect, MCA is very flexible and 
transparent. Options to address those objectives could 
include legal changes, farmer education, subsidies, 
and so on. Each option is scored in terms of its effect 
on each criterion. This then leads to a solution that 
maximizes the weighted sum of the criteria, such as, 
for example, a decision that maximizes the weighted 
sum of increases in farmers’ income, reduction in 
GHG emissions, and reduction in farmer resilience 
due to climate change. 

Because MCA is so flexible, it may be the ideal tool for 
considering issues that are sometimes hard to handle 
with precise models, such as issues related to youth 
in agriculture and generational renewal of the labor 
force, the fact that certain schemes may work well 
technically but require strong governance or political 
economic changes that may be unlikely, the impact 
on nutrition or within-family nutritional distribution, 
and so on. Hard data on these factors are difficult to 
obtain. MCA can mix quantitative data with softer 
informed opinion. Information can also be derived 
from surveys or the outputs of the other modeling 
approaches described below. Weighting of criteria 
and scoring the impact of various options on the 
criteria can also be done by groups, which stimulates 
discussion and dialogue.  For example, if productivity 
and resilience are higher priorities than reducing 
GHG emissions within a given stakeholder group, 
interventions with greater impact on productivity 
can be given a higher score when that group develops 
their rankings. 

Table 2. Comparing typical uses of economic models and their relationship to climate-smart agriculture (CSA)
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Computable 
general 
equilibrium 
(CGE) models

P, R but less 
likely

Explicitly integrates 
feedback loops for 
whole economy

High, depending on the 
level of aggregation and 
detail desired—surveys, 
national income accounts 
data, farm and firm 
engineering data

Not typically, but 
could depend 
on whether they 
include biophysical 
features or link to a 
biophysical model

High To some degree, 
depending on how 
much complexity 
the consumers or 
producers of the 
modeling exercise 
can tolerate

Trade-off 
analysis—
minimum 
data (TOA-
MD)

P, R, I Implicit Medium—Surveys, 
experiment station data, 
expert opinion

No Medium–
high

Yes

Agricultural 
system 
models 

P, R, I Depends on the 
type of economic 
model linked to the 
biophysical model

Medium to high, but 
depends on model

Yes High Yes

a 	I = infrastructure; P = policy; R = program level.

[continued]
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In general, MCA is a less formal and less expensive 
modeling approach, but it can be a practical, 
collaborative, and useful way to stimulate dialogue 
around complex decisions with relatively little formal 
data. One big advantage is that because MCA can be 
based largely on expert opinion, it can incorporate 
a great variety of concerns (options for dealing 
with a problem, such as making an infrastructure 
investment or using price signals to induce farmer 
behavior, and criteria to judge those options, such 
as whether farmer incomes are increased, farmer 
resilience is reduced, or GHG emissions are reduced) 
for which there may not be much hard data, such as 
gender-differentiated impacts. That is, of course, also 
a disadvantage, given the old adage of “garbage-in, 
garbage-out.” Whether the expert opinion is solid 
and sufficiently tight, in terms of consensus, to drive 
serious policy decisions, is a matter of professional 
judgment and consensus amongst professionals and 
stakeholders. 

Examples. Some climate change adaptation 
approaches and case studies have used this 
methodology to help communities choose between 
discrete adaptations options. The paper “Assessing 
the Costs and Benefits of Adaptation Options” 
(UNFCCC, 2011) provides a number of different case 
studies for how MCA was used to assess the value 
of different climate change adaptation options in 
Bhutan, Yemen, and the Netherlands. It has also been 
used to identify and prioritize adaptation options 
in Ethiopia (see The Federal Republic of Ethiopia, 
2007), Rwanda (see Republic of Rwanda, 2006), and 
Bangladesh (see Haque et al., 2010). 

The previous examples focus primarily on adaptation 
options, but MCA could also be used to assess 
options according to broader criteria such as 
agricultural productivity, mitigation of emissions, 
and resilience. The CSA Prioritization Framework, 
developed by the International Center for Tropical 
Agriculture, analyzes outcomes in terms of food 
security, adaptation, and mitigation (Corner-Dolloff 
et al., 2015). Although the framework is technically 
not presented as a model, it weighs CSA outcomes 
and prioritizes CSA options along several different 
criteria similar to how an MCA would work. It allows 
practitioners to analyze different CSA options but 

does not explicitly include feedback effects between 
them.

