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Coupling Models by Routing 
Communication Through a Database 
Eric Solano, Robert J. Morris, and Georgiy V. Bobashev 

Abstract 
As the number of available large and many-faceted computer models continues 
to increase, simulating complex systems by coupling existing models of smaller 
subsystems becomes more attractive because of advantages such as leveraging 
existing programming. Advances in computational technologies also contribute 
to the increased feasibility of coupled systems. Although coupled systems may 
be used to study new problems that their constituent models could not address, 
the coupling process brings its own challenges. The modeler may face the task of 
coupling models from a heterogeneous environment of development platforms, 
programming languages, and model assumptions. Moreover, the modeler may 
wish to allow constituent models to be replaced or upgraded without significant 
difficulty. We discuss a model coupling approach that attempts to address these 
issues. In our approach, the models run as separate executable processes and 
store data in a database for later retrieval by other models. While the approach 
does not prescribe any particular database design, we do suggest elements that 
are likely to appear. We describe a proof-of-concept application of the approach 
and evaluate how well our approach meets its goals. 
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Introduction 
In the past few decades, multiscale modeling 
(i.e., where separate models examine the same 
process but at different scales or resolutions) and 
multicomponent modeling have become increasingly 
important and widely used in a number of research 
areas. Examples of multiscale or multicomponent 
models can be found in biology, hydrology, 
climatology, warfare simulations, and many other 
disciplines (Eddy & Schlessinger, 2003; Swain 
& Wexler, 1996; Warner et al., 2008; Zacharias 
et al., 2006). As noted, multiscale models often 
include subsystems representing different scales, 
be they temporal, spatial, or biological. Similarly, 
multicomponent models often include subsystems 
representing different components, such as cities, 
bodily organs, or climate systems. In cases where 
standalone models of these subsystems already exist, 
modelers may wish to link the existing subsystem 
models together instead of implementing their own 
versions. This linking process is known as model 
coupling. 

Our work focuses on coupled systems in 
epidemiology, particularly coupled systems that 
analyze epidemic phenomena at both global and 
local scales. Coupling a global component with 
numerous local components is important for at least 
two reasons. The first is that even though local events, 
such as the emergence of a new strain of influenza 
and ways to contain the outbreak, are often of great 
interest to public health decision makers, local 
decisions could depend on the global features of the 
epidemic, including travel from other regions and 
supply and delivery of pharmaceutical preparations 
such as vaccines or antivirals. The second reason is 
that global disease spread, in turn, depends on the 
interaction of numerous local events. A pandemic 
involving millions of people worldwide could be 
driven by a small number of infected individuals 
traveling around the world and unknowingly 
spreading the disease locally. 

Epidemiology modelers have many options when 
choosing an abstraction for disease transmission. 
These options include patch models, distance models, 
multigroup models, and network models (Riley, 
2007). Another reason for coupling models, then, 

is to combine abstractions to exploit the advantages 
offered by each. For example, patch models and 
other equation-based models (EBMs) are attractive 
because they are computationally efficient and may 
be parameterized simply. Network models and 
other agent-based models (ABMs) are attractive 
because they can capture individual interactions and 
represent adaptive behavior. Coupling an ABM for 
local dynamics with an EBM for global dynamics 
allows the modeler to represent disease transmission 
at both local and global scales without either the 
heavy computational burden of an ABM or the loss 
of individual variation that is critical during the early 
stages of an epidemic, which is expected from an 
EBM (Bobashev, Goedecke, Yu, & Epstein, 2007). 

The design of such a coupled system needs to be 
flexible to accommodate scientific questions asked 
at different scales. For example, if the questions were 
to concern disease dynamics at a global scale, such 
as disease spread in a large region, the details of 
local spread could be suppressed, and a simplified 
EBM could be used instead of a detailed ABM for all 
critical locations. Similarly, as the questions switched 
from one local area to another, the details of spread 
in other local areas could be suppressed. At the same 
time, to accommodate collaboration among scientific 
communities, the design should enable the coupling 
of models developed by different research groups 
using a computational platform convenient to each 
particular group. 

Bulatewicz (2006) reviewed existing approaches to 
coupling multiple models, grouping them into four 
categories: monolithic, scheduled, component, and 
communication. The monolithic approach involves 
splicing the pieces together into one big model (Guo 
& Langevin, 2002; Jobson & Harbaugh, 1999; Swain 
& Wexler, 1996). Such an approach is attractive 
because it creates a single module. However, it tends 
to require significant reprogramming that must be 
repeated whenever a constituent model is added or 
replaced. In addition, it requires all the models to be 
implemented in the same programming language. 

In the scheduled approach, models are executed as 
independent programs and do not communicate 
with each other while they are executing. Instead, 
each model produces output data sets at the end of 
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its execution. These output data sets are used as the 
initial data sets in other models. This approach is not 
suitable when models need to exchange data while 
they are executing. 

Like the monolithic approach, the component 
approach combines individual models into a single 
executable model, but it improves on the monolithic 
approach by encapsulating each model into its own 
distinct component. The components communicate 
with each other through a well-defined interface, 
typically using functions or libraries that are 
provided as part of a framework. This approach 
avoids much of the reprogramming necessary in 
the monolithic approach when a model is added 
or replaced. However, it still requires each model 
to be implemented in the same programming 
language, and the allowed languages are limited to 
those supported by the framework. Examples of 
the component approach are the General Coupling 
Framework (Ford, Riley, Bane, Armstrong, & 
Freeman, 2006) and the Model Coupling Toolkit 
(Larson, Jacob, & Ong, 2005). 

