
 Coupling Models by Routing
Communication Through a
Database
Eric Solano, Robert J. Morris, and Georgiy V. Bobashev

September 2013

RTI Press

Methods RepoRt

About the Authors
Eric Solano, PhD, who has been
with RTI International since 1999, is a
data scientist and model analyst with
extensive experience in mathematical
models, statistical methods, data
mining, data-driven projects, database
technologies, software engineering,
software development, geographic
information systems, decision support
tools, operations research, and
optimization.

Robert J. Morris, BS, who has been
with RTI International since 2000, is
a programmer and statistician. He
performs software development
and statistical data analysis as well as
programming for quality control, data
editing, and data management.

Georgiy V. Bobashev, PhD, who has
been at RTI International since 1998,
is a senior research statistician and an
expert in biostatistics methodology
and mathematical modeling. His
current research interests cover two
major areas: substance-use studies
and predictive modeling. In the
substance-use research area, he
focuses on personalized treatments
and a systems approach to addictions.
In predictive modeling, he focuses on
methods development in forecasting
health outcomes.

This publication is part of the
RTI Methods Report series.

RTI International
3040 East Cornwallis Road
PO Box 12194
Research Triangle Park, NC
27709-2194 USA

Tel: +1.919.541.6000
Fax: +1.919.541.5985
E-mail: rtipress@rti.org
Web site: www.rti.org

RTI Press publication MR-0026-1309

This PDF document was made available from www.rti.org as a public service
of RTI International. More information about RTI Press can be found at
http://www.rti.org/rtipress.

RTI International is an independent, nonprofit research organization dedicated
to improving the human condition by turning knowledge into practice. The
RTI Press mission is to disseminate information about RTI research, analytic
tools, and technical expertise to a national and international audience. RTI Press
publications are peer-reviewed by at least two independent substantive experts and
one or more Press editors.

Suggested Citation

Solano, E., Morris, R. J., & Bobashev, G. V. (2013). Coupling models by routing
communication through a database (RTI Press publication No. MR-0026-1309).
Research Triangle Park, NC: RTI Press. Retrieved from http://www.rti.org/rtipress

©2013 Research Triangle Institute. RTI International is a trade name of Research Triangle
Institute.

All rights reserved. This report is protected by copyright. Credit must be provided to the author
and source of the document when the content is quoted. Neither the document nor partial or
entire reproductions may be sold without prior written permission from the publisher.

doi: 10.3768/rtipress.2013.mr.0026.1309 www.rti.org/rtipress

www.rti.org/rtipress
http://www.rti.org/rtipress
http://www.rti.org/rtipress
http:www.rti.org
http://dx.doi.org/10.3768/rtipress.2013.mr.0026.1309

Coupling Models by Routing
Communication Through a Database
Eric Solano, Robert J. Morris, and Georgiy V. Bobashev

Abstract
As the number of available large and many-faceted computer models continues
to increase, simulating complex systems by coupling existing models of smaller
subsystems becomes more attractive because of advantages such as leveraging
existing programming. Advances in computational technologies also contribute
to the increased feasibility of coupled systems. Although coupled systems may
be used to study new problems that their constituent models could not address,
the coupling process brings its own challenges. The modeler may face the task of
coupling models from a heterogeneous environment of development platforms,
programming languages, and model assumptions. Moreover, the modeler may
wish to allow constituent models to be replaced or upgraded without significant
difficulty. We discuss a model coupling approach that attempts to address these
issues. In our approach, the models run as separate executable processes and
store data in a database for later retrieval by other models. While the approach
does not prescribe any particular database design, we do suggest elements that
are likely to appear. We describe a proof-of-concept application of the approach
and evaluate how well our approach meets its goals.

Contents
Introduction 2

Methods 4

General Approach 4

proof of Concept 5

database 6

Inserters and extractors 10

Models 11

Results 13

scenarios 13

Areas for Improvement 14

Discussion 15

References 18

Acknowledgments Inside back cover

 2 Solano et al., 2013 RTI Press

Introduction
In the past few decades, multiscale modeling
(i.e., where separate models examine the same
process but at different scales or resolutions) and
multicomponent modeling have become increasingly
important and widely used in a number of research
areas. Examples of multiscale or multicomponent
models can be found in biology, hydrology,
climatology, warfare simulations, and many other
disciplines (Eddy & Schlessinger, 2003; Swain
& Wexler, 1996; Warner et al., 2008; Zacharias
et al., 2006). As noted, multiscale models often
include subsystems representing different scales,
be they temporal, spatial, or biological. Similarly,
multicomponent models often include subsystems
representing different components, such as cities,
bodily organs, or climate systems. In cases where
standalone models of these subsystems already exist,
modelers may wish to link the existing subsystem
models together instead of implementing their own
versions. This linking process is known as model
coupling.

Our work focuses on coupled systems in
epidemiology, particularly coupled systems that
analyze epidemic phenomena at both global and
local scales. Coupling a global component with
numerous local components is important for at least
two reasons. The first is that even though local events,
such as the emergence of a new strain of influenza
and ways to contain the outbreak, are often of great
interest to public health decision makers, local
decisions could depend on the global features of the
epidemic, including travel from other regions and
supply and delivery of pharmaceutical preparations
such as vaccines or antivirals. The second reason is
that global disease spread, in turn, depends on the
interaction of numerous local events. A pandemic
involving millions of people worldwide could be
driven by a small number of infected individuals
traveling around the world and unknowingly
spreading the disease locally.

Epidemiology modelers have many options when
choosing an abstraction for disease transmission.
These options include patch models, distance models,
multigroup models, and network models (Riley,
2007). Another reason for coupling models, then,

is to combine abstractions to exploit the advantages
offered by each. For example, patch models and
other equation-based models (EBMs) are attractive
because they are computationally efficient and may
be parameterized simply. Network models and
other agent-based models (ABMs) are attractive
because they can capture individual interactions and
represent adaptive behavior. Coupling an ABM for
local dynamics with an EBM for global dynamics
allows the modeler to represent disease transmission
at both local and global scales without either the
heavy computational burden of an ABM or the loss
of individual variation that is critical during the early
stages of an epidemic, which is expected from an
EBM (Bobashev, Goedecke, Yu, & Epstein, 2007).

The design of such a coupled system needs to be
flexible to accommodate scientific questions asked
at different scales. For example, if the questions were
to concern disease dynamics at a global scale, such
as disease spread in a large region, the details of
local spread could be suppressed, and a simplified
EBM could be used instead of a detailed ABM for all
critical locations. Similarly, as the questions switched
from one local area to another, the details of spread
in other local areas could be suppressed. At the same
time, to accommodate collaboration among scientific
communities, the design should enable the coupling
of models developed by different research groups
using a computational platform convenient to each
particular group.