Statistical Models of Individual Behavior
Description. Statistical models of behavior (e.g., 
econometric models) are typically based on 
observation of large numbers of individuals and 
use of multivariate techniques to study the effect of 
key variables on a behavior (e.g., estimation of the 
effect of age, education, income, access to credit, 
and provision of extension services on adoption of 
a CSA management practice or technology). These 
models typically estimate whether relationships 
are statistically significant and, if they are, make 
statements such as “X extra amount of farmer 
training leads to Y percent extra adoption of new 
practices,” or “as climate variability increases, farmers 
are more likely to adopt drought-resistant seeds or 
conservation agriculture practices.” This kind of 
modeling can be used to estimate varied reactions 
by gender, age, level of education, or any other factor 
that may influence the object of study. For instance, 
more-educated but younger farmers may react more 
readily to extension advice, farm size may relate 
to the likelihood that farmers will adopt a certain 
technology, or female farmers may be more likely 
than male farmers to join a microcredit institution. 
In randomized controlled impact evaluations and 
quasi-experimental designs (e.g., matching farms 
participating in some project to nonparticipating 
farms), analysts typically employ such approaches 
to evaluate differences between farmer populations 
where an intervention was implemented versus where 
it was not. Results are typically useful in targeting 
farmers or other actors for certain practices, or may 
help in understanding why certain practices do not 
spread. 

Examples. Statistical modeling for agriculture 
probably has the most examples in the literature 
(compared to other forms of modeling in 
agriculture), although like many of the other 
models described below, it is not always clear 
how the results from these models are used in the 
conceptualization of policies and programs. One 
prominent example of a program that specializes in 
using econometric analysis to analyze CSA issues 
is the FAO Economics and Policy Innovations for 
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Climate-Smart Agriculture (EPIC) project and 
associated literature (see FAO, 2016b). Recent studies 
from EPIC have analyzed the impact of climate-smart 
agricultural practices on crop yields in Zambia; the 
effect of climate variability on the adoption of climate-
smart agricultural practices in Ethiopia; and factors 
affecting adaptation strategies in Malawi (Arslan 
et al., 2015; Asfaw et al., 2014; Asfaw et al., 2015). 
Similarly, statistical approaches have been used to 
analyze factors that affect farmers’ use of adaptation 
strategies (Nhemachena & Hassan, 2007) and to 
design index-based insurance contracts (Chantarat 
et. al, 2012). Because statistical and econometric 
models can show predictive relationships, they can 
be used to support and justify using a particular 
biophysical indicator (e.g., the Normalized Difference 
Vegetation index, precipitation, temperatures) to 
trigger an insurance payment based on an indicator of 
farmer loss (e.g., livestock mortality, crop failure). In 
Fafchamps & Minten (2012), the authors conducted a 
randomized controlled experiment in 100 villages in 
Maharashtra, India, to econometrically estimate the 
benefits that farmers derive from market and weather 
information delivered to their mobile phones. The 
effects were found to be minimal, and this contributed 
to the World Bank deciding not to invest funds in 
distributing the service to all extension agents in India 
(M. Fafchamps, personal communication, September 
16, 2015).

Bayesian Networks
Description. A Bayesian network can be represented 
(putting it colloquially) as a sort of flow chart 
without feedback loops, in which the key nodes are 
probabilities. A conditional probability distribution 
quantifies the effect of variables on each other. To 
illustrate, the simple model shown in Figure 1 states 
the following:  the farming yield is affected by farmer’s 
knowledge and investment; knowledge and incentives 
affect investment in the farm. The probability calculus 
of the network allows estimation of the probability of 
any variable taking a value using the values of some 
or all of other variables in the network. For example, 
given observations about a certain average farmers’ 
knowledge and incentives, the model allows users 
to predict the likelihood that the farmers’ yields 
would be high or low. Bayesian networks offer several 

advantages over other data-analysis techniques, 
such as multivariate statistical modeling. Bayesian 
networks can handle incomplete datasets and facilitate 
the combination of experts’ domain knowledge and 
research data. These networks also allow for learning 
about causal relationships from the data. In addition, 
because of Bayesian networks’ modular structure, one 
can represent prior causal knowledge and encode the 
strength of those relationships with probabilities. This 
enables prediction in the presence of an intervention 
even when no experiments about the effect of the 
intervention are available. Finally, the modeling 
itself is graphical and acyclic (that is, there are no 
feedback loops), which makes the logic of the model 
easy to follow and allows for the model to be easily 
explained to decision-makers. This is hard to do with 
models that are highly recursive or contain feedback 
loops, such as general equilibrium models or farm 
or system optimization models. Bayesian network 
models, like multicriteria decision analyses, can be 
estimated without extensive empirical methods such 
as surveys or agronomic studies, and can depend on 
expert knowledge. The better the knowledge, the more 
reliable the results. 

Examples. To our knowledge, Bayesian network 
models have not been applied directly to CSA 
efforts, but could be, given their applications in other 
contexts. For example, a Bayesian network model 
was applied to climate change adaptation research 
within the South East Queensland Climate Adaptation 
Research Initiative. Participatory workshops 
involving 66 stakeholders led to conceptualizations 

Yields

Farmer’s 
Investment

Farmer’s 
Incentives

Farmer’s 
Knowledge

Figure 1. Bayesian network of farming yields, farmer’s 
knowledge, farmer’s investment, and farmer’s 
incentives
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and development of 22 alpha-level Bayesian Belief 
Networks (Richards et al., 2012). The outcomes of 
the initial systems modeling exercise successfully 
allowed researchers to select critical determinants of 
key response variables related to adaptive capacity for 
in-depth analysis (Richards et al., 2012). 