Finally, in the communication approach, models are 
executed as independent programs and communicate 
with each other during execution using some form 
of message passing. In this approach, no significant 
reprogramming is required to add or replace a 
model, and models need not be implemented in 
the same programming language, although the 
allowed languages are limited to those supported 
by the message-passing library. Frameworks that 
use the communication approach can be classified 
by whether or not they include independent 
applications (couplers) to mediate the execution and 
communication among the models. Frameworks 
that do include a coupler have communication 
libraries that support direct model-to-model 
communication as well as model-to-coupler 
communication. Frameworks that do not include 
couplers are essentially libraries of data transfer and 
transformation routines customized for the data types 
(grids, flux, etc.) and communication styles (high
bandwidth, parallel, etc.) needed by models. 

Examples of frameworks with couplers are the 
Potential Coupling Interface (PCI) (Bulatewicz, 
2006) and the Standard for Modeling and Simulation 

(M&S) High-Level Architecture (HLA) (Institute of 
Electrical and Electronics Engineers [IEEE], 2000). 
Other frameworks use databases to aid in the process 
of execution and communication among the models. 

The PCI describes the coupling potential of a model, 
or the aspects of the model that affect how it can 
be coupled to another model. PCIs are created as 
model metadata and the variables accessible at each 
coupling point are specified. When a PCI is created, 
the original model source code is automatically 
instrumented with communication code, and after it 
is compiled, the resulting coupling-ready executable 
can be used in any coupling. 

The HLA defines the format and syntax of HLA 
object models. The HLA is an integrated approach 
developed to provide a common architecture for 
simulation. Model interactions in the HLA are 
specified through interaction classes in an interaction 
class structure table, similar to the way in which 
objects are described in an object class structure table. 

The use of databases in communication approach 
frameworks has been reported in the literature. In 
one framework (Hoheisel, 2002), control and the data 
communication among the distributed simulation 
models are realized by specialized markup languages 
that employ the XML technology for extension and 
validation. The input and output data of the models 
are represented by an XML data model that includes 
also the physical and mathematical meaning of the 
transferred data so that different models can be easily 
coupled by connecting their XML formatted input 
and output streams, via sockets. The initialization 
parameters and the relevant output data of the 
models are stored in an SQL database (MySQL). 

Another framework (Brandmeyer et al., 2004) 
uses the U.S. Environmental Protection Agency’s 
Multimedia Integrated Modeling System (MIMS) 
to specify parameters and execute multiple 
environmental models. The MIMS framework 
provides tools for connecting executable programs, 
launching programs in sequence, and transferring 
data between those programs. An Oracle server and 
databases supply historical data for use with the 
models. The framework includes connectivity scripts 
(couplers) that transfer data between the models and 
the Oracle database. 
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We have developed a communications-based 
approach where models run concurrently while 
exchanging data through an intermediate relational 
database management system. Although we 
developed the approach to produce multiscale 
epidemic models, it can also be applied to other 
disciplines and to settings in which models are 
distinguished by factors other than scale. In the next 
sections, we start with a general description of the 
approach. Then, we describe a practical example 
of its application that we developed as a proof of 
concept. Finally, we evaluate how well the approach 
meets its goals and discuss its limitations. 

Methods 

General Approach 
We present an approach to model coupling in which 
the models run concurrently while exchanging 
data through an intermediate relational database 
management system. Auxiliary tools tailored to each 
model assist the models in inserting and extracting 
data into and out of the database. Logically, the 
auxiliary tools are known as “inserters” and 
“extractors.” Because the models run concurrently, 
and because the models may use data obtained 
from other models in their own procedures, it is 
important for the models to keep their internal 
clocks synchronized. In addition, the inserters and 

extractors need to be scheduled to run at appropriate 
times. Our approach uses the database for clock 
synchronization and process scheduling. 

Figure 1 displays a schematic illustrating our approach 
when applied to a situation in which two models 
are coupled. In the figure, M1 and M2 represent 
the models, DB represents the database, I1 and I2  
represent the inserters, and E1 and E2 represent 
the extractors. Clock synchronization and process 
scheduling are omitted for simplicity. When model 
M1 needs to send data to model M2, it exports 
the data in a format convenient to model M1. The 
exported data are represented in the schematic as TI1. 
Inserter I1 (the inserter for model M1) then imports 
the TI1 data and inserts them into the database. Next, 
extractor E2 (the extractor for model M2) extracts 
the data from the database and exports them into 
a format convenient to model M2. The exported 
data are represented here as TE2. Finally, model M2  
imports the TE2 data. A similar path is followed in the 
reverse direction when model M2 needs to send data 
to model M1. 

The inserters and extractors are not essential to 
the procedure and may be omitted if the models 
can conveniently write their data directly to the 
database. However, using them has the advantage of 
isolating the models from the database. This allows 
the models to interact with the data in ways that 

Figure 1. In the general approach, when applied to a situation in which two models are coupled, the models run 
concurrently while exchanging data through an intermediate relational database management system. 

DB 

TI2 

TE2 

M2 

I2 

E2 

I1 

E1 

TI1 

TE1 

M1 

M1 and M2 = models; DB = database; I1 and I2 = inserters; E1 and E2 = extractors; TI, TI2, TE1, and TE2 = data. 
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make no assumptions about the database structure. 
Instead, any such assumptions are implemented in 
the inserters and extractors. As a result, changing 
the database structure requires changes only to 
the inserters and extractors, which are presumably 
shorter and less complex than the models and 
therefore easier to modify. 

The data model design will likely differ from one 
coupled system to the next. The design may depend 
on many factors, with the most obvious being the 
specific data types to be exchanged or the frequency 
with which instances of each data type are exchanged. 
Despite these variable factors, we expect most 
database designs will share a few common elements. 
The database design will probably include a table 
representing all the models; a table representing all 
model runs, so that other tables can contain data from 
multiple model runs; a table that will hold the actual 
data items as they are exchanged; a table defining a 
standard representation for each common data type 
to be exchanged; and one or more tables that handle 
clock synchronization and process scheduling. 

