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Abstract
Hot deck imputation is a method for filling in a missing value in a survey item (item 
nonrespondent) with a valid reported value from a donor (item respondent) within 
the survey. Our paper presents a multivariate hot deck imputation method called 
Cyclical Tree-Based Hot Deck (CTBHD). This method was developed to handle 
missing values in complex survey data with many different types of variables and 
allows the user to customize imputation classes, use sorting variables, impute 
vectors and compositional variables, and even edit or recode data “on-the-fly.” 
Additionally, CTBHD employs a cycling approach to get more stable imputed 
values with less bias and variance. Our paper evaluates the performance of CTBHD 
imputation through a simulation study using publicly available survey data from 
the 2020 Residential Energy Consumption Survey. Developed as a system for 
imputation, the CTBHD system is proprietary to RTI International.
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Introduction
Item nonresponse in survey data is common, 
especially in a large, complex survey in which 
the missing values might be caused by either the 
complexity of the questionnaire structure (e.g., 
skip patterns), difficulty of the topics in the survey 
items (e.g., sensitive topics, difficult concepts 
or data requiring access to information, files, or 
documents somewhere), data inconsistencies that 
lead to “blanking out” during the editing process, 
or some other unknown cause. When respondents 
with missing values are different than respondents 
that reported values, any analysis that is based on 
reported values only and does not account for the 
missing values may induce bias in the estimates 
(i.e., nonresponse bias). Even if the estimates are 
not biased, they probably have lower precision 
than estimates in which the missing values do not 
exist, usually because of smaller sample size. Item 
nonresponse also raises the concern that the variance 
of the statistics may also be biased.

In this report, we consider a survey that collects 
data on multiple variables, some of which have 
missing values. A common method to deal with 
item nonresponse is to impute these missing data. 
Imputation, if done properly, can reduce potential 
bias due to missing values. Imputation allows for data 
analysis based on complete data as if the data had 
no missing values; data that do not use imputation, 
however, commonly have cases with missing values 
dropped from the analysis. Hence, imputation may 
improve precision of the estimate by maximizing the 
sample size for data analysis.

One popular imputation method, especially for 
large, complex survey data, is hot deck imputation, 
which is a method that fills in a missing value with 
a reported value from a respondent within the same 
data/survey. In the item nonresponse context, cases 
with missing values are the nonrespondents, and cases 
with reported values are the respondents. In hot deck 
imputation terminology, a nonrespondent is also called 
the recipient (of imputed data), and the respondent 
providing the imputed value is called the donor.

Hot deck imputation commonly includes two steps: 
(1) imputation class construction and (2) donor 

selection within the classes. The methods used to 
form imputation classes and to select a donor within 
the imputation class vary from one hot deck approach 
to another. When the missing values for an outcome 
variable (variable being imputed) are missing at 
random (MAR; Rubin, 1976)—that is, the missing 
value is independent of the value of the variable 
itself but dependent on other variables in the 
data—hot deck imputation of this outcome variable 
can take advantage of the correlation between 
this imputed variable and the other variables 
(covariates). This method of donor selection 
assumes that when the donor’s and recipient’s values 
of covariates are alike, the recipient’s and donor’s 
outcome variables are also alike. For this reason, 
respondents and nonrespondents are grouped into 
homogeneous classes (called “imputation classes”) 
based on their observed covariates. 

At this step, the imputation classes may also be 
sorted by additional covariates to add another level 
of granularity of the “match” between donor and 
recipient within an imputation class (i.e., “implicit” 
imputation classes). Sorting variables are often added 
when including these variables in the construction of 
explicit imputation classes might create imputation 
classes that have no donor. Once the imputation 
classes are formed, a donor is selected from within 
the same imputation class as the recipient.

Because every imputed value in hot deck imputation 
comes from valid reported values from respondents 
within the survey, conceptually, hot deck imputation 
should guarantee plausible imputed values that exist 
within the distribution of realized sampled values in 
the survey data. In this context, the hot deck method 
is a nonparametric method of imputation, whereas 
alternative imputation methods that use imputed 
values generated or predicted based on an explicit 
model are categorized as parametric imputation 
methods (Honaker et al., 2011; Raghunathan et 
al., 2001; Schafer, 1997; Yuan, 2011). There is also 
a hybrid (semi-parametric) imputation method in 
which the predicted values are computed based on 
an explicit predictive model, but these values are not 
used as imputed values. Instead, predicted values are 
used to match the respondent and nonrespondent 
to get the donor values; for example, predictive 
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mean matching (also known as predictive mean 
neighborhood) can be used (Little, 1988; Rubin, 1986).

When imputing multiple correlated variables, the 
imputer has options to jointly model this vector 
of variables to be imputed using a multivariate 
distribution (i.e., joint modeling approach) (Honaker 
et al., 2011; Schafer, 1997) or to model each variable 
individually (i.e., sequential imputation approach) 
(Raghunathan et al., 2001; van Buuren et al., 2006; 
van Buuren & Groothius-Oudshoorn, 2011). In 
practice, with large survey data with several types 
of variables, under the joint modeling imputation 
approach, the imputer may not be able to account for 
correlation among variables with different types and 
distributions under one imputation model. However, 
with the sequential approach, correlation across 
imputed variables can be handled by fully conditional 
specification where once a survey variable has been 
imputed it can be used as a predictor in the model 
for imputing the next variable in the sequence. The 
differences in the approaches used in hot deck lead 
to different names/terms for these hot deck methods. 
Andridge and Little (2010) provide a comprehensive 
review of several hot deck methods.

In this report, we present a multivariate hot deck 
imputation approach called the Cyclical Tree-
Based Hot Deck (CTBHD) for complex survey 
data commonly characterized by a large number 
of variables, different types of variables, a large 
number of categories in some categorical variables, a 
complex relationship structure of variables including 
skip patterns and compositional variables, and 
nonmonotone missing patterns, such as a “Swiss 
cheese” missing data pattern (Judkins, 1997). A 
system proprietary to RTI International, CTBHD 
incorporates several features that already exist in 
imputation work. CTBHD was developed to handle:

• a large number of variables to be imputed;

• a large number of candidate covariates for class and 
sorting variables and variable selection from this 
large number of variables;

• preserving associations among survey variables, 
including skip patterns;

• power issues when performing regression using a 
large number of predictors with a limited number 
of observations (e.g., because of a high missing rate);

• small sample sizes or no donor issues in 
imputation classes;

• vector imputation for compositional variables to 
avoid anomalous variable combinations in the 
imputed data; and

• repeated or cycled imputation for all variables with 
the goal of establishing stability in the imputation.

Imputation software for multiple variables has been 
available for some time and can address some of these 
needs. However, when relationships among variables 
are too complex, this software may not be able to 
handle such complexity without user customization 
of the imputation process. CTBHD is set up to allow 
the user to construct imputation classes based on 
user prior knowledge (“subjective” inclusion), data-
driven inclusion based on empirical learning data, 
or a mix of the two. For the data-driven approach, 
CTBHD implements a statistical method in which 
class variables are statistically selected by the 
classification and regression tree (CART) approach 
(Breiman et al., 1984; Ripley, 1996).

Some survey variables to be imputed could be a 
type of compositional variable in which several 
variables correlate in the sense that the values of these 
variables are constrained by restrictions forming 
dependency (Judkins et al., 1993). A simple example 
of compositional variables is when a survey collects 
variables on the total number of household members 
(variable Y    1   ) broken down by age group—for 
example, 0–18 (variable Y    2   ), >18–60 (variable Y    3   ), 
and >60 (variable   Y  4   )—where Y    1   = Y  2   + Y  3   + Y  4   . 
An example of a case with missing data would be 
if two of these four variables are missing and none 
of the missing values can be filled in by deduction 
(subtraction or addition). In such a case, imputation 
has to deal with a vector of variables imputed at once, 
and the values are constrained by the specific edit rule 
that exists among these variables. In hot deck vector 
imputation, by default the reported values among 
the variables in the vector are preserved (instead 
of being replaced by donor’s values), and only the 
missing values among the variables in the vector are 
imputed. If there is no constraint or edit rule, then 
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this set of compositional variables can be imputed 
as the “whole vector” imputation, without taking 
into account the reported values in the recipient. 
If there is a constraint, vector imputation may 
lead to an implausible outcome of imputed values 
because it violates the constraint/rule. In this case, 
the imputation requires a specific algorithm, which 
we explain in a later section about imputation of 
compositional variables.