In other research, the potential of Bayesian network 
models was evaluated for the task of managing GHG 
emissions in the British agricultural sector (Perez-
Minana et al., 2012). Case study farms typifying 
the British agricultural sector were input into the 
Bayesian network model to provide understanding 
of how the tasks carried out on a farm impact 
the environment through the generation of GHG 
emissions.

Furthermore, the World Agroforestry Centre has 
proposed using a Bayesian analysis framework 
to help program designers assess risk to improve 
agro-ecosystem intervention design in data-scarce 
environments (Shepherd, et al., 2014). The approach 
they cite is based on Applied Information Economics 
(Hubbard, 2014), and where survey data do not exist, 
the approach can rely on subject matter experts to 
develop probability estimates and generate risk-return 
analyses of different interventions.

Farm- or Regional-Scale Optimization 
Description. Farm- or regional-scale optimization 
models attempt to maximize or minimize a variable 
of interest, such as a typical farmer’s income, or 
environmental variables, such as GHG emissions, 
subject to constraints (e.g., amount of credit, land, 
and inputs at hand; amount of tree cover and 
investment in reforestation in the watershed). At 
a landscape or watershed scale, these models can 
be used to compare how adoption of different 
agricultural technologies would maximize general 
welfare or minimize environmental pollution while 
holding input costs constant.  These models can 
also help identify the most binding constraints to 
achieving certain outcomes on farms or through 
forest management (is it credit, farm family labor 
availability, education and knowledge?). CSA 
approaches sometimes assume that unless all inputs 
and conditions are improved, the results will not 
improve. On the flip side, some CSA approaches 

might assume that liberating just one constraint (e.g., 
farmer education) will lead to improved results. 

Linear programming and other similar optimization 
models often highlight the existence of binding 
constraints (e.g., water, fertilizer, credit) that limit 
production regardless of other interventions. 
For example, without water, educating farmers, 
increasing fertilizer use, and increasing access to 
credit might not impact productivity. Thus, these 
kinds of models can help project or policy designers 
get a better understanding of which constraints are 
most critical and have to be lifted before results will 
improve, and which constraints might not matter 
so much. At a watershed scale, hydro-economic 
optimization modeling can demonstrate how water 
can be distributed to maximize welfare across rural 
populations and agricultural and domestic uses. 
Hydro-economic modeling is useful in regions 
experiencing increasing water scarcity as global 
temperatures rise. 

Optimization models also allow a very detailed 
assessment of the interactions between agronomic 
issues and environmental issues. The relationship 
between tillage, fodder for cattle, cattle productivity, 
soil conditioning, and the variety of crops used, and 
how of these relate to credit availability, income, and 
GHG emissions, can all be modeled and analyzed, as 
can any similarly complex set of issues. These models 
help researchers identify the most binding constraints 
and understand trade-offs, such as trade-offs between 
feeding cattle and leaving crop residues on or in the 
soil.

Examples. Optimization modeling has been applied 
to the agriculture sector in the United States and 
other countries for decades (McCarl et al., 1977; 
Thorbecke & Hall, 1982; Crouch & Siam, 1982; 
Hildebrand & Cabrera, 2003), but more recently, 
there has been a rapid spread of farm optimization 
models across the world. Robertson et al. (2012) 
reviewed 53 studies on agricultural systems over a 
period of 6 years, including whole-farm models in the 
context of developing countries. The study reviewed 
the typology of these models, validation, and how 
farmers cope with risk. Fowler et al. (2015) provides 
a recent example of using an optimization technique 
in CSA. Those authors use the Farm Process 
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Version 2 of the MODFLOW model (MODFLOW-
FMP2) simulation tool developed by the US 
Geological Survey (Schmid and Hanson, 2009), 
which extensively models hydrological and farming 
processes, to evaluate a case study on planting 
decisions of farmers experiencing water stress. The 
results from optimization indicated feasible planting 
scenarios for farmers and policy makers during the 
water-stressed phase. Another recent example of a 
simple linear optimization model related to CSA 
and developed under the Enhancing Capacity for 
Low Emission Development Strategies (EC-LEDS) 
program involved the adaptation of the TAURUS 
feed ration formulation software to estimate methane 
emissions from beef cattle associated with different 
feed rations in Vietnam (see University of California, 
Davis, Department of Animal Science, 2016). The 
model maximizes animal nutrition and minimizes 
methane emissions for a given ration of feed and 
fodder available in Vietnam.

Partial Equilibrium
Description. A PE framework or model is a collection 
of demand and supply equations focusing on specific 
markets of interest while holding all other things in 
an economy constant. This type of model is, perhaps 
to over-simplify, an empirical application of the 
typical supply and demand curves of Economics 101, 
with the ability to actually produce numerical results. 
PE models are simpler to understand and require less 
data and time for construction than CGE models, 
described below. National-level policies in agriculture 
or trade, such as crop subsidies, support prices, or 
import tariffs, often target specific commodities. 
PE models are useful when assessing the impact on 
the price or traded quantity of that specific crop or 
sub-sector. For instance, a PE model can predict 
the impact of a crop-specific subsidy or tax on the 
production levels and price of that crop. 