Bulatewicz (2006) reviewed existing approaches to
coupling multiple models, grouping them into four
categories: monolithic, scheduled, component, and
communication. The monolithic approach involves
splicing the pieces together into one big model (Guo
& Langevin, 2002; Jobson & Harbaugh, 1999; Swain
& Wexler, 1996). Such an approach is attractive
because it creates a single module. However, it tends
to require significant reprogramming that must be
repeated whenever a constituent model is added or
replaced. In addition, it requires all the models to be
implemented in the same programming language.

In the scheduled approach, models are executed as
independent programs and do not communicate
with each other while they are executing. Instead,
each model produces output data sets at the end of

 3 Coupling Models

its execution. These output data sets are used as the
initial data sets in other models. This approach is not
suitable when models need to exchange data while
they are executing.

Like the monolithic approach, the component
approach combines individual models into a single
executable model, but it improves on the monolithic
approach by encapsulating each model into its own
distinct component. The components communicate
with each other through a well-defined interface,
typically using functions or libraries that are
provided as part of a framework. This approach
avoids much of the reprogramming necessary in
the monolithic approach when a model is added
or replaced. However, it still requires each model
to be implemented in the same programming
language, and the allowed languages are limited to
those supported by the framework. Examples of
the component approach are the General Coupling
Framework (Ford, Riley, Bane, Armstrong, &
Freeman, 2006) and the Model Coupling Toolkit
(Larson, Jacob, & Ong, 2005).

Finally, in the communication approach, models are
executed as independent programs and communicate
with each other during execution using some form
of message passing. In this approach, no significant
reprogramming is required to add or replace a
model, and models need not be implemented in
the same programming language, although the
allowed languages are limited to those supported
by the message-passing library. Frameworks that
use the communication approach can be classified
by whether or not they include independent
applications (couplers) to mediate the execution and
communication among the models. Frameworks
that do include a coupler have communication
libraries that support direct model-to-model
communication as well as model-to-coupler
communication. Frameworks that do not include
couplers are essentially libraries of data transfer and
transformation routines customized for the data types
(grids, flux, etc.) and communication styles (high
bandwidth, parallel, etc.) needed by models.

Examples of frameworks with couplers are the
Potential Coupling Interface (PCI) (Bulatewicz,
2006) and the Standard for Modeling and Simulation

(M&S) High-Level Architecture (HLA) (Institute of
Electrical and Electronics Engineers [IEEE], 2000).
Other frameworks use databases to aid in the process
of execution and communication among the models.

The PCI describes the coupling potential of a model,
or the aspects of the model that affect how it can
be coupled to another model. PCIs are created as
model metadata and the variables accessible at each
coupling point are specified. When a PCI is created,
the original model source code is automatically
instrumented with communication code, and after it
is compiled, the resulting coupling-ready executable
can be used in any coupling.

The HLA defines the format and syntax of HLA
object models. The HLA is an integrated approach
developed to provide a common architecture for
simulation. Model interactions in the HLA are
specified through interaction classes in an interaction
class structure table, similar to the way in which
objects are described in an object class structure table.

The use of databases in communication approach
frameworks has been reported in the literature. In
one framework (Hoheisel, 2002), control and the data
communication among the distributed simulation
models are realized by specialized markup languages
that employ the XML technology for extension and
validation. The input and output data of the models
are represented by an XML data model that includes
also the physical and mathematical meaning of the
transferred data so that different models can be easily
coupled by connecting their XML formatted input
and output streams, via sockets. The initialization
parameters and the relevant output data of the
models are stored in an SQL database (MySQL).

Another framework (Brandmeyer et al., 2004)
uses the U.S. Environmental Protection Agency’s
Multimedia Integrated Modeling System (MIMS)
to specify parameters and execute multiple
environmental models. The MIMS framework
provides tools for connecting executable programs,
launching programs in sequence, and transferring
data between those programs. An Oracle server and
databases supply historical data for use with the
models. The framework includes connectivity scripts
(couplers) that transfer data between the models and
the Oracle database.

4 Solano et al., 2013 RTI Press

We have developed a communications-based
approach where models run concurrently while
exchanging data through an intermediate relational
database management system. Although we
developed the approach to produce multiscale
epidemic models, it can also be applied to other
disciplines and to settings in which models are
distinguished by factors other than scale. In the next
sections, we start with a general description of the
approach. Then, we describe a practical example
of its application that we developed as a proof of
concept. Finally, we evaluate how well the approach
meets its goals and discuss its limitations.

Methods

General Approach
We present an approach to model coupling in which
the models run concurrently while exchanging
data through an intermediate relational database
management system. Auxiliary tools tailored to each
model assist the models in inserting and extracting
data into and out of the database. Logically, the
auxiliary tools are known as “inserters” and
“extractors.” Because the models run concurrently,
and because the models may use data obtained
from other models in their own procedures, it is
important for the models to keep their internal
clocks synchronized. In addition, the inserters and

extractors need to be scheduled to run at appropriate
times. Our approach uses the database for clock
synchronization and process scheduling.

Figure 1 displays a schematic illustrating our approach
when applied to a situation in which two models
are coupled. In the figure, M1 and M2 represent
the models, DB represents the database, I1 and I2
represent the inserters, and E1 and E2 represent
the extractors. Clock synchronization and process
scheduling are omitted for simplicity. When model
M1 needs to send data to model M2, it exports
the data in a format convenient to model M1. The
exported data are represented in the schematic as TI1.
Inserter I1 (the inserter for model M1) then imports
the TI1 data and inserts them into the database. Next,
extractor E2 (the extractor for model M2) extracts
the data from the database and exports them into
a format convenient to model M2. The exported
data are represented here as TE2. Finally, model M2
imports the TE2 data. A similar path is followed in the
reverse direction when model M2 needs to send data
to model M1.

The inserters and extractors are not essential to
the procedure and may be omitted if the models
can conveniently write their data directly to the
database. However, using them has the advantage of
isolating the models from the database. This allows
the models to interact with the data in ways that

Figure 1. In the general approach, when applied to a situation in which two models are coupled, the models run
concurrently while exchanging data through an intermediate relational database management system.

DB

TI2

TE2

M2

I2

E2

I1

E1

TI1

TE1

M1

M1 and M2 = models; DB = database; I1 and I2 = inserters; E1 and E2 = extractors; TI, TI2, TE1, and TE2 = data.

 5 Coupling Models

make no assumptions about the database structure.
Instead, any such assumptions are implemented in
the inserters and extractors. As a result, changing
the database structure requires changes only to
the inserters and extractors, which are presumably
shorter and less complex than the models and
therefore easier to modify.