In addition, for donor selection within the imputation 
classes, CTBHD incorporates the survey weights 
by implementing the weighted sequential hot deck 
(WSHD; Cox, 1980; Iannacchione, 1982). WSHD was 
developed based on the goal that the survey weighted 
mean and proportion estimates computed based on 
the WSHD imputed data will be equal, in expectation, 
to the weighted mean and proportion estimated using 
respondent data only. The methodology section gives 
further details on WSHD.

An additional variation of hot deck imputation 
(although it does not necessarily pertain to the hot 
deck method only) is to cycle the imputation process 
several times; that is, the same process to produce a 
set of imputed data is repeated (say C times), where 
when imputing a variable in cycle c, any imputed 
values resulting from the previous cycle (cycle  c - 1 ) 
are used as if they were reported values. The final 
imputed values (a final dataset) come from the last 
cycle of imputation. Cycling the imputation is also 
carried out in the multiple imputation approach 
proposed by Rubin (1987) to produce more stable 
imputed values with less bias and smaller variance.

One other feature in CTBHD is the ability to recode or 
edit variables “on-the-fly.” This is an option that can be 
useful in several situations caused by edit rules based 
on one-to-one logical relationship among variables, 
including skip patterns. For example, if a gate variable 
is imputed with a “no” value, then the follow-up 
variable(s) that will be used as covariates in the next 
imputation step must first to be imputed or edited to 
“ineligible.” Another example is a derived variable used 
as a covariate in one imputation step that needs to be 
recreated based on the components computed in the 
previous step. The Methods section presents details of 
methods and features implemented within CTBHD.

Several authors have investigated asymptotic theory 
of properties for specific hot deck imputation under 
specific conditions; see for example, Rao and Shao 
(1992); Rao (1996); Chen and Shao (1999); Shao 
and Steel (1999); Brick, Kalton, and Kim (2004); 
Haziza and Rao (2006); Yang and Kim (2019). The 
development of the CTBHD approach required 
investigating the properties of these approaches. 
However, the complexity of the methods, particularly 
the mix of several methods implemented and the 
inclusion of several features within CTBHD, makes 
deriving the asymptotic properties of the CTBHD 
approach challenging, if not impossible. 

In this paper, the performance of the CTBHD 
imputation system is evaluated through an empirical 
simulation study. In the Simulation section, we 
present our simulation based on the preliminary 
released (July 2022) microdata of the 2020 
Residential Energy Consumption Survey (RECS) 
data available as a public use file from the Energy 
Information Agency of Department of Energy, 
which is the sponsor of RECS. In the last section, we 
present conclusions and discussion.

Methods

Notations
Let   Y =  (    Y  1  ,  Y  2  , ⋯ ,  Y  k   )     denote variables that are 
subject to nonresponse, and  k  denote the total 
number of variables that will be imputed. Further, 
let  X =  ( X  1  ,  X  2  , ⋯ ,  X  p  )   denote variables without 
missing values, and  p  the total number of variables 
that will be used either as class or sorting variables. 
Note that in sequential multivariate imputation, when 
imputing a particular variable   Y  i   , the covariates for 
imputation classes or sorting variables may include 
members of  Y  (excluding   Y  i   ) that have been imputed 
in previous steps of the imputation sequence, or 
in previous cycles. Thus, when a survey outcome 
variable within Y is included as one of the covariates 
but it has no missing values, we use notation   Y   I   to 
denote the survey variable that has been imputed.

The missing pattern of   Y  1  ,  Y  2  , ⋯ ,  Y  k    can be 
nonmonotone, and the order of   Y  1  ,  Y  2  , ⋯ ,  Y  k    has not 
been determined yet. This is because   Y  1  ,  Y  2  , ⋯ ,  Y  k    
can be ordered based on their missing rates from the 
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smallest to the largest or can be ordered based on 
their order of appearance in the survey questionnaire. 
The latter is frequently used in situations in which 
a gate variable needs to be imputed before the 
follow-up variables. For all  i = 1, ⋯ , k , the goal 
is to impute missing values   Y  i    fully conditioned 
on all observed values in    (  Y, X )     except   Y  i   . For a 
specific variable   Y  i    with some missing values, let   s  r    
and   s  m    denote, respectively, the set of respondents 
and nonrespondents. Under hot deck imputation, 
reported values in   s  r    (donors) will be used to impute 
missing values in   s  m    (recipients).

Constructing Imputation Classes Using CART
For the construction of imputation classes in 
CTBHD, the default approach is to use a data-driven 
or “learning sample” approach that is based on the 
CART method to produce terminal nodes (Breiman 
et al., 1984). These terminal nodes then become 
the imputation classes. This is implemented using 
R package “tree” (Ripley, 1996). Given variable   Y  i    
to be imputed, the CART model defines   Y  i    as the 
dependent (left-hand–side) variable, and  X  as the 
independent (right-hand–side) variable. CART can 
handle categorical variables (where a classification 
tree is produced) and continuous variables (where a 
regression tree is produced) for both    (  Y, X )    . Ordinal 
variables can be treated either way.

The CART process consists of the following steps:

a. Pick variable used for splitting.

b. Split data.

c. Repeat (a) and (b) until stop.

d. Predict/assign classes.

The construction of the tree deals with the selection 
of the splits, the decision to stop or to continue to 
split the node, and the assignment of a terminal node 
to a class. For imputing   Y  i   , a tree starts with a root 
node and is then grown from top to bottom by binary 
recursive partitioning using the respondent values 
of   Y  i    in the specified model. Given  X  (variables with 
no missing values), the root is split first based on the 
most important significant variable, which maximizes 
the decrease of misclassification/“impurity” 
(measured either based on Gini index for 
classification trees or deviance for regression trees). 

At each internal node in the tree, this method applies 
a test to split the data. Of all possible splits, the split 
that produces homogeneity within the group and 
maximizes the reduction in misclassification rate is 
chosen, the data are split, and the process is repeated.

Continuous variables are divided based on a cutoff 
value a: X < a and X ≥ a. For categorical variables, 
the levels of an unordered factor are divided into 
two nonempty groups. No categorical variable can 
have more than 32 levels. Because a classification 
tree involves a search over (2^(d-1)-1) groupings for 
d levels, tree growth is limited to a depth of 31. In 
practice, however, this limitation will depend on the 
size of the dataset and computer performance; hence 
the number of maximum categories that can be 
handled may be lower than 32 levels. If a categorical 
item has too many levels, the tree program may 
crash or stop. In a situation in which a categorical 
variable has more than 31 levels, the user, prior to 
running CTBHD, needs to recode the categories to 
31 or fewer categories based on some (subjective or 
informed) prior knowledge.

The tree stops growing when the current node is 
smaller than the user-provided value of minimum 
node sample size (“minsize”) or when one of two 
nodes that would be created by a split of the current 
node is smaller than the user-provided value of 
“mincut.” Usually, minsize = 2 × mincut. The terminal 
nodes become the imputation classes, where within 
a class, response values   Y  i   s  will be used as potential 
donors for the nonrespondents.

Because the tree is constructed based on the 
respondent cases, it is still possible that the 
regression tree produces imputation classes that 
have the minimum number of respondents but also 
have a large number of nonrespondents. In this 
case, a particular respondent might be overused 
as donor, or there may not be respondents with  X  
data corresponding to the nonrespondent's  X  data, 
resulting in an imputation class without a donor. The 
CTBHD system includes a feature that reports the 
number of times a donor is used. It will also stop the 
imputation process when encountering an imputation 
class without a donor. In these situations, the simplest 
solution is usually to increase the value of mincut.
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Nevertheless, the use of CART to form imputation 
classes has an advantage over the traditional, 
complete cross-classification of covariates. In the 
regression tree, the nodes/cells are formed only 
when the variable levels/categories are statistically 
significant, whereas in complete cross-classification, 
all combinations of levels are used to form potential 
cells, some of which may have a small number of cases. 
In such a case, cells may be collapsed, either in an ad 
hoc or subjective manner or by prespecified rules. In 
a regression tree, the splits are done based on formal 
statistical tests, which do not require prior knowledge 
or assumptions. Note, however, that the “tree” program 
does not use weights when forming imputation classes. 
There is a weight option available in the tree command. 
However, we have not used this option, yet. While the 
use of weights may improve the tree construction, it 
could lead to more imputation classes with a small 
number of donors. This is something we would like to 
explore in future research because it will require using 
a different simulation study.