Though a multicommodity, multiregion PE model 
could be sufficient to address various policy 
questions, use of PE models comes with many caveats. 
A key limitation is that they suppress interactions 
between the commodity or crop of interest and other 
commodities that are linked together by substitution 
and competition. For instance, a subsidy on use of 
sugar cane for producing energy might result in lands 

being withdrawn from other crops, and the price 
of those other crops might rise. PE models cannot 
capture this kind of feedback between crops. Thus, 
although PE models could offer greater depth of 
analysis because of their focus on finely disaggregated 
sub-sectors, they are often insufficient, as they do 
not capture interindustry and macroeconomic 
implications of a policy. Hertel (1990) illustrates 
some of the limitations of a PE approach: PE models’ 
failure to acknowledge the finite resource base in 
the economy; no possibility of tracking the effect of 
transfers such as subsidies or tax revenue flows on 
other crops or products; and absence of an explicit 
budget constraint for households with links between 
sources and uses of income. Nonetheless, PE models 
are a good, low-cost first approximation for relatively 
simple agricultural policy questions. 

Examples. There are various PE models focused on 
agriculture with differing crop-specific details and the 
capability to handle sectoral dynamics with respect 
to production, consumption, commodity prices, 
land use decisions, crop productivity changes, trade, 
and GHG emissions from the agricultural sectors. 
Some of the prominent ones that are widely cited 
in policy analyses are the Forestry and Agriculture 
Sector Optimization Model (FASOM) (Adams et al., 
2005; Beach et al., 2010a); the Food and Agricultural 
Policy Research Institute model (CARD, 2009); the 
Global Biosphere Management Model (GLOBIOM) 
(Havlik et al., 2011); the International Model for 
Policy Analysis of Agricultural Commodities Trade 
(IMPACT) (Rosegrant et al., 2008); the Regional 
Environment and Agriculture Programming model 
(Johansson et al., 2007); and the Policy Analysis 
System model (De La Torre Ugarte et al., 2010). 
Although most of these models have been used to 
analyze implications of biofuels policies sourcing 
from agriculture, some of them (FASOM, GLOBIOM, 
and IMPACT) have also been applied to study the 
impacts of climate change on agriculture.

The IMPACT model was recently applied in 
Colombia as part of an analysis of the trade-offs, 
opportunities, and repercussions of GHG emission 
reduction policies (De Pinto et al., 2014). This study 
found that policies that successfully reduced land 
allocated to pasture would greatly reduce projected 
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deforestation, increase carbon stock, reduce GHG 
emissions, and generate higher revenues. This 
analytical framework can be adapted to any country 
to explore economic viability and the impact of 
agriculture-based GHG reduction policies. Miankhel 
(2015) provides an example in a PE framework 
focused on Pakistan. The model used historical trade 
data to reveal that “behind the border” constraints 
affected the pattern of trade in agriculture and 
manufactured products, preventing Pakistan from 
realizing its potential in bilateral trade. (“Behind the 
border” constraints refer to constraints on trade other 
than the traditional barriers such as export or import 
controls, tariffs, and subsidies. These constraints can 
include poor development of product standards and 
standardization, poor transport, poor governance 
of regulatory institutions, and so on.) The study 
recommended liberalizing trade with neighboring 
countries to smooth consumption and insulate the 
country from future regional price shocks. Lastly, a 
PE model was used to estimate the effects of climate 
change and adaptation measures in Organisation for 
Economic Co-operation and Development countries 
using the IMPACT model (Ignaciuk & Mason-
D’Croz, 2014). This study quantifies the potential 
impacts of climate change on crop yields and prices 
and outlines possible adaptation strategies and 
investment required for research and development 
on new crop varieties and to improve irrigation 
technologies. 

Computable General Equilibrium 
Description. General equilibrium models assess 
what happens to prices and quantities produced 
and consumed in an economy when a change in 
policy shifts an economy to a new equilibrium. 
“Equilibrium” denotes that demand and supply 
are equal (no oversupply and no excess demand) 
in all markets at the same time. Given the relative 
shortcomings of PE models as discussed above, 
application of a general equilibrium model would 
be justified when an understanding of broader and 
more economy-wide outcomes of policy change is 
desired, and when one wants to assess the impacts 
of one sector of an economy on other sectors, and 
on a multiplicity of variables of interest, such as the 
impact of a subsidy or a technical innovation on 

the inequality of income among classes of farmers 
and nonfarmers. CGE models are comprehensive 
market models, as they include all the commodities 
in an economy (even if many are aggregated). A 
CGE model consists of systems of equations where 
each equation models a key aspect of economic 
behavior: supply, demand, production, or price 
formation. The equations are solved simultaneously 
to see how the whole equilibrium (e.g., equilibrium 
of supply and demand, prices of goods and services, 
incomes) changes if there is some outside shock 
or policy change (e.g., how do agricultural credit 
subsidies affect the prices of all goods, including 
nonagricultural goods).