The data model design will likely differ from one
coupled system to the next. The design may depend
on many factors, with the most obvious being the
specific data types to be exchanged or the frequency
with which instances of each data type are exchanged.
Despite these variable factors, we expect most
database designs will share a few common elements.
The database design will probably include a table
representing all the models; a table representing all
model runs, so that other tables can contain data from
multiple model runs; a table that will hold the actual
data items as they are exchanged; a table defining a
standard representation for each common data type
to be exchanged; and one or more tables that handle
clock synchronization and process scheduling.

Clock synchronization and process scheduling
methods may also vary considerably from one
coupled system to another. Coupling discrete-time
models may call for a different design than coupling
discrete-event models, for example. For discrete-time
models that exchange data at every time step (i.e.,
time is broken up into slices or steps), scheduling
each process to run in a particular order at every
time step may be sufficient to keep the model clocks
synchronized. In this case, the database would
probably need tables for process scheduling but not
for clock synchronization. For discrete-time models
that exchange data at irregular or unpredictable
time intervals and for discrete-event models that
exchange data at arbitrary time points, dedicated
clock synchronization tables are probably necessary
in addition to the process scheduling tables. In our
approach, the models, inserters, and extractors
communicate directly with the database to query and
update both the clock synchronization and process
scheduling tables.

Proof of Concept
To illustrate our general approach to model coupling,
we developed a proof of concept using two existing
and proven models of flu transmission. The first is
the Global Epidemic Model (GEM), a stochastic,
equation-based model that examines flu transmission
on a global scale (Epstein et al., 2007). The second
is a stochastic, agent-based model that examines flu
transmission on a local scale in rural Southeast Asia
(Longini et al., 2005). We refer to this local model as
the SE Asia model.

The two models differ in some fundamental ways.
From a technical standpoint, the primary difference
is that the GEM is implemented in Java programming
language while the SE Asia model is implemented in
C programming language. The primary substantive
difference is that the two models simulate flu
transmission at different scales. The GEM is designed
to model flu transmission among hundreds of cities
around the world, with relatively simple contact
dynamics and population structure within each city.
On the other hand, the SE Asia model limits its scope
to a single rural region, but the contact dynamics
and population structure within that region are more
complex than those found in the GEM. For example,
the SE Asia model varies contact rates based on a
person’s age and also assigns personal social networks
such as a person’s family, neighborhood, classmates,
and coworkers. The GEM imposes none of this
structure and instead assumes homogeneous mixing
within each city.

The GEM models disease transmission among its
cities by simulating daily travel from city to city. (We
use the term “city” for convenience, but actually the
nodes may represent any geographic area.) The GEM
bases travel on a transportation network in which
each node is a city and pairs of nodes are connected
when the daily travel total between those cities is
nonzero. Conceptually, coupling the GEM and the
SE Asia model means treating the region represented
by the SE Asia model as another node in the GEM’s
transportation network. The difference between
the rural Southeast Asia node and the other nodes
is that the other nodes are implemented internally
by the GEM, while the rural Southeast Asia node is
implemented externally by the SE Asia model. As a
result, when the GEM directs travelers into its rural

 6 Solano et al., 2013 RTI Press

Southeast Asia node, it must recognize that the node
is implemented externally and export the travelers to
the SE Asia model via the coupling infrastructure. The
GEM must also “listen” to the coupling infrastructure
to detect travelers who are exiting the rural Southeast
Asia node. Similarly, the SE Asia model must interact
with the coupling infrastructure to send travelers to
the GEM and to receive travelers from the GEM.

While our approach allows coupled models to
exchange multiple data types, for the sake of
simplicity we chose just one data type for our proof
of concept: the traveler. The traveler data type has
several associated attributes that are useful to one or
both models, most notably disease status. Other data
types a modeler may wish to exchange when coupling
infectious disease models include vaccine doses and
incidence rates.

Database
In this section, we discuss the design of the relational
database that supports the models within the proof
of-concept coupled system. While we designed the
database specifically to support the GEM and the SE
Asia model, a modeler could use relational principles
to modify the design to support the data requirements
of other models and analysis tools. We implemented
the database using PostgreSQL, an open-source
relational database management system.

The tables in the database can be split into a few
groups: a table listing the models in the coupled
system, tables defining the models’ representations
of the traveler data type, tables describing how to
convert between the models’ representations of the
traveler data type, tables defining individual model
runs, a table containing the exchanged traveler data,
and a process scheduling table.

The t_model table represents the models available in
the coupled system and includes a name assigned to
each one. Other models and tools refer to the models
by these names.

The traveler data type consists of six attributes
relevant to influenza infection. The database contains
a table for each of these six attributes, and each table
contains the attribute values that are supported by
each model. This set of tables thus defines the models’

representations of the traveler data type. The six tables
and their contents are shown in Table 1.

Table 1. Attributes of the traveler data type related to
influenza infection

Table Name Contents

t_disease_stage Information about the stage of the
disease’s natural history

t_age Age groups supported by each model

t_symptom Information about the symptom
severity

t_antiviral_time Time steps since antiviral treatment
began

t_pandemic_
vaccine_time

Information about the time steps since
the first pandemic vaccine dose was
administered

t_seasonal_
vaccine_time

Information about the time steps since
the first seasonal vaccine dose was
administered

In addition, the database contains a table called t_state
that lists all the unique combinations of attribute
values in the six attribute tables. All travelers entering
the database are assigned a single state value from
t_state representing a specific combination of the
six attribute values. This simplified representation
of the traveler’s attributes is used in other tables so
that attributes can be added and removed without
requiring fields to be added or removed in the other
tables. Figure 2 shows the entity-relationship diagram
(ERD) for this set of tables.

The database contains a “crosswalk” table
corresponding to each attribute table. The crosswalk
table describes how to convert between the GEM’s
attribute values and the SE Asia model’s attribute
values. For example, consider the age attribute. The SE
Asia model implements eight age groups, so the t_age
table includes eight records for the SE Asia model,
one record per age group. On the other hand, the
GEM does not support age categories, so the t_age
table includes a single age group called “n/a” (not
applicable) for the GEM. When travelers move from
one model to the other, they must be assigned an
age group that is compatible with their destination
model. Records in the t_age_crosswalk table provide
specifications for making these assignments. One
record says that 44 percent of the travelers from the

 7 Coupling Models

GEM’s n/a age group should be placed into the SE
Asia model’s 18–44 age group. Another record says
that 11 percent of the travelers from the GEM’s n/a
age group should be placed into the SE Asia model’s
5–10 age group. Other records handle travel in the

opposite direction. One record says that 100 percent
of the travelers from the SE Asia model’s 18–44 age
group should be placed into the GEM’s n/a age group.
Another record says that 100 percent of the travelers
from the SE Asia model’s 5–10 age group should

Figure 2. Entity-relationship diagram (ERD) for the t_state and t_model tables in addition to the attribute tables

PK = primary key; FK = foreign key

 8 Solano et al., 2013 RTI Press

be placed into the GEM’s n/a age group. All other
combinations of GEM and SE Asia model age groups
are similarly represented in the t_age_crosswalk table.