In addition, these terminal nodes from CART can be 
combined with classification variables known to be 
correlated with the variable being imputed (we call 
these “forced” class variables). We cross the categories 
of these forced class variables with the terminal nodes 
from the tree to form the final imputation classes 
(see an example of implementing the forced class 
variables in Figure A.4 in the appendix). Crossing 
forced variables with the terminal nodes from the tree 
ensures that variables believed to be strong predictors 
(or “control” variables) are included in final imputation 
classes. This is why the crossing takes place after the 
terminal nodes are produced by CART, instead of 
running CART within each class defined by forced 
variables, which would complicate the computation.

Donor Selection: Weighted Sequential Hot Deck
When the data comes from a nonsimple random 
sample or weights are needed to get unbiased 
estimates from these data, ignoring the weight in 
selecting a donor would lead to biased imputed 
estimates. For example, for a simple single imputation 
class with uniform response mechanism and a simple 
random sampling to select a donor, the following 
estimate ̂Y        i    , computed based on imputed data,

 Ŷ        i    = ∑ j∈s  r      w  j   Y  ij  +  ∑ *k∈s  m      w  k   Y  ik      

will be biased, where s    r    is the set of respondents 
(donors), s    m    is the set of nonrespondents (recipients),  
w  is the survey weight, and   Y  *ik  i    s the imputed value, 
which is a reported value or donor from   s  r   . An 
alternative approach is to adjust the imputed value 
based on a reported value to produce an unbiased 
estimate ̂Y        i    . However, this approach is not practical 
because the unbiased property is valid only for 
a specific estimator. An idea for overcoming this 
bias issue is to use the survey weight in selecting a 
donor; that is, by choosing a donor   Y  *ik     =  Y  ij    with 
probability w    j   /∑  j∈sr        w  j    , where Y    ij   and   w  j   are the 
reported value and the weight for donor j from s    r   , 
respectively. This approach will result in an unbiased 
estimate (see Rao & Shao, 1992, for proof). Cox 
(1980) provided analytic proof that the survey 
weighted mean and proportion estimates computed 
based on the WSHD imputed data will be equal, in 
expectation, to the weighted mean and proportion 
estimated using respondent data only.

Under the WSHD, within an imputation class, s    r   
and   s  m    can be thought of as two separate files (one 
file of respondents and one of nonrespondents). 
Both have survey weights attached to each case. 
The WSHD imputation process uses weights to 
“match” donors to recipients within an imputation 
class. Cases in s    r    need to be sorted based on   Y  i   (see 
example of implementing this sorting in Figure A.4 
in the appendix), while cases in  s   m   can be sorted 
randomly. For a categorical variable  Y   i   , donors having 
the same level are listed together. Let  {  w  1  ,⋯ , w   r  }  
denote the corresponding set of survey weights of 
sorted respondents, and {   v  1  ,⋯ , v   m  }  denote the
corresponding set of survey weights of sorted 
nonrespondents. The nonrespondent’s weight   v  k   , 
k = 1, ⋯ , m , is rescaled to:

  s  k   = v  k    w_  +  
 v  +   ,  

where w    +   = ∑  j∈sr        w  j    and   v  +   = ∑  k∈sm        v  k    .

Then, the weights {   w  1  ,⋯ , w   r  }   are cumulated and 
partitioned into m   zones of length {   s  1  ,⋯ , s   m  }  . When 
missing values (recipients) and reported values 
(donors) are expanded sequentially by their weights, 
these can be viewed as two matched files that cover 
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the range from zero to the sum of the weights. 
The recipient range is essentially partitioned into  
m  zones, where each zone corresponds to the 
magnitude of a recipient’s adjusted weight   s  k   . For 
illustration purposes, Figure 1, copied directly from 
the SUDAAN Manual (Research Triangle Institute, 
2012), presents an example of three donor selection 
zones assuming three item nonrespondents/recipients 
with associated weights   s  1  ,  s  2  ,  s  3   , and five donors with 
associated weights   w  1  , ⋯ ,  w  5   .

The WSHD imputation algorithm finds a donor for 
each missing value from the potential donor(s) whose 
weights are in the corresponding zone on the donor 
range. When a zone has more than one donor, the 
recipient receives an imputed value randomly selected 
from the multiple donors. For example, based on cases 
in Figure 1, the donor for the recipient corresponding 
to weight   s  1    will be randomly selected from cases 
with corresponding weights   w  1  ,  w  2   ; the donor for the 
recipient corresponding to weight   s  2    will be randomly 
selected from cases with corresponding weights   w  2  ,  
w  3  ,  w  4   ; and the donor for the recipient corresponding 
to weight   s  3    will be randomly selected from cases with 
corresponding weights   w  4  ,  w  5   .

This process is done within each imputation class, 
so that the expected unbiased property applies for 
each class. Another advantage of this approach is that 
the number of times a donor is used will be limited. 
Sorting or “sequential” selection guarantees that a 
single record will not be used excessively as a donor. 
For this paper, the WSHD was implemented using the 
SUDAAN procedure “IMPUTE” (Research Triangle 
Institute, 2012).

Sequential Imputation
As mentioned in the introduction section, CTBHD 
imputes  Y  through a sequential imputation 
instead of modeling them jointly. Sequential 
imputation here means that the individual   
Y  i   ,  i = 1, ⋯ , k , will be imputed one-by-one. To 
preserve the interdependencies in  Y , when imputing a 
variable   Y  i   , the previously imputed variables in  Y  are 
included as covariates along with  X . The sequence of 
imputation is as follows:

Step 1: impute   Y  1    using candidate covariates  X, 

Step 2: impute   Y  2    using candidate covariates    (    Y  1  I  , X )    ,

Step 3: impute   Y  3    using candidate covariates    
(    Y  1  I  ,  Y  2  I  , X )    ,

⁝
Step  k : impute   Y  k    using candidate covariates    
(    Y  1  I  ,  Y  2  I  , ⋯ ,  Y  k-1  I  , X )    ,

where   Y  i  
I   denotes the imputed variable   Y  i    from  

Step  i ,  i = 1, ⋯ , k .

In these notations, we have not specified what rule 
determined the order of imputation sequence for    
Y  1  ,  Y  2  , ⋯ ,  Y  k   . The order of variables in this 
imputation sequence will impact the sample size used 
in the imputation process because the imputation 
process uses only those cases with observed data 
(no missing values) in both the variable being 
imputed   Y  i    and the covariates. To maximize the 
power in modeling, intuitively, the first variable 
being imputed is the variable with the least number 
of missing values. So, the order of   Y  1  ,  Y  2  , ⋯ ,  Y  k    
can be arranged based on their missing rates from 

Figure 1. Visualization of WSHD donor selection with three recipients and five donors

Source: Research Triangle Institute (2012).
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the smallest to the largest. However, some variables 
may have relationships in a particular order, such as 
variables with a skip pattern (a gate variable and its 
follow-up variable[s]). Alternatively, one can perform 
imputation by following the order of items in the 
questionnaire, where we first impute the gate variable 
before imputing the follow-up variables, because 
the response to the gate variable will determine the 
treatment of the follow-up variables (i.e., whether 
it needs to be imputed or logically assigned a value 
of “not applicable” or “skip”). Note, however, in a 
situation where the gate variable is a binary variable 
but missing, and the follow-up variable is nonmissing, 
the imputer must set a rule for whether this gate 
variable should be (logically) edited or (statistically) 
imputed. For the latter, however, the imputation 
under this sequential order would fail to include 
the most correlated variable, which is the follow-up 
variable, because the variable still has missing values 
and is not included as a covariate.