There are many advantages of using a CGE 
framework for agricultural policy analyses. As Hertel 
(1990) highlights, CGE models follow accounting 
consistency rules to track how a policy shift displaces 
the economy from one equilibrium (one set of prices, 
quantities produced, and incomes for different 
groups) to another. CGE models can track inter-
industry linkages, which is particularly important for 
agriculture in contexts where agriculture drives GDP 
and employment, but other sectors are also important 
to the economy. CGE models are particularly useful 
when one market affects others with complex indirect 
effects. For example, how does restricting exports of 
one crop affect incentives to produce that crop, other 
crops, and even nonagricultural goods? By simulating 
the whole economy, CGE models can identify who 
will be affected positively and negatively by a policy 
change. However, CGE models are complex and time-
consuming to implement and depend on consistent 
and balanced economy-wide data sets. Moreover, the 
results are highly driven by key behavioral parameters 
with intrinsic uncertainty. Often, CGE models require 
higher levels of geographic and sectoral aggregation, 
leading to loss of country- or commodity-specific 
details. Despite these limitations, CGE models offer 
a rigorous quantitative economic tool for policy 
analyses. 

Until the inception of World Trade Organization, not 
many CGE models focused on agriculture in great 
depth. In the past couple of decades, researchers 
have paid more attention to analyzing the impact of 
agricultural trade policies using CGE frameworks. 
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Currently, several CGE models offer comprehensive 
representation of a disaggregated agricultural sector, 
land use and land cover, and GHGs emissions, which 
are essential for CSA policy analyses. Some of these 
prominent CGE models are the Applied Dynamic 
Analysis of the Global Economy model (Ross, 
2009); the Global Trade Analysis Project–based 
models (Birur et al., 2008; Hertel et al., 2010); the 
Future Agricultural Resources Model (Darwin et 
al., 1995; Sands, 2011); the Modeling International 
Relationships in Applied General Equilibrium model 
(Bouët et al., 2010); and the Global Dynamic CGE 
model (Timilsina et al., 2010). 

Examples. Most of the CGE models listed above 
adequately represent agriculture-specific details 
and are well-suited to analyzing inter-industry and 
global economy-wide impacts of CSA policies. 
However, these models would need to be adapted to 
a developing country context. This has been done in 
several cases already. In Gebreegziabher et al. (2011), 
a CGE model was applied to evaluate the effects of 
climate change on Ethiopia’s agricultural sector; in 
Thurlow et al. (2009), a CGE was used to assess the 
impact of climate change on economic growth and 
poverty in Zambia; in Arndt (2010), a dynamic CGE 
model was used to simulate economy-wide impacts 
of climate change in Mozambique; and in Bezabih 
et al. (2011), a countrywide CGE model was used to 
project the effect of climate change on agricultural 
productivity over time. For an applied example that 
relates directly to a policy decision, Diao et al. (2013) 
used a dynamic CGE model to analyze the impact 
of maize exports bans in Tanzania imposed because 
of droughts in the region. Their model-predicted 
results indicated that a maize export ban had 
counterproductive impacts on domestic food security, 
increasing poverty, particularly in previously maize-
exporting rural regions of Tanzania. The dynamic 
nature of the CGE model captured the trade-offs 
between short-term and long-term effects of the 
policy. The model also showed that the export ban 
policy benefited only some of the urban households 
in the country, not all urban households and not 
rural households in general. The International Food 
Policy Research Institute team presented these 
model predictions to the Tanzania government at 
a critical time, and the ban was lifted in September 

2012. The Prime Minister of Tanzania stated that 
“the research provided clear and convincing evidence 
and recommendations on alternative policies to 
export ban” (Robinson, 2012). As droughts become 
more frequent with climate change, there is a greater 
possibility that countries will consider such policies. 
Thus, CGE models that can model these effects could 
have greater relevance.

Trade-off Analysis—Minimum Data
Description. The Agricultural Model Intercomparison 
and Improvement Project (AgMIP) is one of 
the largest concerted international agricultural 
modeling efforts to produce improved climate impact 
projections for the agricultural sector. AgMIP has 
identified the following core research questions 
to support informed decision making by various 
stakeholders:

1.	 How sensitive are current agricultural production 
systems to climate change? 

2.	 What is the impact of climate change on future 
agricultural production systems?

3.	 What are the benefits of climate change 
adaptations?

To answer the economics-related aspects of these 
questions, AgMIP employs the TOA-MD developed 
by Oregon State University to analyze climate impact, 
including vulnerability and adaptation analysis. 
It is the only model listed in this paper that is a 
specific model, rather than a very general category 
of models, but we highlight it because of its direct 
relevance to CSA. The model works by simulating 
technology adoption and impact in a population 
of heterogeneous farms. TOA-MD models a farm 
population or whole farming systems, rather than 
an individual or representative farm (Antle, 2011; 
Antle, Stoorvogel, & Valdivia, 2014; Antle & Validivia, 
2006). As described in the paper:

In the TOA-MD model, farmers are presented with 
a simple binary choice: they can operate with a 
current or base production system 1, or they can 
switch to an alternative system 2. In a technology 
adoption and impact analysis, the model simulates 
the proportion of farms that would adopt the new 
or alternative system, as well as the impacts of 
the new system by simulating impact indicators 
defined by the user. (Antle et al., 2014)
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The TOA-MD model approach is unique because 
it requires only empirical evidence on means, 
variances, and correlations between various variables 
(e.g., income and costs, observed adoption and 
technologies used, farmer characteristics) in specific 
geographies such as microregions and regions. It 
allows the user to incorporate disparate types of 
information, including expert judgment, macro 
conditions, biophysical models, and farm cross-
sectional surveys. Those data can then inform the 
knowledge base about the correlations, means, and 
variances to derive its results. Because the “database” 
is a set of joint distributions, one can build it up 
from any set of observations. For example, a user 
could start with survey data, but include data from 
experiment stations and expert judgement. The ease 
and parsimony of the approach reduces the cost of 
modeling. The results can range from predictions 
about the adoption of GHG mitigation practices, 
analysis of farm income, nutritional status under 
different climactic conditions. It can include the 
distribution of those results among types of farmers 
(e.g., bigger, smaller), and threshold levels for 
adoption. Examples of how the TOA-MD model 
has been used can be found on the Oregon State 
University website (http://tradeoffs.oregonstate.
edu/). In the Chingale region of Malawi, for example, 
TOA-MD was used to simulate the rate of adoption 
that could be expected if integrated aquaculture-
agriculture technologies were made available (Tran et 
al., 2013). A 59 percent adoption rate was estimated, 
and it was estimated that the poverty rate among 
adopters would be reduced by 22 percent. The 
modeling concluded, interestingly, that subsidization 
of the fish ponds would not have much impact on 
rates of adoption. The tool has been used to simulate 
the carbon sequestration response of farmers in 
wheat-based farming systems in the Indo-Gangetic 
Plain to different carbon prices, using low- or no-
tillage practices. This allows modeling of how high 
the price for an eco-system benefit would have to be 
to get certain levels of the benefit (Grace et al., 2012) 

Hybrid Biophysical and Economic
Description. It is often valuable to incorporate 
detailed biophysical data into economic analyses 
of CSA options. Biogeochemical crop process 
models such as the Daily Century, DeNitrification-
DeComposition, EPIC, Lund-Potsdam-Jena managed 
Land, Predicting Ecosystem Goods And Services 
Using Scenarios, and Decision Support System for 
Agrotechnology Transfer (DSSAT) models simulate 
the impacts of alternative climate conditions and 
production strategies on yield, water use, and GHG 
emissions. These models use equations based on 
experimental and field research to represent plant 
growth, nutrient, water, soil, and GHG dynamics. 
Although these models are generally designed 
to work at a site level, they can be scaled up and 
averaged for use at larger scales. They provide an 
effective way to quantify the potential impacts of 
numerous alternative scenarios at a spatially and 
temporally disaggregated level. There are many 
additional process models designed to model a single 
crop, but the models listed above have been calibrated 
for and applied to multiple crops in many different 
parts of the world. 

Biogeochemical crop process models provide 
information on the potential changes in productivity 
and environmental impacts given input assumptions, 
but do not reflect behavioral adjustments or market 
equilibria. If one wants to extend the modeling 
to behavioral and market response issues, the 
simulated impacts of climate change, alternative 
management practices, or both are incorporated 
into economic models of the agricultural sector to 
reflect producer behavior and market interactions. 
Impacts are generally included as shifts in the 
supply or production function associated with each 
combination of crop, region, and production process. 
Given the potential changes in the trade-offs faced by 
producers, defined by the process models as yields, 
input requirements, and emissions change, it is vital 
to account for behavioral response. Economic models 
are combined with the biophysical models to simulate 
market outcomes and to assess producer adjustments 
in land cover, crop and livestock mix, and production 
practices (e.g., tillage, irrigation, fertilizer application) 
in response to changing incentives. 
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Examples. A number of biogeochemical process 
models are being used in combination with economic 
models to assess both climate impacts and adaptation 
as well as mitigation policies. These studies have been 
conducted at a variety of levels of disaggregation. 
Felkner et al. (2009) simulated the impacts of climate 
change on rice production in Thailand using DSSAT 
and a detailed economic model of rice production in 
the northeastern province of Thailand calibrated to 
household rice plots. Some of the examples provided 
above related to CGE models also incorporate 
biophysical models into their analyses. In addition to 
a number of studies of individual crops at the sub-
regional or national levels, several large studies have 
linked crop and economic models on a broader scale. 
Nelson et al. (2010) applied simulation results from 
the DSSAT model in the IMPACT model to assess 
the global impacts of climate change on agricultural 
yields, production, markets, and trade. 