Clock synchronization and process scheduling 
methods may also vary considerably from one 
coupled system to another. Coupling discrete-time 
models may call for a different design than coupling 
discrete-event models, for example. For discrete-time 
models that exchange data at every time step (i.e., 
time is broken up into slices or steps), scheduling 
each process to run in a particular order at every 
time step may be sufficient to keep the model clocks 
synchronized. In this case, the database would 
probably need tables for process scheduling but not 
for clock synchronization. For discrete-time models 
that exchange data at irregular or unpredictable 
time intervals and for discrete-event models that 
exchange data at arbitrary time points, dedicated 
clock synchronization tables are probably necessary 
in addition to the process scheduling tables. In our 
approach, the models, inserters, and extractors 
communicate directly with the database to query and 
update both the clock synchronization and process 
scheduling tables. 

Proof of Concept 
To illustrate our general approach to model coupling, 
we developed a proof of concept using two existing 
and proven models of flu transmission. The first is 
the Global Epidemic Model (GEM), a stochastic, 
equation-based model that examines flu transmission 
on a global scale (Epstein et al., 2007). The second 
is a stochastic, agent-based model that examines flu 
transmission on a local scale in rural Southeast Asia 
(Longini et al., 2005). We refer to this local model as 
the SE Asia model. 

The two models differ in some fundamental ways. 
From a technical standpoint, the primary difference 
is that the GEM is implemented in Java programming 
language while the SE Asia model is implemented in 
C programming language. The primary substantive 
difference is that the two models simulate flu 
transmission at different scales. The GEM is designed 
to model flu transmission among hundreds of cities 
around the world, with relatively simple contact 
dynamics and population structure within each city. 
On the other hand, the SE Asia model limits its scope 
to a single rural region, but the contact dynamics 
and population structure within that region are more 
complex than those found in the GEM. For example, 
the SE Asia model varies contact rates based on a 
person’s age and also assigns personal social networks 
such as a person’s family, neighborhood, classmates, 
and coworkers. The GEM imposes none of this 
structure and instead assumes homogeneous mixing 
within each city. 

The GEM models disease transmission among its 
cities by simulating daily travel from city to city. (We 
use the term “city” for convenience, but actually the 
nodes may represent any geographic area.) The GEM 
bases travel on a transportation network in which 
each node is a city and pairs of nodes are connected 
when the daily travel total between those cities is 
nonzero. Conceptually, coupling the GEM and the 
SE Asia model means treating the region represented 
by the SE Asia model as another node in the GEM’s 
transportation network. The difference between 
the rural Southeast Asia node and the other nodes 
is that the other nodes are implemented internally 
by the GEM, while the rural Southeast Asia node is 
implemented externally by the SE Asia model. As a 
result, when the GEM directs travelers into its rural 
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Southeast Asia node, it must recognize that the node 
is implemented externally and export the travelers to 
the SE Asia model via the coupling infrastructure. The 
GEM must also “listen” to the coupling infrastructure 
to detect travelers who are exiting the rural Southeast 
Asia node. Similarly, the SE Asia model must interact 
with the coupling infrastructure to send travelers to 
the GEM and to receive travelers from the GEM. 

While our approach allows coupled models to 
exchange multiple data types, for the sake of 
simplicity we chose just one data type for our proof 
of concept: the traveler. The traveler data type has 
several associated attributes that are useful to one or 
both models, most notably disease status. Other data 
types a modeler may wish to exchange when coupling 
infectious disease models include vaccine doses and 
incidence rates. 

Database 
In this section, we discuss the design of the relational 
database that supports the models within the proof
of-concept coupled system. While we designed the 
database specifically to support the GEM and the SE 
Asia model, a modeler could use relational principles 
to modify the design to support the data requirements 
of other models and analysis tools. We implemented 
the database using PostgreSQL, an open-source 
relational database management system. 

The tables in the database can be split into a few 
groups: a table listing the models in the coupled 
system, tables defining the models’ representations 
of the traveler data type, tables describing how to 
convert between the models’ representations of the 
traveler data type, tables defining individual model 
runs, a table containing the exchanged traveler data, 
and a process scheduling table. 

The t_model table represents the models available in 
the coupled system and includes a name assigned to 
each one. Other models and tools refer to the models 
by these names. 

The traveler data type consists of six attributes 
relevant to influenza infection. The database contains 
a table for each of these six attributes, and each table 
contains the attribute values that are supported by 
each model. This set of tables thus defines the models’ 

representations of the traveler data type. The six tables 
and their contents are shown in Table 1. 

Table 1. Attributes of the traveler data type related to 
influenza infection 

Table Name Contents 

t_disease_stage Information about the stage of the 
disease’s natural history 

t_age Age groups supported by each model 

t_symptom Information about the symptom 
severity 

t_antiviral_time Time steps since antiviral treatment 
began 

t_pandemic_ 
vaccine_time 

Information about the time steps since 
the first pandemic vaccine dose was 
administered 

t_seasonal_ 
vaccine_time 

Information about the time steps since 
the first seasonal vaccine dose was 
administered 

In addition, the database contains a table called t_state 
that lists all the unique combinations of attribute 
values in the six attribute tables. All travelers entering 
the database are assigned a single state value from 
t_state representing a specific combination of the 
six attribute values. This simplified representation 
of the traveler’s attributes is used in other tables so 
that attributes can be added and removed without 
requiring fields to be added or removed in the other 
tables. Figure 2 shows the entity-relationship diagram 
(ERD) for this set of tables. 