Sukasih et al. (2018) carried out an investigation, 
through a simulation study using the 2015 RECS 
public use file (PUF), into whether the sequence 
of imputing two variables with a skip pattern 
relationship (a gate and a follow-up variable) in 
the CTBHD imputation impacts the estimates of 
proportion computed in these two variables. The 
result was that the order of imputation does not 
matter when cycling is used, and cycling is needed 
when the missing rate is not trivial.

Cycling the Imputation
The imputation steps defined previously in the 
Sequential Imputation section describe the steps 
for a base cycle of imputation  Y  to produce    
Y    I  0    =  (    Y  1   I  0   ,  Y  2   I  0   , ⋯ ,  Y  k-1   I  0    ,  Y  k   I  0    )    , which is the imputed 
version of  Y , where the superscript   I  0    indicates the 
imputation at base cycle. CTBHD has a feature to 
repeat the imputation several times ( C  times), with 
the goal to produce more stable imputed values. The 
imputation of variable   Y  i    at the  c th cycle, however, 
is done using candidate covariates from all    (  X,  Y  -i  

 I  c*    )    , 
where    Y  -i  

 I  c*    =  (    Y  1   I  c   , ⋯ ,  Y  i-1   I  c    ,  Y  i+1   I  c-1   , ⋯ ,  Y  k   I  c-1    )     denotes 
the union of the  i - 1  variables imputed before   Y  i    in 
the cth cycle, and the  k- i  imputed variables imputed 
after   Y  i    in cycle  k - 1 . The sequence (steps) of 
imputation at cycle  c  is as follows:

Step 1: impute   Y  1    using candidate covariates    
(    Y  2   I  c-1   , ⋯ ,  Y  k   I  c-1   , X )    ,

Step 2: impute   Y  2    using candidate 
covariates    (    Y  1   I  c   ,  Y  3   I  c-1   , ⋯ ,  Y  k   I  c-1   , X )    ,

Step 3: impute   Y  3    using candidate covariates    
(    Y  1   I  c   ,  Y  2   I  c   ,  Y  4   I  c-1   , ⋯ ,  Y  k   I  c-1   , X )    ,

⁝
Step  k : impute   Y  k    using candidate covariates    
(    Y  1   I  c   , ⋯ ,  Y  k-1   I  c    , X )    .

The result from the Sukasih et al. (2018) simulation 
showed that cycling the imputation has a stabilizing 
influence on the imputed values. Cycling could also 
solve the issue, described earlier, that occurs when 
imputation order is based on the order of survey 
items in the questionnaire.

There is no clear-cut way to determine the optimal 
number of cycles in the imputation. Martin et al. 
(2017) carried out an empirical study using data 
from the 2015 RECS and imputed 31 variables of 
varying types using CTBHD up to 10 cycles. The 
results indicated that cycling consistently showed 
impact on the imputed values on these 31 variables 
in the first three to five cycles, but there were few or 
no changes in the imputed values after the fifth cycle. 
In addition, the result showed that cycling has most 
impact imputation of continuous variables and the 
least impact on imputation of binary variables. Note, 
however, that the Martin et al. (2017) empirical study 
was not a simulation study that replicated the missing 
data and imputation; instead, it was an empirical 
study based on one realization of data only.

Imputation of Compositional Variables
A set of variables is compositional if a certain 
relationship or edit rule exists for them and the rule 
has to be preserved in the imputed data. A simple 
example based on the number of household members 
is given in the Introduction section. Another example 
is a set of four binary 0/1 variables   { Y  1  ,  Y  2  ,  Y  3  ,  Y  4  }   
representing the type of foundation in a single-
family house, where   Y  1   =  type of foundation is a 
crawlspace,   Y  2   =  type of foundation is a basement,   
Y  3   =  type of foundation is a concrete slab, and   Y  4   =  
type of foundation is other, with the rule/constraint:   
Y  1  +  Y  2  +  Y  3  +  Y  4   > 0 . This rule essentially means 
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that a single-family house must have a foundation. In 
compositional variables, any combination of variables 
in the set can be missing, creating missingness patterns.

Note that in some missingness patterns, given the 
relationship in compositional variables, the missing 
variables can be deduced from the values of reported/
nonmissing variables, while in others imputation is 
required. For example, in the example of number 
of household member variables   { Y  1  ,  Y  2  ,  Y  3  ,  Y  4  }   and   
Y  1   =  Y  2  +  Y  3  +  Y  4   , for a missingness pattern that is 
missing   Y  3    only—for example,   {10, 2, . , 5}  , where 
“.” indicates a missing value—  Y  3    can be edited 
to   Y  3   = 3 . In another missingness pattern, say   
{. , 2, ., 5}  , however, the value of either   Y  3    or   Y  1    
must be imputed first and then the other variable 
can be deduced by addition or subtraction. In some 
missingness patterns, the constraint may not be based 
on the whole variables but instead may be applied 
only to a subset of variables (“derived constraint”). 
For example, under the relationship   Y  1   =  Y  2  +  Y  3  
+  Y  4   , for a case with missing values   {10, 2, . , .}  , 
the imputed values for   { Y  3  ,  Y  4  }   have to meet the 
constraint   Y  3  +  Y  4   = 8 .

When a set of compositional variables has 
missing values, imputing them one-by-one may 
produce an implausible outcome that violates 
the constraint/edit rule. In the example of house 
foundations   { Y  1  ,  Y  2  ,  Y  3  ,  Y  4  }  , there is a possibility 
that imputing them one-by-one may result in 
an outcome that is not allowed—for example,   
Y  1   = 0 ,   Y  2   = 0 ,   Y  3   = 0 ,   Y  4   = 0 , which is a single-
family house without a foundation. In addition, 
if the imputation approach does not take into 
account the reported values that exist among the 
nonmissing members of compositional variables, the 
imputation may also produce implausible outcomes 
that violate the constraint/edit rule. In the example 
of compositional variables of number of household 
members with data   {10, 2, . , .}  , the reported values   
{ Y  1   = 10,  Y  2   = 2}   have to be kept (which is the 
default in the hot deck vector imputation); the 
imputation cannot simply use any donor, because 
there is a derived constraint   Y  3   +  Y  4   = 8 . In this case, 
the hot deck approach needs to account for   { Y  1  ,  Y  2  }   
by defining imputation classes that include   { Y  1  ,  Y  2  }  .

In addition to constructing the imputation 
classes based on  X , when imputing compositional 
variables using hot deck, the imputation process 
includes partitioning the data based on missingness 
patterns, determining the sequence of imputation 
by missingness patterns, and identifying subsets 
of donors and cases excluded from imputation 
for each missingness pattern. Then imputation is 
carried out for each missingness pattern. When 
imputing variables from one missingness pattern, 
nonrespondents from the other missingness patterns 
within the same set of compositional variables are 
ineligible to be donors. The exception to this rule is 
that cases that have been imputed for a particular 
missingness pattern can be used as donors for the 
next missingness patterns in the sequence. An 
example of imputation of compositional variables is 
given in the appendix.

Incorporating Editing or Recoding On-the-Fly
Imputation of complex variables such as compositional 
variables requires the imputer to be able to perform 
editing on-the-fly. Unlike imputation of one variable, 
where the whole sample is split into nonrespondents 
and respondents, and all missing values are imputed 
in one step, when imputing compositional variables, 
the entire sample is split into subsets by missingness 
pattern, and within each missing pattern, cases 
are grouped into three groups (nonrespondents, 
respondents/donors, and excluded cases). The 
members of these three groups change from one 
step to another. Therefore, subsequent variables need 
to be derived or recoded to classify cases into these 
three groups before the next variable can undergo 
imputation. The CTBHD system has a feature in which 
the imputer can add extra SAS code to be executed 
after a step of imputation is done. These new edits in 
the data will be used for the next imputation step.