The database contains two tables for defining
individual model runs: t_scenario and t_run. The t_
scenario table assigns a name and a unique identifier
to experimental scenarios, and the t_run table lists
the multiple replicate iterations that are run for each
scenario.

The t_travel table contains the travel data that the
models exchange at every time step. This table
identifies the time step when the travel occurred,
the traveler’s origin and destination models, and the
traveler’s state—that is, the unique combination of
attribute values assigned to the traveler.

The t_event table is the process scheduling table. This
table allows the coupled system to coordinate the
execution of the models, inserters, and extractors in
sequence by keeping information about the different
events that occur as they run. These events represent
the actions of the models, inserters, and extractors
as they reach points in their execution when they are
ready to pass data to the next step in the process. For
example, the SE Asia model will update an event’s
status in the table once it has completed writing an
output file with the number of travelers exiting rural
Thailand.

Figure 3 shows the ERD for all the database tables
except the six attribute tables and their corresponding
crosswalk tables. Figure 4 shows the ERD for the
entire database.

The data structure includes primary keys in all
data tables and foreign keys in most data tables to
guarantee referential integrity. These keys reduce data
errors by providing quality assurance as data values
are added to the database. The relational design
allows tables to be linked.

In the ERDs, the fields composing a primary key
are labeled PK, and those composing a foreign key
are labeled FK1, FK2, etc. The ERDs show a fully
interconnected database in which parent and child
tables are related by foreign keys and cardinality
relationships.

A modeler who decided to add a new model to our
proof-of-concept coupled system or to upgrade the
GEM or SE Asia model might first need to alter our
database design to accommodate features of the
new or upgraded model. While we did not attempt
to anticipate every possible change, we did design
the database with one change in mind: scaling to
accommodate additional attributes of the traveler
data type. Each traveler attribute is represented by its
own table in the database. If a new model introduced
into the coupled system were to implement additional

Figure 3. Entity-relationship diagram for the t_model, t_travel, t_scenario, t_state, t_event, and t_run tables

 9 Coupling Models

Figure 4. Entity-relationship diagram for the entire database

 10 Solano et al., 2013 RTI Press

attributes that the modeler wanted to assign to
travelers, the modeler should add a new attribute
table to the database and populate it with records
listing the attribute values supported by each model.
Since this would be a new attribute, an existing model
probably would not support any of its values. In this
case, a “not applicable” record should be added for
the model. Once the attribute table has been created,
the modeler should create a corresponding crosswalk
table to describe how to convert between each model’s
values in the new attribute table. In addition to the
attribute and crosswalk tables, the modeler should
also update the queries that create the t_state and
t_state_crosswalk tables so that they account for the
new attribute.

A modeler might also decide to modify our proof
of-concept coupled system to exchange other data
types besides the traveler. Adding a new data type
might require adding new attribute tables, or the
modeler might be able to reuse some of the traveler
attribute tables. For example, if the new data type
were total population size with disease stage as the
only attribute, then the traveler disease stage attribute
table might be sufficient to describe the new data
type. However, if the new data type were vaccine
doses with vaccine effectiveness rate as an attribute,
then the modeler probably would need to add a new
attribute table because vaccine effectiveness is not
an attribute of the traveler data type. The modeler
should create a crosswalk table for any new attribute
tables and then create tables similar to the traveler
data type’s t_state and t_state_crosswalk tables that
list all the unique combinations of the new data type’s
attribute values. Finally, the modeler should create a
table to hold data points of the new data type as they
are exchanged by the models, similar to the t_travel
table for the traveler data type.

Inserters and Extractors
The models in our proof-of-concept coupled system
need to communicate with the database at every time
step. Each model records the number of travelers
exiting the model, discovers the number of travelers
entering the model, and updates the t_event table. We
developed auxiliary tools to shift some of the database
connectivity tasks out of the models. Specifically,
we created auxiliary tools called inserters to handle

the task of inserting into the database the number
of travelers exiting the models. We created auxiliary
tools called extractors to handle the task of extracting
from the database the number of travelers entering
the models. We did not create auxiliary tools to
handle updates to the t_event table, so the models are
responsible for performing this task themselves by
connecting to the database and communicating with
it directly.

We wrote the inserters and extractors in Java, using
the open-source Java Database Connectivity drivers
to connect to the PostgreSQL database. Each tool
provides one well-defined function. For example, one
inserter’s function is to add records to the t_travel
database table indicating the number of people who
travel from the GEM to the SE Asia model. Adding
records for travel from the SE Asia model to the GEM
is a different function and is therefore handled in a
different inserter. If we were to later expand the proof
of concept by adding a third model—a Mexico City
model, for example—then we would write a new
inserter for travel from the GEM to the Mexico City
model and a new inserter for travel from the Mexico
City model to the GEM. If we later were to again
expand the proof of concept by allowing the models
to exchange another data type in addition to travelers,
we would write a new set of inserters for the new data
type.

We wrote two inserters for our proof of concept, one
associated with the GEM and one associated with
the SE Asia model. Similarly, we wrote one extractor
associated with the GEM and one extractor associated
with the SE Asia model. Since we use the coupled
system for exchanging only the traveler data type,
each inserter and extractor handles only traveler data.

An inserter in our proof of concept operates by
polling the t_event database table, waiting to detect
an event indicating that its associated model has
written a text file containing outgoing traveler counts.
Upon detecting that event, the inserter parses the
file, performs any necessary processing on the data
it finds, and then inserts records into the t_travel
database table. Finally, it updates t_event with an
event indicating “new records are available in t_
travel.” The inserter then resumes polling t_event to
repeat the cycle at the next time step. It continues in

 11 Coupling Models

this manner until it detects the event indicating “the
model run has finished.”

Like inserters, an extractor operates by polling the
t_event database table. The extractor waits to detect
the event indicating that the inserter associated
with the other model has added new records to
the t_travel database table. Once it detects that
event, it uses the database’s attribute and crosswalk
tables to convert the traveler counts from the other
model’s representation to its own associated model’s
representation, performs any necessary processing
on the resulting data, and writes the data to a text file.
Finally, it updates t_event with an event indicating
that it has completed writing its text file. The extractor
then resumes polling t_event to repeat the cycle at
the next time step. It continues in this manner until
it detects the event indicating that the model run is
finished.

The primary reason for using inserters and extractors
is to isolate the models from the database. This
isolation has two benefits. First, it promotes a
separation of responsibility in which the models
focus on model-related tasks and other tools focus
on database-related tasks. Second, it helps reduce
the need to update the models when the database
structure changes. The database structure may change
for many reasons, such as general maintenance and
improvement or the addition of data elements to
support new or upgraded models. Because the GEM
and the SE Asia model are being actively maintained
and improved, upgrading the versions currently used
in the proof of concept to newer ones is a distinct
possibility. If upgrading one model necessitates
changes to the database, the model-database isolation
means that corresponding changes likely need to be
made in the other model’s inserter and extractor, not
in the model itself.