In addition, the international AgMIP effort focuses 
on combining crop models and economic models 
(see discussion of TOA-MD above) to generate 
estimates of potential implications of both climate 
impacts and adaptation and mitigation strategies at a 
variety of scales, from a small subregion of a country 
to the global level (Rosenzweig et al., 2013). A set 
of US Environmental Protection Agency mitigation 
studies also developed global marginal abatement 
cost (MAC) curves for agriculture. These studies 
incorporated results from DAYCENT (a daily version 
of the CENTURY model) simulations for non-rice 
crops and DeNitrification-DeComposition (DNDC) 
simulations for rice with economic data to generate 
estimates of the costs and potential mitigation 
associated with a suite of non-CO2 GHG mitigation 
options for the agricultural sector (US Environmental 
Protection Agency, 2006; Beach et al., 2008; US 
Environmental Protection Agency, 2013; Beach et al., 
2015). 

Nonmodeling Economic Techniques
As discussed above, in conducting economic 
analyses of CSA options, a broad range of models 
can be used to support decision making. Some 
authors and practitioners (UNFCCC, 2011) have 
compared the MCA model discussed above with 

cost-benefit analysis and cost-effectiveness analysis 
as different approaches that can be used to evaluate 
climate change adaptation options. Here we make 
a distinction between MCA, which we view more 
as a model, and cost-benefit and cost-effectiveness 
analyses, which we view more as techniques that 
can be used to either capture the monetary benefits 
of an activity (cost-benefit analysis) or capture how 
cost-effective an activity is at achieving a particular 
CSA goal (cost-effectiveness analysis). Cost-benefit 
analysis might manifest the return on investment 
of an activity but typically does not incorporate 
externalities or broader market interactions. Cost-
effectiveness analysis can be a useful technique to 
assess emissions reduced or resilience gained per 
dollar of investment in an activity. Although both 
of these techniques are useful, here we distinguish 
these techniques from agricultural modeling, which 
attempts to simplify reality and re-create relationships 
by weighting, regressing, optimizing, simulating 
equilibriums, and so on to produce results that can 
then often be used for, or expressed in terms of, cost-
benefit or cost-effectiveness. 

In climate change mitigation programming (e.g., low 
emission development, low carbon development), one 
popular method for assessing and ranking alternative 
mitigation strategies based on their relative cost-
effectiveness is through the development of marginal 
abatement cost (MAC) curves. MAC curves order 
available mitigation options from lowest to highest 
cost and show the quantity of mitigation available 
at different levels of incentives for GHG mitigation 
(usually represented as a carbon price for simplicity). 
However, MAC curves are very dependent on the 
assumptions used, sensitive to the discount rate 
applied, and do not take into account transaction 
costs or the cost of overcoming barriers to adoption. 
Thus, it is important for a MAC curve to be only 
one of several inputs used to prioritize investments, 
and then only with a full understanding of the 
assumptions built into the curve (FAO, 2012).
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Discussion and Conclusions
The challenge of modeling climate-smart 
interventions lies at the intersection of climate change 
modeling and agricultural modeling. Working on 
this intersection increases complexity.  We argue 
that although the introduction of climate change 
variables presents additional complexities to 
traditional agricultural modeling paradigms of the 
past, it is still both feasible and practicable to apply 
them. The choices one makes about which model 
and methodology to choose, however, are highly 
dependent on the questions facing in-country local 
decision-makers, or global decision-makers. We 
would argue that, quite possibly, no given model 
needs to become much more complex than is 
currently the case. One could abstract more in certain 
traditional areas and add more detail in climate-
related areas, for instance.  

Under the Paris Climate Agreement, more than 
90 percent of the countries that submitted INDCs 
included the agriculture sectors in their mitigation 
contributions, adaptation contributions, or both. 
Most of the INDCs provided high-level goals and 
strategies, and few provided much detail about 
how they intended to achieve those reductions. In 
addition, there are important interactions between 
adaptation, resilience, and mitigation goals that 
ideally should be considered to increase the efficiency 
of policy actions selected. To better evaluate the 
validity, feasibility, and social profitability of these 
nationally determined contributions, decision-
makers in these countries must define which CSA 
interventions and outcomes they are interested in 
pursuing and evaluating, and then work closely with 
technical specialists to pick the right mix of technical 
methods depending on desired outcomes, budget 
availability, and contextual factors discussed in 
Section 2.2. 

In the context of the Paris Climate Agreement, there 
is an unprecedented opportunity for decision-makers 
to test the validity of their Nationally Determined 
Contribution goals and assumptions through the 
development and co-implementation of modeling 
techniques. Modelers that use abstruse or “black box” 
methods provide a perhaps unnecessary challenge to 

policy-makers, because they limit decision-makers’ 
ability to fully understand and evaluate the results 
of the analysis. It is important for modelers to be as 
explicit and transparent as possible, and to effectively 
communicate with nonmodelers and decision-
makers. This may require developing easy-to-use 
tools or displays (such as some of those discussed in 
this paper), or to work with decision-makers to test 
each assumption and data source throughout the 
process. The goal of the paper is not to recommend 
one type of modeling over another, but to suggest 
ways to gear a modeling exercise to answer the 
questions that decision-makers are grappling with.