Another example of the use of on-the-fly editing 
or recoding occurs when the imputation runs into 
a situation where the program stops and produces 
an error message (e.g., due to a no-donor issue) 
and imputation classes need to be collapsed. Two 
solutions for this situation are to drop the variable 
that creates sparsity from the imputation class 
variables, or to collapse categories in the variable 
that creates sparsity. When collapsing categories, a 
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recoded variable could be created in the input data 
before imputation begins, or the imputer could 
collapse only the class that does not have a donor 
with an “adjacent” class. In the latter, this requires 
recoding a specific imputation class, so the collapsing 
is not done globally. This requires software that is 
capable of executing a cell-collapsing algorithm on-
the-fly to avoid unnecessarily dropping/collapsing too 
many cells, which could introduce bias.

As a final, simple example, the most needed on-the-
fly recoding occurs when a missing value in a gate/
parent variable is imputed with a zero or “no”; then 
the follow-up variable can be immediately edited 
to “not applicable” or “skip”, so the skip pattern 
relationship is correctly coded for the next imputation 
step (see an example of a setup for an on-the-fly edit 
in Figure A.4 in the appendix).

Simulation
For this paper, the CTBHD imputation is evaluated 
using an empirical simulation. The simulation used 
the 2020 RECS PUF that has 18,496 observations and 
is available for download from the US Department 
of Energy, Energy Information Agency (EIA) 
website (US Energy Information Administration, 
n.d.). The goals of this simulation are to evaluate the 
bias and root mean squared error of the estimates 
after imputing missing values using CTBHD and 
to demonstrate the performance of CTBHD. For 
comparison purposes, we ran imputation using 
other software that implements similar approaches 
to CTBHD. There are two freeware packages that 
implement similar imputation with regards to 
sequential/fully conditional specification and cycling 
approaches, namely, IVEware (Raghunathan et 
al., 2001) and MICE (van Buuren & Groothius-
Oudshoorn, 2011; van Buuren, 2018). However, we 
specifically carried out the simulation to evaluate how 
the software handles imputation for variables with a 
skip pattern relationship. Skip patterns are handled 
in CTBHD in a semi-manual way: the user explicitly 
specifies the skip pattern relationship through the 
use of forced class variables. Neither IVEware nor 
MICE can directly incorporate skip pattern features 
as carried out within the CTBHD without specific 
program development.

For the imputation of variables with skip patterns 
with software that implements a predictive 
parametric model for imputation, such as in IVEware 
and as an option in MICE, these constraints can be 
handled only if the model includes all interaction 
terms for all variables involved in the skip pattern. 
Because a skip pattern is specific to only a small 
subset of variables within  Y , it is not clear how a 
skip pattern relationship that appears only among 
a subset of variables is applied in parametric 
modeling. Although MICE provides an option to 
use the CART method, it is unclear whether a skip 
pattern can be handled directly within the “mice” 
imputation command unless the user explicitly 
specifies imputation classes representing the skip 
pattern and then runs imputation “mice” command/
model individually within these imputation classes. 
IVEware has an option to specify a skip pattern 
through the “RESTRICT” command; however, it is 
our understanding that the restriction creates only 
a binary class (two groups). It may not handle a 
restriction defined as cross-classification of categories 
in the variable being imputed and the covariate—for 
example, certain categories in the gate variable only 
go with certain categories in the follow-up variables. 
Nevertheless, we picked MICE for comparison with 
CTBHD because MICE provides a CART method 
for hot deck imputation classes.

The measure of empirical bias (EB) and root mean 
squared error (RMSE) will be calculated as follows:

• Empirical bias: 
   EB =   1 _ R   ∑ r=1  R    (   ̂  θ    r   - θ)   

• Root mean squared error: 

   RMSE =  √ 
_____________

    1 _ R   ∑ r=1  R     (   ̂  θ    r   - θ)    
2
     

where

 θ  = the true value for the outcome/variable of 
interest,

    ̂  θ    r    = estimate of  θ  based on the r-th replicate of 
simulated data, and

 R  = number of replicates.

The variables in RECS PUF include geographical and 
administration variables, survey variables (housing 
and household characteristics, energy bill and energy 
consumption related variables, etc.), and weights 
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including analysis weight and replicate weights for 
variance estimation. For this simulation, we focused 
on a simple explicit skip pattern relationship among 
the following energy used (categorical) outcome 
variables HEATHOME, EQUIPM, and FUELHEAT:

• Space heating used (HEATHOME):

0 = No, 1 = Yes

• Main space heating equipment type (EQUIPM):

-2 = Not applicable (recoded to 0 for simulation)

2 = Steam or hot water system with radiators or 
pipes

3 = Central furnace

4 = Central heat pump

5 = Built-in electric units installed in walls, ceilings, 
baseboards, or floors

7 = Built-in room heater burning gas or oil

8 = Wood or pellet stove

10 = Portable electric heaters

13 = Ductless heat pump, also known as a “mini-
split”

99 = Other (recoded to 14 for simulation)

• Main space heating fuel (FUELHEAT):

-2 = Not applicable (recoded to 0 for simulation)

1 = Natural gas from underground pipes

2 = Propane (bottled gas)

3 = Fuel oil

5 = Electricity

7 = Wood or pellets

99 = Other (recoded to 8 for simulation)

The following two covariates were included in the 
imputation simulation. The covariate DIVISION is a 
geographical variable representing Census division 
with values:

1 = New England

2 = Middle Atlantic

3 = East North Central

4 = West North Central

5 = Mountain North

6 = Pacific

7 = Mountain South

8 = West South Central

9 = East South Central

10 = South Atlantic

The covariate TYPEHUQ is a variable representing 
type of housing units as follows:

1 = Mobile home

2 = Single-family house detached from any other 
house

3 = Single-family house attached to one or 
more other houses (e.g., duplex, row house, or 
townhome)

4 = Apartment in a building with 2 to 4 units

5 = Apartment in a building with 5 or more units

True Value and Simulated Missingness
Missing values in the 2020 RECS PUF data have 
been imputed. In this report, we treat imputed 
data as if they were reported values (the “truth” for 
our simulation). The estimates of interest for our 
simulation are based on the table cells of Table HC6.1 
(US Energy Information Agency, 2022), where the 
estimates are produced using the first version of 2020 
microdata file released in July 2022 (see Table 1). 
These cells involve a skip pattern based on “uses space 
heating equipment” (variable HEATHOME), “natural 
gas” (variable FUELHEAT), and “central warm-
air furnace” (variable EQUIPM), and a classifier 
“housing unit type” (variable TYPEHUQ).

The numbers in Table 1 are considered the true values 
for this simulation. From these data, we generated 
missing values. The simulation will demonstrate 
a nonmonotone MAR mechanism and a simple 
explicit skip pattern between HEATHOME as a gate/
parent variable and child variables EQUIPM and 
FUELHEAT. That is, if HEATHOME = 0 then both 
EQUIPM and FUELHEAT are not applicable/skipped 
(EQUIPM = 0 and FUELHEAT = 0). In other words, 
only when HEATHOME = 1 then both EQUIPM and 
FUELHEAT are greater than 0.
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We generated missing values assuming MAR as 
follows:

1. Missing HEATHOME depends on values of 
DIVISION, EQUIPM, FUELHEAT;

2. Missing EQUIPM depends on values of 
DIVISION, HEATHOME, FUELHEAT;

3. Missing FUELHEAT depends on values of 
DIVISION, HEATHOME, EQUIPM;

4. Joint missing (EQUIPM, FUELHEAT) depends on 
values of DIVISION, TYPEHUQ, HEATHOME.

For imputation modeling, we included two more 
variables with missing values (BEDROOMS and 
MONEYPY) that correlate with the variables of 
interest. These variables are included as potential 
predictors once their missing values are imputed.