Models
Broadly speaking, the GEM and the SE Asia model
perform the same basic procedure. They step
through time in discrete units of 1 day, performing
certain tasks during each time step. These tasks
include simulating contacts among people in the
modeled populations, deciding which susceptible
people become infected as a result of those contacts,

updating the disease status of all the sick people,
and applying any desired interventions, such as
vaccinations or quarantines. In addition, the GEM
simulates the travel of people from city to city.

A few of the models’ tasks enable them to function
within the proof-of-concept coupled system. During
each time step, the SE Asia model determines which
people travel out of its modeled population and
writes this information to a text file. It then updates
the t_event database table indicating that it has
written its file of outgoing travelers. Next, the SE
Asia model polls t_event until it detects the event
indicating that its extractor has created a text file of
incoming travelers from the GEM. Once it detects
that event, it parses the file and adds those travelers
to its population. From there, it proceeds normally
until the next time step, when it repeats the cycle. It
continues in this manner until it detects the event
indicating that the model run is finished.

The GEM performs similar tasks to work within the
coupled system. During each time step, the GEM
polls the t_event database table until it detects the
event indicating that its extractor has created a text
file of incoming travelers from the SE Asia model.
Once it detects that event, it parses the file and
combines the travelers from the file with the travelers
exiting the rest of its modeled cities to determine how
many people travel into each city. Next, the GEM
writes a text file containing counts of travelers who
enter the SE Asia model, after which it updates the
t_event table indicating that it has written its file of
outgoing travelers. It then proceeds normally until the
next time step, when it repeats the cycle. We decided
to make the GEM the “controlling model,” in that it
controls how long the models run. Therefore, when
the GEM reaches its terminating condition, it adds
an event to t_event indicating that the model run is
finished. All other components in the coupled system
check for this event to discover when they should
terminate.

Unless a model was designed from the beginning to
be coupled with other models using our approach,
it will certainly require modification before it can
function within a coupled system. We made several
changes to the GEM and SE Asia model, which we
summarize here. This list is provided as an example of

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

12 Solano et al., 2013 RTI Press

the types of changes a modeler may need to consider
when preparing models for coupling. We made the
following changes to the GEM:

•	 We added code to the GEM to implement
communication with the coupled system’s database.
This included connecting to and disconnecting
from the database, adding events to the process
scheduling table, and polling the process scheduling
table to detect the existence of events.

•	 We added the region represented by the SE Asia
model to the GEM’s transportation network as a
new node. Because many of the SE Asia model’s
parameters were derived from studies of rural
Thailand, for the purposes of the coupled system,
we assumed that the region was in rural Thailand.
Therefore, we named the node Rural Thailand and
incorporated it into the rest of the transportation
network by adding a single connection between
the new Rural Thailand node and the existing
Bangkok node. This network structure implies that
all travelers into the SE Asia model come from the
GEM’s Bangkok node and that all travelers out of
the SE Asia model enter the GEM’s Bangkok node.

•	 We added Rural Thailand to the GEM’s input file
that lists its recognized cities. We added an attribute
to this file indicating whether each city is modeled
internally by the GEM or externally by another
model. If externally, the attribute also indicates
whether the city is modeled by an agent-based
model or an equation-based model.

•	 We modified the GEM to distinguish externally
modeled cities from internally modeled cities in
certain calculations. When calculating the number
of travelers exiting an externally modeled city,
the GEM waits to discover this information from
the coupling infrastructure. When calculating
the number of travelers entering an agent-based,
externally modeled city, the GEM rounds all travel
counts to integers. When updating population
totals, the GEM ignores externally modeled cities
under the assumption that external models keep
track of their own population totals.

•	 We added code to the GEM that exports the
outgoing traveler data to a text file and imports the
incoming traveler data from a text file.

•	 We modified the GEM to allow an initial condition
of zero infected people in all of its internally
modeled cities. Outside the context of the coupled
system, when the GEM was self-contained and
did not exchange individuals with another model,
this initial condition was not allowed because it
generated a scenario in which no one ever became
infected, yielding a useless model of disease
transmission. However, one scenario we wanted
to model within the coupled system was the
situation in which the infection arises in the region
represented by the SE Asia model and later spreads
to the cities represented by the GEM. In this case,
an initial condition of zero infected people in all the
GEM cities was appropriate.

We made the following changes to the SE Asia model:

•	 We added code to the SE Asia model to implement
communication with the coupled system’s database.
This included connecting to and disconnecting
from the database, adding events to the process
scheduling table, and polling the process scheduling
table to detect the existence of events.

•	 The SE Asia model had basic support for people
traveling out of its population at every time step.
However, it did not support people traveling into
its population, so we added code to implement this.
After reviewing the SE Asia model source code, we
realized that the model assumed a fixed population
in many places. Implementing incoming travelers
in the intuitive way—creating a new person for each
incoming traveler and increasing the population
size by one—would require extensive changes to
the model, so we developed an alternate method.
For each incoming traveler, we chose an existing
population member at random and replaced some
of that member’s attributes, such as disease status,
with those of the traveler. For consistency, we
modified the existing implementation of outgoing
travel using similar logic. Instead of simply
removing an outgoing traveler from the population,
we replaced the traveler with a new person who
retained most of the attributes of the traveler with
the exception of a few, such as disease status, that
we re-initialized.

 13 Coupling Models

•	 We 	added 	code 	to 	the 	SE 	Asia 	model 	that 	exports 	
the outgoing traveler data to a text file and imports
the incoming traveler data from a text file.

•	 The 	SE 	Asia 	model 	implemented 	its 	own 	conditions 	
for terminating the model run. Namely, it
terminated once it had run for a specified number
of days or once its population included zero
infected individuals. However, within the coupled
system, we wanted it to continue running until
the GEM terminated. Therefore, we removed its
existing termination conditions and replaced
them with the condition that it would run until it
detected the model termination event in the t_event
database table.

•	 We 	modified 	the 	SE 	Asia 	model 	so 	that 	we 	could 	
override the file system locations of all its input and
output files from the command line.

Results

Scenarios
Because the coupled system we developed is a
proof of concept only, we did not run it under
experimental scenarios with the intent of drawing
substantive conclusions. However, we did run it to
verify that the coupled models interacted with the
coupling infrastructure correctly and that travelers
moved between the coupled models appropriately.
We present results of the proof-of-concept coupled
system from two sample scenarios. We stress that
these results are for illustration purposes only.