The database contains a “crosswalk” table 
corresponding to each attribute table. The crosswalk 
table describes how to convert between the GEM’s 
attribute values and the SE Asia model’s attribute 
values. For example, consider the age attribute. The SE 
Asia model implements eight age groups, so the t_age 
table includes eight records for the SE Asia model, 
one record per age group. On the other hand, the 
GEM does not support age categories, so the t_age 
table includes a single age group called “n/a” (not 
applicable) for the GEM. When travelers move from 
one model to the other, they must be assigned an 
age group that is compatible with their destination 
model. Records in the t_age_crosswalk table provide 
specifications for making these assignments. One 
record says that 44 percent of the travelers from the 
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GEM’s n/a age group should be placed into the SE 
Asia model’s 18–44 age group. Another record says 
that 11 percent of the travelers from the GEM’s n/a 
age group should be placed into the SE Asia model’s 
5–10 age group. Other records handle travel in the 

opposite direction. One record says that 100 percent 
of the travelers from the SE Asia model’s 18–44 age 
group should be placed into the GEM’s n/a age group. 
Another record says that 100 percent of the travelers 
from the SE Asia model’s 5–10 age group should 

Figure 2. Entity-relationship diagram (ERD) for the t_state and t_model tables in addition to the attribute tables 

PK = primary key; FK = foreign key 
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be placed into the GEM’s n/a age group. All other 
combinations of GEM and SE Asia model age groups 
are similarly represented in the t_age_crosswalk table. 

The database contains two tables for defining 
individual model runs: t_scenario and t_run. The t_ 
scenario table assigns a name and a unique identifier 
to experimental scenarios, and the t_run table lists 
the multiple replicate iterations that are run for each 
scenario. 

The t_travel table contains the travel data that the 
models exchange at every time step. This table 
identifies the time step when the travel occurred, 
the traveler’s origin and destination models, and the 
traveler’s state—that is, the unique combination of 
attribute values assigned to the traveler. 

The t_event table is the process scheduling table. This 
table allows the coupled system to coordinate the 
execution of the models, inserters, and extractors in 
sequence by keeping information about the different 
events that occur as they run. These events represent 
the actions of the models, inserters, and extractors 
as they reach points in their execution when they are 
ready to pass data to the next step in the process. For 
example, the SE Asia model will update an event’s 
status in the table once it has completed writing an 
output file with the number of travelers exiting rural 
Thailand. 

Figure 3 shows the ERD for all the database tables 
except the six attribute tables and their corresponding 
crosswalk tables. Figure 4 shows the ERD for the 
entire database. 

The data structure includes primary keys in all 
data tables and foreign keys in most data tables to 
guarantee referential integrity. These keys reduce data 
errors by providing quality assurance as data values 
are added to the database. The relational design 
allows tables to be linked. 

In the ERDs, the fields composing a primary key 
are labeled PK, and those composing a foreign key 
are labeled FK1, FK2, etc. The ERDs show a fully 
interconnected database in which parent and child 
tables are related by foreign keys and cardinality 
relationships. 

A modeler who decided to add a new model to our 
proof-of-concept coupled system or to upgrade the 
GEM or SE Asia model might first need to alter our 
database design to accommodate features of the 
new or upgraded model. While we did not attempt 
to anticipate every possible change, we did design 
the database with one change in mind: scaling to 
accommodate additional attributes of the traveler 
data type. Each traveler attribute is represented by its 
own table in the database. If a new model introduced 
into the coupled system were to implement additional 

Figure 3. Entity-relationship diagram for the t_model, t_travel, t_scenario, t_state, t_event, and t_run tables 
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Figure 4. Entity-relationship diagram for the entire database 
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attributes that the modeler wanted to assign to 
travelers, the modeler should add a new attribute 
table to the database and populate it with records 
listing the attribute values supported by each model. 
Since this would be a new attribute, an existing model 
probably would not support any of its values. In this 
case, a “not applicable” record should be added for 
the model. Once the attribute table has been created, 
the modeler should create a corresponding crosswalk 
table to describe how to convert between each model’s 
values in the new attribute table. In addition to the 
attribute and crosswalk tables, the modeler should 
also update the queries that create the t_state and 
t_state_crosswalk tables so that they account for the 
new attribute. 

A modeler might also decide to modify our proof
of-concept coupled system to exchange other data 
types besides the traveler. Adding a new data type 
might require adding new attribute tables, or the 
modeler might be able to reuse some of the traveler 
attribute tables. For example, if the new data type 
were total population size with disease stage as the 
only attribute, then the traveler disease stage attribute 
table might be sufficient to describe the new data 
type. However, if the new data type were vaccine 
doses with vaccine effectiveness rate as an attribute, 
then the modeler probably would need to add a new 
attribute table because vaccine effectiveness is not 
an attribute of the traveler data type. The modeler 
should create a crosswalk table for any new attribute 
tables and then create tables similar to the traveler 
data type’s t_state and t_state_crosswalk tables that 
list all the unique combinations of the new data type’s 
attribute values. Finally, the modeler should create a 
table to hold data points of the new data type as they 
are exchanged by the models, similar to the t_travel 
table for the traveler data type. 

Inserters and Extractors 
The models in our proof-of-concept coupled system 
need to communicate with the database at every time 
step. Each model records the number of travelers 
exiting the model, discovers the number of travelers 
entering the model, and updates the t_event table. We 
developed auxiliary tools to shift some of the database 
connectivity tasks out of the models. Specifically, 
we created auxiliary tools called inserters to handle 

the task of inserting into the database the number 
of travelers exiting the models. We created auxiliary 
tools called extractors to handle the task of extracting 
from the database the number of travelers entering 
the models. We did not create auxiliary tools to 
handle updates to the t_event table, so the models are 
responsible for performing this task themselves by 
connecting to the database and communicating with 
it directly. 

We wrote the inserters and extractors in Java, using 
the open-source Java Database Connectivity drivers 
to connect to the PostgreSQL database. Each tool 
provides one well-defined function. For example, one 
inserter’s function is to add records to the t_travel 
database table indicating the number of people who 
travel from the GEM to the SE Asia model. Adding 
records for travel from the SE Asia model to the GEM 
is a different function and is therefore handled in a 
different inserter. If we were to later expand the proof 
of concept by adding a third model—a Mexico City 
model, for example—then we would write a new 
inserter for travel from the GEM to the Mexico City 
model and a new inserter for travel from the Mexico 
City model to the GEM. If we later were to again 
expand the proof of concept by allowing the models 
to exchange another data type in addition to travelers, 
we would write a new set of inserters for the new data 
type. 