BEDROOMS: Number of bedrooms (top-coded): 
0–6

MONEYPY: Annual gross household income for 
the past year

1 = Less than $5,000

2 = $5,000–$7,499

3 = $7,500–$9,999

4 = $10,000–$12,499

5 = $12,500–$14,999

6 = $15,000–$19,999

7 = $20,000–$24,999

8 = $25,000–$29,999

9 = $30,000–$34,999

10 = $35,000–$39,999

11 = $40,000–$49,999

12 = $50,000–$59,999

13 = $60,000–$74,999

14 = $75,000–$99,999

15 = $100,000–$149,999

16 = $150,000 or more

It is common that in a simulation, values or missing 
values of a variable are generated using a specified 
model for that particular variable, and this is done 
one variable at a time. However, instead of generating 
missing values one variable at a time, we implemented 
a multivariate amputation procedure “amputation” 
provided in R package MICE (Schouten, Lugtig, & 
Vink, 2018). The idea of this procedure is to control the 
joint missing rates and ensure that missingness follows 
the MAR assumption. Table 2 shows the summary 
of percentage of missing across 1,000 simulated data 
for each missing pattern shown in the first column of 
Table 2. The rates presented here do not reflect the real 
missing rates in the real RECS survey data.

We generated 1,000 replicates (R = 1,000) of 
simulated data with missing values in the three 
energy use variables HEATHOME, EQUIPM, and 
FUELHEAT.

Given the true values and simulated missing values 
generated under this procedure, based on the 
1,000 simulated missing datasets, Table 3 shows 
the empirical bias of the estimates if someone used 
the data with missing values to calculate totals and 

Table 1. Space heating in US homes, by housing unit type, 2020

Number of housing units (million)

Total USa Housing unit type

Single-
family 

detached

Single-
family 

attached

Apartments 
(2–4 unit 
building)

Apartments (5 
or more unit 

building)

Mobile 
home

Space heating equipment

Uses space heating equipment 117.43 74.67 6.98 8.7 20.47 6.6

Main heating fuel and equipment

Natural gas 56.25 39.71 4.08 4.02 7.00 1.44

   Central warm-air furnace 47.37 35.9 3.42 2.46 4.26 1.34
a Total US includes all primary occupied housing units in the 50 states and the District of Columbia. Vacant housing units, seasonal units, second homes, military 

houses, and group quarters are excluded.

Source: Adapted from US Energy Information Agency (2022). Estimates are produced using the first version of 2020 microdata file released in July 2022.
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proportions (complete case analysis in which the 
cases missing values were dropped). Because an 
estimate of total will have a negative bias if missing 
values are ignored (not imputed), in addition to 
calculating the estimate of total, Table 3 also shows the 
estimate of proportion of housing units that use natural 
gas and the proportion of housing units that use central 
warm-air furnace as their gas heating equipment, 
where the denominator for these proportions is the 
total number of housing units that use space heating 
equipment (HEATHOME = 1). Complete case analysis 
(without imputation) will incur nontrivial bias in both 
estimates of count and proportion.

Imputation and Evaluation
Under the CTBHD imputation we implemented 
the following imputation classes with values of 
mincut and minsize for the tree package as shown 
in Table 4. The suffix “_I” indicates a version of the 
variable that has been imputed in the previous step. 
For example, HEATHOME_I used as one of the 
imputation class variables in Step 4 no longer has 
missing values because those have been imputed in 

Step 3. The imputation variable “NODE_X” indicates 
the nodes resulted from CART approach produced 
in a particular step “X.” These classes/nodes given by 
“NODE_X” were data driven, whereas extra variables 
specified in addition to the “NODE_X” were the 
forced imputation classes crossed with “NODE_X” 
classes. This CTBHD imputation was run for three 
cycles (base, and cycles 1 and 2).

For comparison purposes, we also ran the imputation 
for the same simulated missing data using R package 
MICE under two imputation options: predictive 
mean matching (PMM) and CART. The R codes for 
MICE are shown in Figure 2.

The codes in Figure 2 show R codes for MICE 
imputation based on a PMM approach. The codes 
for MICE that are based on CART can simply replace 
the “pmm” with “cart” in the parameter for method 
(i.e., meth=“cart”). By reviewing the predictors in the 
MICE models, we confirmed that similar variables 
used for imputation classes in CTBHD, as  
Table 4 shows, were also chosen as predictors 
for MICE models. Also note that in MICE, after 

Table 2. Summary of percentage of missing across 1,000 simulated data for each missing pattern/missing variables

Missing pattern/variable(s) Minimum Maximum Mean

FUELHEAT only 6.79 8.01 7.44

EQUIPM only 6.43 7.66 7.10

FUELHEAT and EQUIPM 6.46 7.70 7.13

HEATHOME, FUELHEAT, and EQUIPM 6.39 7.66 7.00

Table 3. Empirical bias of estimates of number of housing units (in millions) and proportion of housing units (in 
percentage) by housing unit type based on simulated data with missing values

Total US Housing unit type

Single-
family 

detached

Single-
family 

attached

Apartments 
(2–4 unit 
building)

Apartments (5 
or more unit 

building)

Mobile 
home

Number of housing units (million)

Space heating equipment

Uses space heating equipment -8.21 -5.29 -0.49 -0.60 -1.41 -0.42

Main heating fuel and equipment

Natural gas -13.10 -9.48 -0.95 -0.90 -1.43 -0.34

   Central warm-air furnace -15.10 -11.61 -1.07 -0.75 -1.23 -0.43

Proportion of housing units (percentage)

Natural gas -8.39 -9.62 -10.23 -7.69 -4.97 -3.97

   Central warm-air furnace -10.79 -13.07 -12.86 -7.18 -4.92 -5.56
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imputation, we edited the imputed values of 
FUELHEAT and EQUIPM based on the outcome 
of HEATHOME; that is, if HEATHOME = 0 then 
FUELHEAT = 0 and EQUIPM = 0. This edit, 
however, does not need to be done in CTBHD 
because of the explicit use of HEATHOME as one of 
the imputation class variables.

Table 5 shows the result of the simulation in  
terms of EB and RMSE from imputation under  
the three approaches.

In general, when evaluating CTBHD performance 
by itself, the bias and precision of the estimates of 
totals are low. Comparing the MICE under PMM 
and CART to CTBHD, Table 5 demonstrates the 
performance of the three imputation approaches 
dealing with a multilevel conditional relationship 

(skip pattern) across variables. When imputing 
the root gate variable (i.e., HEATHOME), all three 
imputation approaches performed well with regard 
to bias and precision, and they are also relatively 
similar on the values of these measures. Note, however, 
upon checking the compliance on skip pattern rules 
between HEATHOME and FUELHEAT, and between 
HEATHOME and EQUIPM, the imputed values 
based on the PMM approach had some inconsistencies 
in which a few cases violated the HEATHOME-
FUELHEAT edit rule and a handful of cases violated 
the HEATHOME-EQUIPM edit rule. This is because 
the PMM approach matched the donor and recipient 
based on covariates only implicitly through the model 
(which is essentially an imputation process based on a 
single imputation class), whereas the approaches based 
on CART in CTBHD and MICE CART used explicit 
imputation classes.

Table 4. Setup of the CTBHD imputation and the CART parameter values

Step Imputed variable Imputation class mincut minsize

1 BEDROOMS NODE_1 TYPEHUQ 50 100

2 INCOME NODE_2 TYPEHUQ BEDROOMS 50 100

3 HEATHOME NODE_3 DIVISION 50 100

4 EQUIPM NODE_4 HEATHOME_I 50 100

5 FUELHEAT NODE_5 HEATHOME_I EQUIPM_I 50 100

Notes: CTBHD = cyclical tree-based hot deck; CART = classification and regression tree.

Figure 2. R codes for MICE imputation
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When it comes to imputing follow-up variables 
(FUELHEAT and EQUIPM), in general CTBHD 
performed better than the other two approaches with 
regard to bias and precision for all three variables 
and subdomains by housing unit type. MICE 
underestimated counts of single-family detached 
houses that used gas with central warm-air furnace 
by more than 1 million units. Its RMSE is also larger 
than that of CTBHD.

Conclusion, Limitations, and Discussion
When performing imputation of missing data 
in large, complex survey data, the imputer must 
consider several data factors including the volume 
of the data (number of variables and sample size), 

type of variables, missing mechanism, and structure 
of relationship among variables. In addition, the 
imputer has to choose the correct methodology and 
its corresponding computational resources. For this, 
CTBHD can handle imputation of missing values 
for many different kinds of variables and complex 
relationships across variables.