In the first scenario, we placed the source of the
infection in rural Thailand—that is, in the SE Asia
model—by setting the SE Asia model to contain
10 initially infected people and every GEM city to
contain zero initially infected people. We disabled
all interventions (vaccinations, antivirals, travel
restrictions, and quarantine) in both models.
Figure 5 displays the results of a single iteration of
this scenario. Plot A displays the daily number of new
infectious cases in the SE Asia model as a percentage
of the model’s total population size. Plot B displays
the daily counts of infected people traveling from
the SE Asia model into the GEM. Plot C displays the
daily number of new infectious cases in selected GEM
cities as a percentage of each city’s total population

size. Plot D displays the daily counts of infected
people traveling from the GEM into the SE Asia
model.

From these plots, we see that the infection begins
in the SE Asia model and eventually spreads to the
GEM as infected travelers enter Bangkok from rural

Figure 5. Results from the first scenario of the proof
of-concept coupled system: Rural Thailand as infection
source

N
o.

 o
f p

eo
pl

e
%

 o
f c

ity
’s

po
pu

la
tio

n
N

o.
 o

f p
eo

pl
e

%
 o

f m
od

el
 p

op
ul

at
io

n

A – Daily number of new cases, SE Asia model

B – Daily counts, infected travelers moving from SE Asia
to GEM

C – Daily counts of infectious cases in GEM cities

D – Daily counts of infected travelers moving from GEM
into SE Asia

GEM = Global Epidemic Model; SE Asia = Southeast Asia Model

 14 Solano et al., 2013 RTI Press

Thailand. After Bangkok, the infection later spreads
to other GEM cities. While we did not display all
155 GEM cities in the figure, we did confirm that
Bangkok was the first GEM city to experience an
infected case.

In the second scenario, we placed the source of the
infection in Hong Kong, a city modeled by the GEM,
by setting Hong Kong to contain 10 initially infected
people and every other GEM city as well as the SE
Asia model to contain zero initially infected people.
We applied vaccinations in the GEM but no other
interventions in either model. Figure 6 displays the
results of a single iteration of this scenario. The plots
in Figure 6 are structured in the same way as those in
Figure 5.

From these plots, we see that the infection spreads
from Hong Kong to other GEM cities, eventually
making its way to Bangkok. Once in Bangkok,
the infection crosses over to the SE Asia model as
infected travelers enter rural Thailand from Bangkok.
In the selected GEM cities as well as in rural Thailand,
we see that the peak of the daily number of new
infectious cases is roughly 40 percent lower than
in the first scenario. We suspect this is because we
applied vaccines in the GEM. If this is true (and
we would need to perform real experiments with
multiple iterations to prove that it was), a notable
result is that the reduction in the number of cases
in the GEM translated to a similar reduction in the
number of cases in the SE Asia model. This implies
that even though we applied no interventions
in the SE Asia model, it was still affected by the
interventions in the GEM, demonstrating an effect of
coupling these models.

Areas for Improvement
We developed the proof of concept as a way to
illustrate our general model coupling approach. Our
goals were to highlight advantages of the approach
and to discover potential problems a modeler might
encounter when applying the approach. We did not
attempt to resolve all the problems we encountered.
Here we describe several such unresolved problems as
areas where a modeler may want to improve the proof
of concept before using it for serious experiments.

Figure 6. Results from the second scenario of the proof-
of-concept coupled system: Hong Kong as infection
source

A – Daily number of new cases, SE Asia model

N
o.

 o
f p

eo
pl

e
%

 o
f c

ity
’s

po
pu

la
tio

n
N

o.
 o

f p
eo

pl
e

%
 o

f m
od

el
 p

op
ul

at
io

n

B – Daily counts, infected travelers moving from SE Asia
to GEM

C – Daily counts of infectious cases in GEM cities

D – Daily counts of infected travelers moving from GEM
into SE Asia

GEM = Global Epidemic Model; SE Asia = Southeast Asia Model

 15 Coupling Models

•	 The total population of the system declined over
time. Our implementation of incoming and
outgoing travel in the SE Asia model yielded a
constant population size in that model, regardless
of any imbalance between total travel into and out
of the model. However, because the SE Asia model
and the GEM allowed different subsets of people
to travel, there was indeed a travel imbalance in
which more people entered the SE Asia model than
exited it, or, conversely, more people exited the
GEM than entered it. As a result, the GEM reported
a net decline in population size while the SE Asia
reported a constant population size, producing
an overall decline. The travel imbalance in our
illustrative examples was about 200,000 people,
which was only 0.03 percent of the initial GEM
population but 40 percent of the SE Asia model
population. The SE Asia model should probably be
fixed so that its population size is properly adjusted
to reflect the travel imbalance.

•	 The SE Asia model reported misleading values for
statistics that involved the total population size. This
anomaly also occurred because our implementation
of incoming and outgoing travel in the SE Asia
model failed to properly account for a travel
imbalance. While some values collected by the
model did not reflect the travel imbalance, other
values did. Statistics that are computed using a
combination of these types of values are likely to be
incorrect.

•	 The number of travelers exiting the GEM did not
always equal the number of travelers entering the
SE Asia model. In the process of converting the
traveler data type from the GEM’s representation to
the SE Asia model’s representation, integer counts
of the number of travelers were sometimes split
into floating point counts. Because the SE Asia
model is agent-based, the floating point counts had
to be reconstructed back into integer counts. The
reconstruction algorithm did not guarantee that the
sum of the final integer counts would equal the sum
of the original integer counts. The algorithm should
probably be replaced with one that does preserve
the number of travelers.

•	 Updating the database tables to define the models’
data representations was a manual and sometimes
cumbersome process. To complete the limited
updates that our test scenarios required, we had
to edit the database tables directly, either by using
database administration tools or by writing small
programs. As it stands, the user would have to
execute a sequence of SQL commands to regenerate
the t_state and t_state_crosswalk tables after
any change to one of the tables from which they
were derived. A user-friendly interface could be
developed to remove some of the manual steps
and to make the remaining necessary manual steps
easier.

•	 The current database design supported only a single
data representation for each model. This could
be a problem if a modeler wished to run multiple
scenarios where different scenarios required
different data representations. For example, suppose
the modeler wanted to run one scenario with age
groups defined as [0–5, 6–17, 18–64, 65+] and
another scenario with age groups defined as [0–17,
18+]. Since age group is an element of the model’s
data representation, only one age group definition
can exist within the database at a given time. The
database design should probably be altered to allow
multiple data representations for each model.

Discussion
We have presented a general approach for coupling
multiple simulation models and have demonstrated
our approach by describing a proof-of-concept
coupled multiscale system. The approach enables
models to run concurrently while exchanging data
with each other and is general enough to be applied
to a range of situations. In the approach, models
communicate with each other indirectly by using a
database as a common access point for exchanged
data. Models may also access the database indirectly if
the exchanged data are routed through model-specific
auxiliary tools. The approach also takes advantage of
the database for clock synchronization and process
scheduling.