We wrote two inserters for our proof of concept, one 
associated with the GEM and one associated with 
the SE Asia model. Similarly, we wrote one extractor 
associated with the GEM and one extractor associated 
with the SE Asia model. Since we use the coupled 
system for exchanging only the traveler data type, 
each inserter and extractor handles only traveler data. 

An inserter in our proof of concept operates by 
polling the t_event database table, waiting to detect 
an event indicating that its associated model has 
written a text file containing outgoing traveler counts. 
Upon detecting that event, the inserter parses the 
file, performs any necessary processing on the data 
it finds, and then inserts records into the t_travel 
database table. Finally, it updates t_event with an 
event indicating “new records are available in t_ 
travel.” The inserter then resumes polling t_event to 
repeat the cycle at the next time step. It continues in 
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this manner until it detects the event indicating “the 
model run has finished.” 

Like inserters, an extractor operates by polling the 
t_event database table. The extractor waits to detect 
the event indicating that the inserter associated 
with the other model has added new records to 
the t_travel database table. Once it detects that 
event, it uses the database’s attribute and crosswalk 
tables to convert the traveler counts from the other 
model’s representation to its own associated model’s 
representation, performs any necessary processing 
on the resulting data, and writes the data to a text file. 
Finally, it updates t_event with an event indicating 
that it has completed writing its text file. The extractor 
then resumes polling t_event to repeat the cycle at 
the next time step. It continues in this manner until 
it detects the event indicating that the model run is 
finished. 

The primary reason for using inserters and extractors 
is to isolate the models from the database. This 
isolation has two benefits. First, it promotes a 
separation of responsibility in which the models 
focus on model-related tasks and other tools focus 
on database-related tasks. Second, it helps reduce 
the need to update the models when the database 
structure changes. The database structure may change 
for many reasons, such as general maintenance and 
improvement or the addition of data elements to 
support new or upgraded models. Because the GEM 
and the SE Asia model are being actively maintained 
and improved, upgrading the versions currently used 
in the proof of concept to newer ones is a distinct 
possibility. If upgrading one model necessitates 
changes to the database, the model-database isolation 
means that corresponding changes likely need to be 
made in the other model’s inserter and extractor, not 
in the model itself. 

Models 
Broadly speaking, the GEM and the SE Asia model 
perform the same basic procedure. They step 
through time in discrete units of 1 day, performing 
certain tasks during each time step. These tasks 
include simulating contacts among people in the 
modeled populations, deciding which susceptible 
people become infected as a result of those contacts, 

updating the disease status of all the sick people, 
and applying any desired interventions, such as 
vaccinations or quarantines. In addition, the GEM 
simulates the travel of people from city to city. 

A few of the models’ tasks enable them to function 
within the proof-of-concept coupled system. During 
each time step, the SE Asia model determines which 
people travel out of its modeled population and 
writes this information to a text file. It then updates 
the t_event database table indicating that it has 
written its file of outgoing travelers. Next, the SE 
Asia model polls t_event until it detects the event 
indicating that its extractor has created a text file of 
incoming travelers from the GEM. Once it detects 
that event, it parses the file and adds those travelers 
to its population. From there, it proceeds normally 
until the next time step, when it repeats the cycle. It 
continues in this manner until it detects the event 
indicating that the model run is finished. 

The GEM performs similar tasks to work within the 
coupled system. During each time step, the GEM 
polls the t_event database table until it detects the 
event indicating that its extractor has created a text 
file of incoming travelers from the SE Asia model. 
Once it detects that event, it parses the file and 
combines the travelers from the file with the travelers 
exiting the rest of its modeled cities to determine how 
many people travel into each city. Next, the GEM 
writes a text file containing counts of travelers who 
enter the SE Asia model, after which it updates the 
t_event table indicating that it has written its file of 
outgoing travelers. It then proceeds normally until the 
next time step, when it repeats the cycle. We decided 
to make the GEM the “controlling model,” in that it 
controls how long the models run. Therefore, when 
the GEM reaches its terminating condition, it adds 
an event to t_event indicating that the model run is 
finished. All other components in the coupled system 
check for this event to discover when they should 
terminate. 

Unless a model was designed from the beginning to 
be coupled with other models using our approach, 
it will certainly require modification before it can 
function within a coupled system. We made several 
changes to the GEM and SE Asia model, which we 
summarize here. This list is provided as an example of 



   

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	

12 Solano et al., 2013 RTI Press 

the types of changes a modeler may need to consider 
when preparing models for coupling. We made the 
following changes to the GEM: 

•	 We added code to the GEM to implement 
communication with the coupled system’s database. 
This included connecting to and disconnecting 
from the database, adding events to the process 
scheduling table, and polling the process scheduling 
table to detect the existence of events. 

•	 We added the region represented by the SE Asia 
model to the GEM’s transportation network as a 
new node. Because many of the SE Asia model’s 
parameters were derived from studies of rural 
Thailand, for the purposes of the coupled system, 
we assumed that the region was in rural Thailand. 
Therefore, we named the node Rural Thailand and 
incorporated it into the rest of the transportation 
network by adding a single connection between 
the new Rural Thailand node and the existing 
Bangkok node. This network structure implies that 
all travelers into the SE Asia model come from the 
GEM’s Bangkok node and that all travelers out of 
the SE Asia model enter the GEM’s Bangkok node. 

•	 We added Rural Thailand to the GEM’s input file 
that lists its recognized cities. We added an attribute 
to this file indicating whether each city is modeled 
internally by the GEM or externally by another 
model. If externally, the attribute also indicates 
whether the city is modeled by an agent-based 
model or an equation-based model. 