Either commercial/licensed software or freeware is 
available that is well developed based on general or 
specific method and purpose. With this software 
availability, the user/imputer must pick the software 
based on his or her need. When the software needed 
is not immediately available, the imputer has to 
develop his or her own. CTBHD is a hot deck-based 
imputation approach developed based on the need 

Table 5. EB and RMSE (in brackets) of estimate number of housing units (in millions) by housing unit type based on 
simulated imputed data

Number of housing units (million)

Total US Housing unit type

Single-family 
detached

Single-family 
attached

Apartments 
(2- to 4-unit 

building)

Apartments 
(5-unit or 

more building)

Mobile 
home

Uses space heating equipment

CTBHD -0.05 0.08 0.03 -0.10 0.08 -0.14

(0.08) (0.09) (0.03) (0.11) (0.10) (0.14)

MICE PMM -0.05 -0.02 0.00 0.00 -0.02 0.00

(0.27) (0.22) (0.03) (0.04) (0.12) (0.02)

MICE CART -0.06 -0.12 0.00 0.01 0.06 -0.01

(0.09) (0.13) (0.02) (0.03) (0.08) (0.02)

Main heating fuel: Natural gas

CTBHD 0.02 -0.22 0.01 0.19 0.13 -0.09

(0.32) (0.35) (0.07) (0.23) (0.19) (0.11)

MICE PMM -0.48 -0.88 -0.15 -0.01 0.33 0.23

(0.93) (1.05) (0.17) (0.12) (0.38) (0.25)

MICE CART -0.23 -0.82 -0.13 0.04 0.43 0.25

(0.38) (0.86) (0.14) (0.10) (0.45) (0.26)

Equipment: Central warm-air furnace

CTBHD -0.11 -0.58 0.02 0.25 0.32 -0.11

(0.35) (0.64) (0.08) (0.27) (0.35) (0.13)

MICE PMM -1.00 -1.72 -0.16 0.17 0.55 0.16

(1.47) (1.88) (0.19) (0.21) (0.59) (0.18)

MICE CART -0.43 -1.37 -0.13 0.21 0.66 0.19

(0.54) (1.40) (0.14) (0.23) (0.68) (0.21)

Notes: CTBHD = cyclical tree-based hot deck; CART = classification and regression tree; EB = empirical bias; MICE = multivariate imputation by chained equations; PMM 
= predictive mean matching; RMSE = root mean squared error.
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to impute missing values in large-scale, complex 
survey data with several types of variables that may 
have complex relationships, and where the imputer 
can have flexibility in defining imputation classes. 
CTBHD can also use weights in the imputation and 
cycle the imputation process.

We acknowledge that there are several algorithms/
methods available for imputation class construction 
using classification and regression trees. CTBHD 
uses the CART algorithm that examines all possible 
binary splits of the data (exhaustive search method) 
and that is available through an R tree package. 
Variable selection in CART tends to choose variables 
that have more splits (see, e.g., Loh and Shih, 1997). 
To reduce potential variable selection bias in the 
CART algorithm, Loh and Shih (1997) suggest the 
QUEST (for Quick, Unbiased, Efficient, Statistical 
Tree) algorithm. When comparing QUEST and 
CART using two examples of data (simulated data 
and real data), Loh and Shih showed that the error 
rates from QUEST based on the simulated data are 
generally smaller than those from CART; however, 
the differences were small. Lin and Fan (2019) also 
evaluated CART, CHAID (for Chi-squared Automatic 
Interaction Detection), and QUEST and compared 
the accuracy of the three methods. They showed some 
different results in which the accuracy of CHAID 
was the highest, followed closely by CART, and the 
accuracy from QUEST was the lowest. Although 
they concluded that CHAID provided better results 
for their data, in our opinion, the difference was 
marginal, and the CART method is equivalent.

The work described in this paper evaluates 
performance of CTBHD through a large-replication 
empirical simulation for a subset of variables with 
a specific skip pattern relationship. It would be 
interesting, however, to see how CTBHD performs 
for other types of variables and their relationships—
for example, compositional variables—starting from 
a simple constraint (e.g., the example of a single-
family house foundation), a complicated deduction/
subtraction/addition constraint (e.g., the example 
of the number of household members), or more 
complicated pairs of allowable outcomes (e.g., the edit 
rule between type of heating fuel and equipment; not 
discussed in this paper).

In hot deck imputation implementation, the imputer 
may often face a situation in which there is no donor 
available within an imputation class. Good software 
should handle this issue with a solution that could be 
automated or at least require minimum interruption 
in the whole imputation process and that is statistically 
valid. In CTBHD, this situation is handled by choosing 
one of several approaches that include increasing the 
sample size of the tree’s node, collapsing the particular 
node without a donor, or recoding the categories in 
the variable that creates the empty-donor class. In the 
current version of CTBHD, however, the user still 
needs to handle this solution manually.

Our simulation used MICE, a popular “canned” 
software, as a comparison to demonstrate how 
CTBHD and MICE handled item nonresponses in 
complex survey data. However, we realize that due 
to the limited capability of MICE programming, 
the comparison with CTBHD is not really apples 
to apples. For example, although both CTBHD and 
MICE CART use a CART approach for constructing 
imputation classes, the outcome of final imputation 
classes for each simulation replication may not be 
the same. CTBHD is able to include prespecified 
forced class variables for individual imputed variables, 
allowing the forced class variables to be different/
customized across imputed variables. In MICE, the 
same prespecified forced class variables are used for all 
imputed variables. This reflects one of the limitations in 
using canned software. When there are few variables to 
be imputed, no missing patterns, and the relationships 
between variables to be imputed are simple, canned 
software may satisfy the user’s imputation needs. 
Many software packages are available for hot deck 
imputation, but again the user needs to know how the 
software implements the method, whether the software 
meets the imputer’s need, and whether a modification 
can be made to develop an imputation process 
(imputation class construction, donor selection, 
sorting variables, etc.) as needed.
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Appendix

 CTBHD Interface 
CTBHD is a system that consists of the following:

• the main user interface in the form of an Excel 
.xlsm file (a type of spreadsheet file that supports 
macros) that consists of several sheets, and

• SAS codes that include templates and modules for 
data management and reporting (based on SAS 
program), imputation class construction (based 
on CART method implemented using the tree 
package in R), and donor selection (based on the 
WSHD in SUDAAN).

The user of CTBHD only needs to see the interface 
tables in an Excel .xlsm file and enter all input 
information required by program codes in these Excel 
tables. When running the imputation, all of the SAS, 
R, and SUDAAN program codes/templates/modules 
work in the background.

The .xlsm interface for CTBHD consists of the 
following Excel sheets:

1. The “Inputs” sheet (see Figure A.1): In the first 
sheet in the workbook, the user specifies the 
location of input and output data files, location 
of program codes (modules and templates), and 
variable and file names.

2. The “Run” sheet (see Figure A.2): This is the 
interface sheet for running several modules 
including a data setup module, the base 
imputation module, the cycling imputation 
module, and final data cleaning module.

3. The “Variables” sheet (see Figure A.3): This 
sheet contains a list of all variables involved in 
the imputation, either as imputed variables or as 
predictors.

4. The “Base” imputation sheet (see Figure A.4): 
In this sheet, the user defines the sequence 
of imputation, parameters for constructing 
imputation classes including minimum class size, 
forced variables for imputation classes, sorting 
variables within imputation class, the place for 
writing SAS codes for variable recoding, and values 
to be excluded from the imputation process.

5. The “Cycle” imputation sheet(s) (see Figure A.5): 
There is one sheet for each cycle (i.e., if the user 
decides to run two cycles of imputation, then the 
user needs to create “Cycle1” and “Cycle2” sheets). 
The cycle sheets are set up similarly to the base 
imputation sheet.