We developed this model coupling approach with the
intent of meeting several goals that we considered
important to producing a good coupled system.

 16 Solano et al., 2013 	 RTI Press

Below, we describe these goals and evaluate how well
our approach meets each of them.

•	 Support models written in any programming
language. Models may be written in programming
languages such as C, C++, Java, MATLAB, and
Fortran. We wanted the flexibility to mix and match
any of these models, regardless of the language
used. The only requirement our approach places
on the programming language is that it must have
the ability to read from and write to the database
chosen for the coupled system. While this may rule
out some combinations of databases and languages,
database access libraries exist for most common
databases and languages.

•	 Be implementable using free and open-source
software (FOSS). Requiring proprietary software
might limit adoption of the approach because
some researchers have philosophical objections to
using proprietary solutions or simply cannot afford
them. Our approach involves the implementation
of two primary components: the database and the
inserters/extractors. Multiple high-quality, FOSS
solutions exist for each of these components. At the
same time, our approach does not require FOSS
solutions, so researchers are also free to use any of
the multiple high-quality, proprietary solutions that
exist for these components.

•	 Support both agent-based and equation-based
models. Similar to the argument for supporting
multiple programming languages, we wanted the
flexibility to mix and match models regardless of
their implementation details. Our approach places
no restrictions on whether the coupled models
are agent-based or equation-based. However,
mixing agent-based and equation-based models
in a coupled system may require modelers to take
special care when designing the database or when
preparing the models for coupling. This is because
the continuous nature of equation-based data may
not be suitable in the discrete context of agent-
based data.

•	 Minimize data loss resulting from the exchange of
data between models that have varying assumptions
and features. Models developed by different
research groups for different purposes are likely
to have different assumptions and features. When
these varying assumptions and features impact the

data exchanged by the models, information may
be lost. We did not want to place limitations on
the data exchange process that would contribute
any additional loss of information beyond what
is produced by incompatibilities in the models
themselves. Our approach’s primary obstacle in
this regard is being able to represent the data type
of the exchanged data in a set of database tables.
This may be more difficult in some cases than in
others. However, given that our approach allows
any number of tables with any number of fields,
it is likely that any data type can be adequately
represented in some way.

•	 Support the coupling of an unlimited number of
models. While we considered the coupling of
just two models a good first step, we wanted an
approach that would allow any number of models
to be coupled. Coming from our perspective
of infectious disease modeling, we envisioned
coupling numerous models that examine disease
transmission in small geographic areas to produce
a single model covering a large geographic area.
In our approach, any number of models may
communicate with the database, so there is no limit
on the number of coupled models.

•	 Couple the models loosely. Loosely coupled models
assume little, if anything, about each other. Because
a model’s code is not affected by the presence or
absence of other models, it is easier to swap models
into and out of the coupled system. Our approach
loosely couples all the models by having them
communicate indirectly through the database
instead of directly with each other. The advantages
of loose coupling become more pronounced as
more and more models are introduced into the
coupled system. Tight coupling would require
each model to include code specific to every other
model, while loose coupling avoids, or at least
limits, this requirement.

•	 Minimize the number of changes required in
models when they are being prepared for the
coupled system. The loose coupling between the
models helps to eliminate many of the changes that
otherwise would be required when a model was
being prepared for the coupled system. However,
some changes are unavoidable. Because the
models communicate directly with the database

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

17 Coupling Models

for the purposes of process scheduling and clock
synchronization, the modeler must insert code
at appropriate places to implement this database
communication. The modeler most likely needs to
insert code at appropriate places so that the model
can export data into the coupled system and import
data from the coupled system. The specifics of the
exchanged data and the model’s role in the coupled
system may imply additional changes.

•	 Scale effectively as more models are coupled.
Because we anticipated coupling many models,
we were concerned about the potential for
performance degradation as each new model was
added. We wanted an approach that would not
contribute additional performance losses beyond
that imposed by the hardware. Our approach routes
all communication through a database, which does
highlight the database as a potential bottleneck.
Fortunately, improving database performance is a
well-developed discipline, and many techniques
for improvement are available if database
performance becomes a problem. In addition,
because the models, inserters, and extractors
all run as separate processes in our approach, it
should be fairly straightforward to distribute them
across a multiprocessor architecture for further
performance gains. We wanted to achieve scalability
in the context not only of performance, but also of
development time. We wanted the effort required to
couple each new model to be approximately equal
instead of being proportional to the number of
models already in the system. Our approach should
achieve this through its loose coupling between
models and between the models and database.

A potential limitation of our approach is that we have
applied it to only one model coupling scenario, and
so we may be unaware of deficiencies that broader
testing would reveal. For example, we have not
attempted to use the approach with discrete-event
models or in a distributed computing environment.
Despite this limited testing, our experiences with
other models give us confidence that the approach
can be applied successfully in other contexts, as well.

Another limitation has a much broader reach than
the approach itself. While coupling models often
seems like a good idea, the task must be undertaken
with caution. Salt (2008) argues that it is one of the

seven persistent mistakes of simulation modeling.
To be meaningfully combined, models should be
conceptually compatible. Because different models
are usually developed by different research groups
for different purposes, any models chosen as a set for
coupling likely differ in the features they implement
and the simplifying assumptions they make about
their modeled phenomena. The utility of a coupled
system is limited by the impact of these differences on
the compatibility of the models.

The two models we chose for our proof of concept
were developed by different research groups and
do indeed implement different features and make
different assumptions. For example:

•	 The two models make different subsets of the
population eligible to travel to other cities.

•	 The GEM assumes that all infectious people exhibit
symptoms, but the SE Asia model assumes that

some portion of the infectious people may be

asymptomatic.

•	 The SE Asia model offers antiviral medication as a
possible disease intervention, while the GEM does
not.

•	 Both models offer vaccination as a possible disease
intervention, but their implementations differ in the
timing, frequency, and effects of vaccination.

•	 The SE Asia model uses age groups and social
networks to structure its population, but the GEM
does not.

We have not attempted here to address the issue
of whether these models are compatible enough
for useful coupling. Instead, we leave that decision
to future modelers who wish to move beyond the
proof-of-concept stage in coupling the GEM and the
SE Asia model. Evaluating the models’ compatibility
while considering the goals of the proposed coupling
will be a critical step in constructing a useful coupled
system.

Assuming compatible models can be identified,
our model coupling approach could be applied to
many simulation fields, including infectious disease,
military operations, biological systems, multimedia
environmental modeling, and manufacturing
processes. The approach could be applied to
multiscale modeling, or to models that operate at the

18 Solano et al., 2013 RTI Press

same scale but that examine different locations, such
as geographic areas or internal organs.