The Approach to Uncertainty
An important consideration for modeling CSA 
or any other issue involving climate change is the 
reflection of uncertainty. Agricultural producers 
have always faced numerous production and 
price risks, particularly risks associated with the 
weather. However, forecasts of more rapid changes 
in climatic conditions and likely changes in the 
frequency and severity of extreme weather have 
raised concerns that these risks will increase and 
become more difficult to predict and manage. 
Most studies to date have focused on the long-run 
impacts associated with mean climate changes 
for a given global circulation model and scenario, 
but better characterization of the variability of 
potential impacts is vital. There is not only variability 
within a given global circulation model/scenario 
combination, but also a general lack of agreement 
on the distribution of potential climate impacts 
across global circulation models and scenarios. It is 
also important to improve the modeling of short- 
to medium-term climate variability and potential 
adaptation responses. Catastrophic modeling is 
likely to become increasingly important over time 
as temperature thresholds for crop germination, 
growth, and winter chill are likely to be exceeded 
more often; water availability is expected to become 
more constrained in certain areas; and extreme events 
may happen more often. One of the key challenges is 
developing an accurate picture of how the variability 
in weather, and therefore crop yields, may change as 
climate moves outside of recent historical experience. 
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Relying on historical data implicitly assumes that 
low-frequency high-loss events are reflected in the 
available data. However, data series for many crops 
and regions may not be long enough to capture 
historical probabilities of these extreme events, 
let alone account for the potential changes in the 
probabilities of these events given projected changes 
in climate. 

Although difficulties remain in defining exactly what 
the future climate may hold, the modeling tools 
examined in this paper generally can be extended to 
explore the implications of a given level of climate 
variability on the distribution of potential economic 
impacts. For instance, an optimization model can be 
run multiple times for a series of climate scenarios 
to develop a set of potential outcomes resulting from 
different climate conditions. Beach et al. (2010b) 
applied an optimization model as part of a hybrid 
biophysical and economic model to explore the 
potential impacts of climate change on the US crop 
insurance program by running the model for a series 
of climate states. This resulted in a distribution of 
yields, production, and prices that was used to help 
examine potential changes in the probability of 
crop losses that would trigger insurance payments. 
Similarly, PE, CGE, and most of the other types 
of models can potentially be run many times with 
different climate scenarios and response parameters 
to better capture the range and distribution of 
potential impacts. Statistical models are generally less 
suited to use for projections far into the future as the 
historical data on which they are based becomes less 
and less representative of future conditions, especially 
when there are major underlying trends such as 
climate change.  

Concluding Remarks
In this paper, we have argued that the programs 
and policies of both development agencies and 
governments aimed at supporting CSA can benefit 
from both ex-ante modeling, before policy decisions 
are made, and ex-post modeling, to understand 
the reasons for the impact of past decisions. In this 
section, we suggest reasonable next steps. 

Most reviews of modeling approaches and reports 
of specific modeling exercises simply describe the 
models and, to some extent, how each model is or was 
applied. Few publications describe how modeling has 
influenced policy or how the modeling effort was (or 
was not) embedded in a policy dialogue. Papers that 
describe how modeling skills have been transferred 
to researchers in developing countries, and how 
these skills have been institutionalized into policy 
shaping, are also relatively hard to come by. In short, 
there is a research agenda in when and how models 
have been used, in practice, to affect policy. There is 
also an agenda in documenting their accuracy, data 
maintenance requirements, and sustainability. 

Similarly, there is little research as to how modeling 
fits or could fit better into the project or policy cycle. 
Given the time and budget available for project 
preparation, it may be too much to expect that 
projects engage in in-depth modeling before project 
start-up to pick the activities to be emphasized by the 
project. But if such projects did some modeling at the 
beginning of the project and modeling or analytics 
accompanied the project throughout its lifecycle, 
then the next project at least would benefit from the 
lessons of the prior one. At the same time, the project 
can be used to validate the modeling (thus justifying 
using the modeling conclusions for the next evolution 
in the project cycle). Because development agencies 
have intensified financing of CSA projects after 2008, 
many agencies are still conducting the first project of 
new project cycles in many countries or have not yet 
incorporated analytics into the second or so project 
in a cycle of projects. The time is ripe for building 
analytics and modeling into the project cycle so that 
projects could learn from each other.

Modeling skills are scarce and modeling, if done 
thoroughly, is not inexpensive. However, it is 
inexpensive in comparison with policy mistakes. CSA 
presents a more complex policy environment than 
those of previous decades; thus, analytical tools such 
as modeling may be even more relevant to analyzing 
outcomes from policies or project interventions. 
We have noted that policies or interventions that 
are complex, large-scale, one-off, irreversible (or 
difficult to reverse), and have potential impacts 
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beyond the intended ones are particularly good 
candidates for modeling support. At the other 
extreme, small projects, especially if they themselves 
are pilot projects meant to test an intervention, or are 
adapting a tried-and-true approach with only minor 

modifications, are not especially in need of modeling. 
This paper has described various types of models and 
provided a discussion, along with examples, of which 
types of models are best suited for which types of 
policy interventions.
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