•	 We modified the GEM to distinguish externally 
modeled cities from internally modeled cities in 
certain calculations. When calculating the number 
of travelers exiting an externally modeled city, 
the GEM waits to discover this information from 
the coupling infrastructure. When calculating 
the number of travelers entering an agent-based, 
externally modeled city, the GEM rounds all travel 
counts to integers. When updating population 
totals, the GEM ignores externally modeled cities 
under the assumption that external models keep 
track of their own population totals. 

•	 We added code to the GEM that exports the 
outgoing traveler data to a text file and imports the 
incoming traveler data from a text file. 

•	 We modified the GEM to allow an initial condition 
of zero infected people in all of its internally 
modeled cities. Outside the context of the coupled 
system, when the GEM was self-contained and 
did not exchange individuals with another model, 
this initial condition was not allowed because it 
generated a scenario in which no one ever became 
infected, yielding a useless model of disease 
transmission. However, one scenario we wanted 
to model within the coupled system was the 
situation in which the infection arises in the region 
represented by the SE Asia model and later spreads 
to the cities represented by the GEM. In this case, 
an initial condition of zero infected people in all the 
GEM cities was appropriate. 

We made the following changes to the SE Asia model: 

•	 We added code to the SE Asia model to implement 
communication with the coupled system’s database. 
This included connecting to and disconnecting 
from the database, adding events to the process 
scheduling table, and polling the process scheduling 
table to detect the existence of events. 

•	 The SE Asia model had basic support for people 
traveling out of its population at every time step. 
However, it did not support people traveling into 
its population, so we added code to implement this. 
After reviewing the SE Asia model source code, we 
realized that the model assumed a fixed population 
in many places. Implementing incoming travelers 
in the intuitive way—creating a new person for each 
incoming traveler and increasing the population 
size by one—would require extensive changes to 
the model, so we developed an alternate method. 
For each incoming traveler, we chose an existing 
population member at random and replaced some 
of that member’s attributes, such as disease status, 
with those of the traveler. For consistency, we 
modified the existing implementation of outgoing 
travel using similar logic. Instead of simply 
removing an outgoing traveler from the population, 
we replaced the traveler with a new person who 
retained most of the attributes of the traveler with 
the exception of a few, such as disease status, that 
we re-initialized. 
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•	 We 	added 	code 	to 	the 	SE 	Asia 	model 	that 	exports 	
the outgoing traveler data to a text file and imports 
the incoming traveler data from a text file. 

•	 The 	SE 	Asia 	model 	implemented 	its 	own 	conditions 	
for terminating the model run. Namely, it 
terminated once it had run for a specified number 
of days or once its population included zero 
infected individuals. However, within the coupled 
system, we wanted it to continue running until 
the GEM terminated. Therefore, we removed its 
existing termination conditions and replaced 
them with the condition that it would run until it 
detected the model termination event in the t_event 
database table. 

•	 We 	modified 	the 	SE 	Asia 	model 	so 	that 	we 	could 	
override the file system locations of all its input and 
output files from the command line. 

Results
 

Scenarios 
Because the coupled system we developed is a 
proof of concept only, we did not run it under 
experimental scenarios with the intent of drawing 
substantive conclusions. However, we did run it to 
verify that the coupled models interacted with the 
coupling infrastructure correctly and that travelers 
moved between the coupled models appropriately. 
We present results of the proof-of-concept coupled 
system from two sample scenarios. We stress that 
these results are for illustration purposes only. 

In the first scenario, we placed the source of the 
infection in rural Thailand—that is, in the SE Asia 
model—by setting the SE Asia model to contain 
10 initially infected people and every GEM city to 
contain zero initially infected people. We disabled 
all interventions (vaccinations, antivirals, travel 
restrictions, and quarantine) in both models. 
Figure 5 displays the results of a single iteration of 
this scenario. Plot A displays the daily number of new 
infectious cases in the SE Asia model as a percentage 
of the model’s total population size. Plot B displays 
the daily counts of infected people traveling from 
the SE Asia model into the GEM. Plot C displays the 
daily number of new infectious cases in selected GEM 
cities as a percentage of each city’s total population 

size. Plot D displays the daily counts of infected 
people traveling from the GEM into the SE Asia 
model.  

From these plots, we see that the infection begins 
in the SE Asia model and eventually spreads to the 
GEM as infected travelers enter Bangkok from rural 

Figure 5. Results from the first scenario of the proof
of-concept coupled system: Rural Thailand as infection 
source 
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Thailand. After Bangkok, the infection later spreads 
to other GEM cities. While we did not display all 
155 GEM cities in the figure, we did confirm that 
Bangkok was the first GEM city to experience an 
infected case. 

In the second scenario, we placed the source of the 
infection in Hong Kong, a city modeled by the GEM, 
by setting Hong Kong to contain 10 initially infected 
people and every other GEM city as well as the SE 
Asia model to contain zero initially infected people. 
We applied vaccinations in the GEM but no other 
interventions in either model. Figure 6 displays the 
results of a single iteration of this scenario. The plots 
in Figure 6 are structured in the same way as those in 
Figure 5. 

From these plots, we see that the infection spreads 
from Hong Kong to other GEM cities, eventually 
making its way to Bangkok. Once in Bangkok, 
the infection crosses over to the SE Asia model as 
infected travelers enter rural Thailand from Bangkok. 
In the selected GEM cities as well as in rural Thailand, 
we see that the peak of the daily number of new 
infectious cases is roughly 40 percent lower than 
in the first scenario. We suspect this is because we 
applied vaccines in the GEM. If this is true (and 
we would need to perform real experiments with 
multiple iterations to prove that it was), a notable 
result is that the reduction in the number of cases 
in the GEM translated to a similar reduction in the 
number of cases in the SE Asia model. This implies 
that even though we applied no interventions 
in the SE Asia model, it was still affected by the 
interventions in the GEM, demonstrating an effect of 
coupling these models. 