Our focus so far has been retrospective model
coupling—that is, locating existing models and then
determining how to couple them. However, our
approach could also be applied to prospective model
coupling. Here, modelers would reverse the process
by first identifying a problem domain that could be
simulated by coupling multiple models that do not

yet exist, then developing both the models and the
coupling infrastructure with interoperability as a
requirement from the beginning. Prospective coupling
would require more up-front coordination to ensure
all the models would work with each other and with
the coupling infrastructure, but would have the benefit
of helping eliminate the model incompatibilities that
might limit retrospective coupling.

References

Bobashev, G. V., Goedecke, D. M., Yu, F., &
Epstein, J. M. (2007). A hybrid epidemic model:
Combining the advantages of agent-based and
equation-based approaches. In S. G. Henderson,
B. Biller, M. H. Hsieh, J. Shortle, J. D. Tew, &
R. R. Barton (Eds.), Proceedings of the 2007
Winter Simulation Conference (pp. 1532‒1537).
Washington, DC: Institute of Electrical and
Electronics Engineers (IEEE) Press. Retrieved
June 28, 2013, from http://www.informs-sim.org/
wsc07papers/186.pdf

Brandmeyer, J. E., Solano, E., Zerbonia, R. A., Gao,
G., Xin, L., Tian, C., & Jiawen, J. (2004, October).
Development of an air quality management
decision support system for Beijing, China. Paper
presented at the Community Modeling and
Analysis System (CMAS) Models-3 Conference,
Chapel Hill, NC.

Bulatewicz, T. (2006). Support for model coupling: An
interface-based approach (Unpublished doctoral
dissertation). University of Oregon, Eugene, OR.

Eddy, D. M., & Schlessinger, L. (2003). Archimedes:
A trial-validated model of diabetes. Diabetes Care,
26(11): 3093–3101.

Epstein, J. M., Goedecke, D. M., Yu, F., Morris, R. J.,
 Wagener, D. K., & Bobashev, G. V. (2007).
Controlling pandemic flu: The value of interna–
tional air travel restrictions. PLoS ONE, 2(5):
e401. doi:10.1371/journal.pone.0000401

Ford, R. W., Riley, G. D., Bane, M. K., Armstrong,
C. W., & Freeman, T. L. (2006). GCF: A
general coupling framework. Concurrency and
Computation: Practice and Experience, 18(2):
163–181.

Guo, W., & Langevin, C. D. (2002). User’s guide to
SEAWAT: A computer program for simulation
of three-dimensional variable-density ground
water flow. Techniques of Water-Resources
Investigations of the United States Geological
Survey, Book 6, Chapter A7. Tallahassee, FL: US
Geological Survey. Retrieved June 28, 2013, from
http://fl.water.usgs.gov/Abstracts/twri_6_A7_guo_
langevin.html

Hoheisel, A. (2002). Model coupling and integration
via XML in the M3 simulation. University
Park: CiteSeerx beta website, College of
Information Sciences and Technology, University
of Pennsylvania. Retrieved June 28, 2013,
from http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.60.5852

Institute of Electrical and Electronics Engineers
(IEEE). (2000). IEEE standard for modeling and
simulation (M&S) high level architecture (HLA)—
Framework and rules. IEEE Standard No. 1516
2000. New York: Author.

Jobson, H. E., & Harbaugh, A. W. (1999).
Modifications to the diffusion analogy surface-
water flow model (DAFlow) for coupling to the
modular finite difference ground-water flow model
(ModFlow). U.S. Geological Survey Open-File
Report 99-217. Reston, VA: US Geological Survey.
Retrieved June 28, 2013, from http://water.usgs.
gov/nrp/gwsoftware/modflow2000/OFR99-217.pdf

http://water.usgs.gov/nrp/gwsoftware/modflow2000/OFR99-217.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.60.5852
http://fl.water.usgs.gov/Abstracts/twri_6_A7_guo_langevin.html
http://www.informs-sim.org/wsc07papers/186.pdf

19 Coupling Models

Larson, J., Jacob, R., & Ong, E. (2005). The model
coupling toolkit: A new Fortran90 toolkit for
building multiphysics parallel coupled models.
International Journal of High Performance
Computing Applications, 19(3): 277–292.

Longini, I. M., Jr., Nizam, A., Xu, S., Ungchusak, K.,
Hanshaoworakul, W., Cummings, D. A., &
Halloran, M. E. (2005). Containing pandemic
influenza at the source. Science, 309: 1083–1087.

Salt, J. D. (2008). The seven habits of highly defective
simulation projects. Journal of Simulation, 2:
155–161. doi:10.1057/jos.2008.7

Riley, S. (2007). Large-scale spatial-transmission
models of infectious disease. Science, 316:
1298–1301.

Swain, E. D., & Wexler, E. J. (1996). A coupled
surface-water and ground-water flow model
(MODBRANCH) for simulation of stream-aquifer
interaction. Techniques of Water-Resources
Investigations of the United States Geological
Survey, Book 6, Chapter A6. Washington, DC: US
Geological Survey. Retrieved June 28, 2013, from
http://pubs.usgs.gov/twri/twri6a6/html/pdf.html

Warner, J. C., Perlin, N., & Skyllingstad, E. D. (2008).
Using the model coupling toolkit to couple earth
system models. Environmental Modelling &
Software, 23: 1240–1249.

Zacharias, G. L., MacMillan, J. , & Van Hemel, S. B.
(Eds.). (2008). Behavioral modeling and simulation:
From individuals to societies. Washington, DC:
The National Academies Press.

http://pubs.usgs.gov/twri/twri6a6/html/pdf.html

Acknowledgments
We thank D. Michael Goedecke for providing the Global Epidemic Model’s
source code and for his helpful insights into the model’s implementation details.
We also thank Ira M. Longini Jr. for providing the Southeast Asia model’s source
code. This research was supported in part by the Modeling of Infectious Disease
Agents Study (MIDAS), grant 1 U24 GM087704 from the U.S. National Institute
of General Medical Sciences (NIGMS).

RTI International is an independent, nonprofit research organization dedicated
to improving the human condition by turning knowledge into practice. RTI
offers innovative research and technical solutions to governments and businesses
worldwide in the areas of health and pharmaceuticals, education and training,
surveys and statistics, advanced technology, international development,
economic and social policy, energy and the environment, and laboratory and
chemistry services.

The RTI Press complements traditional publication outlets by providing another
way for RTI researchers to disseminate the knowledge they generate. This PDF
document is offered as a public service of RTI International.

www.rti.org/rtipress RTI Press publication MR-0026-1309

www.rti.org/rtipress

	Title page
	Copyright page
	About the Authors

	Contents
	Abstract
	Introduction
	Methods
	General Approach
	Proof of Concept
	Database
	Inserters and Extractors
	Models

	Results
	Scenarios
	Areas for Improvement

	Discussion
	References
	Acknowledgments