Example of Imputation of Compositional Variables
Let {   Y  1  ,⋯ , Y   k  }   be a set of compositional variables 
linked by a set of constraints ℂ  . Let the indicator   
δi      denote missingness in variable   Y  i   , that is, δ  i     = 1
if variable   Y  i   is missing and δ  i     = 0 if variable Y    i   is
nonmissing. Let m   denote the number of missing 
patterns in the data based on a set of compositional 
variables {   Y  1  ,⋯ , Y   k  }  . The maximum number of all 
possible missing patterns is  ∑  kj=0      kC  k

[ ]
j    , where  C  j    = k !/  

  j !( k - j)  !      denotes the notation for k-combination-j; 
so 0 ≤ m ≤ ∑  kj=0      kC  j .  For each missing pattern, let D 
denote the number of variables with missing values 
in the compositional variables {   Y  1  ,⋯ , Y   k  }  ; i.e., D =  
∑ ki=1      δi      . Note that D  = 0  represents the subset of 
data that do not have missing values in {   Y  1  ,⋯ , Y   k  }  . 
As an example, Table A.1 shows all possible missing 
patterns when k  = 4 . Note that, depending on the 
data, however, in practice not all missing patterns 
may be observed.

Imputation of missing values in compositional 
variables is done for one type of missing pattern at 
a time, where the imputation sequence/steps across 
missing patterns are described subsequently. Prior 
to carrying out the algorithm described below, the 
imputer needs to partition the data based on missing 
patterns. Also, similar to the sequential imputation 
described in the Sequential Imputation section, after 
each imputation step, cases with imputed missing 
values can be used as potential donors (their value of  
D  becomes 0).

The algorithm consists of two iterative steps: 
(1) editing (logical or deductive imputation), and 
(2) imputation:

1. Editing. For missing values that can be edited 
through deduction based on constraint ℂ  , edit the 
missing values, so these cases are no longer treated 
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as nonrespondents for imputation (their value of  
D  becomes 0).

2. Imputation. For each missing pattern (any 
imputation step below), the imputer needs to 
define the subsets of data into nonrespondents, 

respondents/donors, and ineligible cases that are 
not used in the process (i.e., cases with missing 
values from different missing patterns).

a. The first step is to impute a subset of data/
missing pattern(s) where the imputation 

Figure A.1. Interface table for defining location of files, name and location of the interface/.xlsm file, and name of ID 
and weight variables

Figure A.2. Interface table for imputation execution
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does not have a constraint in the process. 
For example, under a deduction/summation 
constraint like   Y  1   =  Y  2  +  Y  3  +  Y  4   , if in addition 
to any missing in   { Y  2  ,  Y  3  ,  Y  4  }   the control 
total   Y  1    is also missing, then the imputation 
can be done to simply impute the whole 

vector   { Y  2  ,  Y  3  ,  Y  4  }  , and does not have specific 
treatment in the process such that there is no 
extra imputation class based on compositional 
variables. In this example, for each imputed 
case, after imputing missing values in   
{ Y  2  ,  Y  3  ,  Y  4  }  , then edit   Y  1   . After imputation at 

Figure A.3. Interface table for listing all variables to be imputed and covariates, and to define the type of variable, 
whether imputed or covariate, whether used as predictor or not

Figure A.4. Interface table for imputation sequence/step, list of data values excluded, imputation classes, sorting 
variables, parameters for tree, and SAS codes for recoding/editing on-the-fly
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this step, perform editing as in (1) whenever 
applicable and make the cases already imputed 
in this step available as potential donors for the 
next imputation step.

b. For the remaining missing patterns where  
0 < D < k , the order of the missing pattern to 

be imputed is based on the order of  D  from the 
smallest to the largest. Imputation in this step 
needs to use class variables from   { Y  1  , ⋯ ,  Y  k  }   
that do not have missing values. For example, 
if   { Y  1  ,  Y  2  }   are nonmissing and   { Y  3  ,  Y  4  }   are 
missing, the imputation class should include   

Figure A.5. Interface table for cycling imputation (example of cycle 1)

Table A.1. All possible missing patterns based on four compositional variables

Data subset/ missing 
pattern

  𝜹  1     𝜹  2     𝜹  3     𝜹  4    D 

1 0 0 0 0 0

2 1 0 0 0 1

3 0 1 0 0 1

4 0 0 1 0 1

5 0 0 0 1 1

6 1 1 0 0 2

7 1 0 1 0 2

8 1 0 0 1 2

9 0 1 1 0 2

10 0 1 0 1 2

11 0 0 1 1 2

12 1 1 1 0 3

13 1 1 0 1 3

14 1 0 1 1 3

15 0 1 1 1 3

16 1 1 1 1 4
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{ Y  1  ,  Y  2  }  . This is similar to imputing the 
missing values based on conditional 
distribution   p   (  Y  3  ,  Y  4   |    X, Y  1  ,  Y  2   )    .

The following example of a set of compositional 
variables is used to illustrate the algorithm above:   
{ Y  1  ,  Y  2  ,  Y  3  ,  Y  4  }   with constraint   Y  1   =  Y  2  +  Y  3  +  Y  4   .

The data partitions (missing patterns that exist in the 
data) in Table A.2 are for illustration purposes only.

The following imputation steps are an example of 
imputation order across missing patterns. When 
imputing missing values within a subset of data 
that corresponds to a particular missing pattern, 
the imputer needs to define three groups of cases: 
nonrespondents (cases from the missing pattern on 
hand), respondents/donors (cases from the missing 
pattern with  D = 0 ), and cases excluded because 
they are ineligible (not as nonrespondents or donors), 
which are cases from other missing patterns.

Step 1: Note that in missing patterns 2, 3, 4, 7, and 
9 in Table A.2, the control total   Y  1   , which is the 
variable that sets up the constraint/rule, is missing. 
Because of this, then, imputation can be carried 
out for   { Y  2  ,  Y  3  ,  Y  4  }   only, which is a regular whole 
vector imputation (in which the vector is defined as   
{ Y  2  ,  Y  3  ,  Y  4  }  ) and no constraint. Then missing   Y  1    
can be edited afterward. In imputing missing values 
in   { Y  2  ,  Y  3  ,  Y  4  }  , nonrespondents are defined as 
cases with any missing values in   { Y  2  ,  Y  3  ,  Y  4  }   from 
missing patterns 2, 3, 4, 7, and 9; the donors are cases 
without missing values (from missing pattern 0); and 
the cases that need to be excluded in the imputation 
process are those from missing patterns 5, 6, and 8.

Step 2: Imputing cases with missing values in 
missing pattern 5. The nonrespondents are cases 
with missing values in   { Y  3  ,  Y  4  }   from missing 
pattern 5; the donors are cases from missing 
patterns 0, 2, 3, 4, 7, and 9 (their missing values 
have been imputed in Step 1); and cases excluded 
are from missing patterns 6 and 8. In this 
imputation step, variables   { Y  1  ,  Y  2  }   should be added 
as variables for constructing imputation classes.

Step 3: Imputing cases with missing values in 
missing pattern 6. The nonrespondents are cases 
with missing values in   { Y  2  ,  Y  4  }   from missing 
pattern 6; the donors are cases from missing 
patterns 0, 2, 3, 4, 5, 7, and 9 (their missing values 
have been imputed in Steps 1 and 2); and cases 
excluded are from missing pattern 8. In this 
imputation, variables   { Y  1  ,  Y  3  }   should be added as 
variables for constructing imputation classes.

Step 4: The last step is imputing cases with missing 
values in missing pattern 8. The nonrespondents 
are cases with missing values in   { Y  2  ,  Y  3  ,  Y  4  }   from 
missing pattern 8; the donors are cases from 
missing patterns 0, 2, 3, 4, 5, 6, 7, and 9 (their 
missing values have been imputed in Steps 1, 2, 
and 3). There is no need to exclude cases from 
the imputation process because at this step all 
missing values from other missing patterns have 
been imputed and can be used as donors. In this 
imputation, variables   { Y  1  }   should be added as 
variables for constructing imputation classes.

Table A.2. Example of missing patterns exist in data based on four compositional variables

Data subset/ missing pattern   𝜹  1     𝜹  2     𝜹  3     𝜹  4    D 

1 0 0 0 0 0

2 1 1 0 0 2

3 1 0 1 0 2

4 1 0 0 1 2

5 0 0 1 1 2

6 0 1 0 1 2

7 1 1 0 1 3

8 0 1 1 1 3

9 1 1 1 1 4
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