Areas for Improvement 
We developed the proof of concept as a way to 
illustrate our general model coupling approach. Our 
goals were to highlight advantages of the approach 
and to discover potential problems a modeler might 
encounter when applying the approach. We did not 
attempt to resolve all the problems we encountered. 
Here we describe several such unresolved problems as 
areas where a modeler may want to improve the proof 
of concept before using it for serious experiments. 

Figure 6. Results from the second scenario of the proof-
of-concept coupled system: Hong Kong as infection 
source 

A – Daily number of new cases, SE Asia model 
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•	 The total population of the system declined over 
time. Our implementation of incoming and 
outgoing travel in the SE Asia model yielded a 
constant population size in that model, regardless 
of any imbalance between total travel into and out 
of the model. However, because the SE Asia model 
and the GEM allowed different subsets of people 
to travel, there was indeed a travel imbalance in 
which more people entered the SE Asia model than 
exited it, or, conversely, more people exited the 
GEM than entered it. As a result, the GEM reported 
a net decline in population size while the SE Asia 
reported a constant population size, producing 
an overall decline. The travel imbalance in our 
illustrative examples was about 200,000 people, 
which was only 0.03 percent of the initial GEM 
population but 40 percent of the SE Asia model 
population. The SE Asia model should probably be 
fixed so that its population size is properly adjusted 
to reflect the travel imbalance. 

•	 The SE Asia model reported misleading values for 
statistics that involved the total population size. This 
anomaly also occurred because our implementation 
of incoming and outgoing travel in the SE Asia 
model failed to properly account for a travel 
imbalance. While some values collected by the 
model did not reflect the travel imbalance, other 
values did. Statistics that are computed using a 
combination of these types of values are likely to be 
incorrect. 

•	 The number of travelers exiting the GEM did not 
always equal the number of travelers entering the 
SE Asia model. In the process of converting the 
traveler data type from the GEM’s representation to 
the SE Asia model’s representation, integer counts 
of the number of travelers were sometimes split 
into floating point counts. Because the SE Asia 
model is agent-based, the floating point counts had 
to be reconstructed back into integer counts. The 
reconstruction algorithm did not guarantee that the 
sum of the final integer counts would equal the sum 
of the original integer counts. The algorithm should 
probably be replaced with one that does preserve 
the number of travelers. 

•	 Updating the database tables to define the models’  
data representations was a manual and sometimes 
cumbersome process. To complete the limited 
updates that our test scenarios required, we had 
to edit the database tables directly, either by using 
database administration tools or by writing small 
programs. As it stands, the user would have to 
execute a sequence of SQL commands to regenerate 
the t_state and t_state_crosswalk tables after 
any change to one of the tables from which they 
were derived. A user-friendly interface could be 
developed to remove some of the manual steps 
and to make the remaining necessary manual steps 
easier. 

•	 The current database design supported only a single 
data representation for each model. This could 
be a problem if a modeler wished to run multiple 
scenarios where different scenarios required 
different data representations. For example, suppose 
the modeler wanted to run one scenario with age 
groups defined as [0–5, 6–17, 18–64, 65+] and 
another scenario with age groups defined as [0–17, 
18+]. Since age group is an element of the model’s 
data representation, only one age group definition 
can exist within the database at a given time. The 
database design should probably be altered to allow 
multiple data representations for each model. 

Discussion 
We have presented a general approach for coupling 
multiple simulation models and have demonstrated 
our approach by describing a proof-of-concept 
coupled multiscale system. The approach enables 
models to run concurrently while exchanging data 
with each other and is general enough to be applied 
to a range of situations. In the approach, models 
communicate with each other indirectly by using a 
database as a common access point for exchanged 
data. Models may also access the database indirectly if 
the exchanged data are routed through model-specific 
auxiliary tools. The approach also takes advantage of 
the database for clock synchronization and process 
scheduling. 

We developed this model coupling approach with the 
intent of meeting several goals that we considered 
important to producing a good coupled system. 
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Below, we describe these goals and evaluate how well 
our approach meets each of them. 

•	 Support models written in any programming 
language. Models may be written in programming 
languages such as C, C++, Java, MATLAB, and 
Fortran. We wanted the flexibility to mix and match 
any of these models, regardless of the language 
used. The only requirement our approach places 
on the programming language is that it must have 
the ability to read from and write to the database 
chosen for the coupled system. While this may rule 
out some combinations of databases and languages, 
database access libraries exist for most common 
databases and languages. 

•	 Be implementable using free and open-source 
software (FOSS). Requiring proprietary software 
might limit adoption of the approach because 
some researchers have philosophical objections to 
using proprietary solutions or simply cannot afford 
them. Our approach involves the implementation 
of two primary components: the database and the 
inserters/extractors. Multiple high-quality, FOSS 
solutions exist for each of these components. At the 
same time, our approach does not require FOSS 
solutions, so researchers are also free to use any of 
the multiple high-quality, proprietary solutions that 
exist for these components. 

•	 Support both agent-based and equation-based 
models. Similar to the argument for supporting 
multiple programming languages, we wanted the 
flexibility to mix and match models regardless of 
their implementation details. Our approach places 
no restrictions on whether the coupled models 
are agent-based or equation-based. However, 
mixing agent-based and equation-based models 
in a coupled system may require modelers to take 
special care when designing the database or when 
preparing the models for coupling. This is because 
the continuous nature of equation-based data may 
not be suitable in the discrete context of agent-
based data. 

•	 Minimize data loss resulting from the exchange of 
data between models that have varying assumptions 
and features. Models developed by different 
research groups for different purposes are likely 
to have different assumptions and features. When 
these varying assumptions and features impact the 

data exchanged by the models, information may 
be lost. We did not want to place limitations on 
the data exchange process that would contribute 
any additional loss of information beyond what 
is produced by incompatibilities in the models 
themselves. Our approach’s primary obstacle in 
this regard is being able to represent the data type 
of the exchanged data in a set of database tables. 
This may be more difficult in some cases than in 
others. However, given that our approach allows 
any number of tables with any number of fields, 
it is likely that any data type can be adequately 
represented in some way. 

•	 Support the coupling of an unlimited number of 
models. While we considered the coupling of 
just two models a good first step, we wanted an 
approach that would allow any number of models 
to be coupled. Coming from our perspective 
of infectious disease modeling, we envisioned 
coupling numerous models that examine disease 
transmission in small geographic areas to produce 
a single model covering a large geographic area. 
In our approach, any number of models may 
communicate with the database, so there is no limit 
on the number of coupled models. 

•	 Couple the models loosely. Loosely coupled models 
assume little, if anything, about each other. Because 
a model’s code is not affected by the presence or 
absence of other models, it is easier to swap models 
into and out of the coupled system. Our approach 
loosely couples all the models by having them 
communicate indirectly through the database 
instead of directly with each other. The advantages 
of loose coupling become more pronounced as 
more and more models are introduced into the 
coupled system. Tight coupling would require 
each model to include code specific to every other 
model, while loose coupling avoids, or at least 
limits, this requirement. 

•	 Minimize the number of changes required in 
models when they are being prepared for the 
coupled system. The loose coupling between the 
models helps to eliminate many of the changes that 
otherwise would be required when a model was 
being prepared for the coupled system. However, 
some changes are unavoidable. Because the 
models communicate directly with the database 
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for the purposes of process scheduling and clock 
synchronization, the modeler must insert code 
at appropriate places to implement this database 
communication. The modeler most likely needs to 
insert code at appropriate places so that the model 
can export data into the coupled system and import 
data from the coupled system. The specifics of the 
exchanged data and the model’s role in the coupled 
system may imply additional changes. 

•	 Scale effectively as more models are coupled. 
Because we anticipated coupling many models, 
we were concerned about the potential for 
performance degradation as each new model was 
added. We wanted an approach that would not 
contribute additional performance losses beyond 
that imposed by the hardware. Our approach routes 
all communication through a database, which does 
highlight the database as a potential bottleneck. 
Fortunately, improving database performance is a 
well-developed discipline, and many techniques 
for improvement are available if database 
performance becomes a problem. In addition, 
because the models, inserters, and extractors 
all run as separate processes in our approach, it 
should be fairly straightforward to distribute them 
across a multiprocessor architecture for further 
performance gains. We wanted to achieve scalability 
in the context not only of performance, but also of 
development time. We wanted the effort required to 
couple each new model to be approximately equal 
instead of being proportional to the number of 
models already in the system. Our approach should 
achieve this through its loose coupling between 
models and between the models and database. 

A potential limitation of our approach is that we have 
applied it to only one model coupling scenario, and 
so we may be unaware of deficiencies that broader 
testing would reveal. For example, we have not 
attempted to use the approach with discrete-event 
models or in a distributed computing environment. 
Despite this limited testing, our experiences with 
other models give us confidence that the approach 
can be applied successfully in other contexts, as well. 

Another limitation has a much broader reach than 
the approach itself. While coupling models often 
seems like a good idea, the task must be undertaken 
with caution. Salt (2008) argues that it is one of the 

seven persistent mistakes of simulation modeling. 
To be meaningfully combined, models should be 
conceptually compatible. Because different models 
are usually developed by different research groups 
for different purposes, any models chosen as a set for 
coupling likely differ in the features they implement 
and the simplifying assumptions they make about 
their modeled phenomena. The utility of a coupled 
system is limited by the impact of these differences on 
the compatibility of the models. 

The two models we chose for our proof of concept 
were developed by different research groups and 
do indeed implement different features and make 
different assumptions. For example: 

•	 The two models make different subsets of the 
population eligible to travel to other cities. 

•	 The GEM assumes that all infectious people exhibit 
symptoms, but the SE Asia model assumes that 

some portion of the infectious people may be 

asymptomatic.
 

•	 The SE Asia model offers antiviral medication as a 
possible disease intervention, while the GEM does 
not. 

•	 Both models offer vaccination as a possible disease 
intervention, but their implementations differ in the 
timing, frequency, and effects of vaccination. 

•	 The SE Asia model uses age groups and social 
networks to structure its population, but the GEM 
does not. 

We have not attempted here to address the issue 
of whether these models are compatible enough 
for useful coupling. Instead, we leave that decision 
to future modelers who wish to move beyond the 
proof-of-concept stage in coupling the GEM and the 
SE Asia model. Evaluating the models’ compatibility 
while considering the goals of the proposed coupling 
will be a critical step in constructing a useful coupled 
system. 

Assuming compatible models can be identified, 
our model coupling approach could be applied to 
many simulation fields, including infectious disease, 
military operations, biological systems, multimedia 
environmental modeling, and manufacturing 
processes. The approach could be applied to 
multiscale modeling, or to models that operate at the 
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same scale but that examine different locations, such 
as geographic areas or internal organs. 

Our focus so far has been retrospective model 
coupling—that is, locating existing models and then 
determining how to couple them. However, our 
approach could also be applied to prospective model 
coupling. Here, modelers would reverse the process 
by first identifying a problem domain that could be 
simulated by coupling multiple models that do not 

yet exist, then developing both the models and the 
coupling infrastructure with interoperability as a 
requirement from the beginning. Prospective coupling 
would require more up-front coordination to ensure 
all the models would work with each other and with 
the coupling infrastructure, but would have the benefit 
of helping eliminate the model incompatibilities that 
might limit retrospective coupling. 
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