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Abstract
We present a heuristic control theory model that describes smoking under restricted 
and unrestricted access to cigarettes. The model is based on the allostasis theory 
and uses a formal representation of a multiscale opponent process. The model 
simulates smoking behavior of an individual and produces both short-term 
(“loading up” after not smoking for a while) and long-term smoking patterns (e.g., 
gradual transition from a few cigarettes to one pack a day). By introducing a formal 
representation of withdrawal- and craving-like processes, the model produces 
gradual increases over time in withdrawal- and craving-like signals associated 
with abstinence and shows that after 3 months of abstinence, craving disappears. 
The model was programmed as a computer application allowing users to select 
simulation scenarios. The application links images of brain regions that are activated 
during the binge/intoxication, withdrawal, or craving with corresponding simulated 
states. The model was calibrated to represent smoking patterns described in peer-
reviewed literature; however, it is generic enough to be adapted to other drugs, 
including cocaine and opioids. Although the model does not mechanistically 
describe specific neurobiological processes, it can be useful in prevention and 
treatment practices as an illustration of drug-using behaviors and expected 
dynamics of withdrawal and craving during abstinence. 
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Introduction
This paper presents a working prototype of a 
control-theoretic model that simulates realistic daily 
smoking patterns governed by a multiscale opponent 
process representing neurobiology of addictive 
behaviors. Until recently, many people considered 
drug addiction to be a moral failure, a lack of 
willpower. Only in the last few decades have scientific 
developments in neurobiology, especially functional 
magnetic resonance imaging (MRI), convincingly 
proven that addiction is a brain disease (Koob & 
Volkow, 2010). Prolonged use of certain drugs like 
nicotine or heroin can change brain functioning and, 
consequently, decision-making processes. How much 
of addictive behavior is the result of mechanistic 
brain function and how much is it influenced by the 
environment? Modern science’s attempt to explain 
and reproduce the complexity of human behavior 
is challenged by bridging human behavioral science 
with laboratory-based neurobiology, areas that 
traditionally were disconnected from each other. 
Computational models facilitate such bridging. 
For some chronic diseases (cardiovascular, cancer, 
diabetes, and obesity) models connecting behavior 
and physiology have already been developed, e.g., a 
proprietary Archimedes model simulates a virtual 
patient in the context of daily routine activities (Eddy 
et al., 2013). No analog of such a model yet exists for 
substance use. In this paper, we present a first step 
toward creating such a model where processes in the 
brain drive behavior and the environment impacts 
brain processes.

We start with a simpler model that serves the 
educational purpose of illustrating pathways from 
occasional smoking to dependence and examining 
how different periods of abstinence impact 
withdrawal and craving. General public and drug-
treatment counselors can use this model to provide a 
science-based explanation of daily smoking behavior. 
As more validated models of neurobiological 
processes become available, they can be incorporated 
into our model to expand the variety of explained 
behaviors.

Control-Theoretic Models of Substance Use 
Are Complementary to Biological Models
A large body of knowledge has been collected in 
neurobiology, genetics, behavior, treatment, and 
epidemiology of substance use (Ahmed et al., 2007; 
Bobashev et al., 2007; Gutkin et al., 2006; Koob 
& Volkow, 2010; Redish, 2004). A recent book on 
computational neurobiology (Gutkin & Ahmed, 
2012) covered the spectrum of models in each area. 
At least two models combine positive drug-induced 
learning and neural meta-plasticity mechanisms for 
the onset of drug-seeking and the opponent process 
as the origin of the transition to addictive behavior 
(Gutkin et al., 2006; Graupner, M., & Gutkin, 2012; 
Keramati & Gutkin, 2014). For example, according 
to Gutkin et al. (2006), nicotine seeking is initiated 
by drug-induced dopamine-dependent plasticity 
and upregulation in nicotinic receptor function; 
on the other hand, the addictive state depends on 
an opponent down-regulation of nicotinic receptor 
function and a subsequent disconnect between 
the motivation brain circuits and cortico-striatal 
action selection loops. Comprehending a cascade 
of feedback loops between a variety of biologic, 
neurocognitive, behavioral, social, and environmental 
factors is one of the main challenges in substance use 
research. A few models exist that describe various 
feedback loops (Lamy et al., 2011; Levy et al., 2013; 
O’Reilly & Munakata, 2000). However, most of these 
models are quite complex, and their practical utility 
for prevention and treatment is low.

In our study, we considered a different approach. 
Rather than combining many complex biological 
components, we started with a simple model 
based on control theory principles. The model 
describes multiscale behavior of an individual in its 
entirety and aims to achieve qualitative behavioral 
rather than biological accuracy. In control theory, 
“understanding” of substance-using behavior brings 
a utilitarian perspective where the scientific narrative 
is translated into mathematical models (Newlin et 
al., 2012; Bobashev, 2014). For example, when an 
individual is walking, several complex processes 
happen simultaneously in the brain, but from the 
control theory perspective, maintaining balance is just 
a coordination of feedback loops that can be formally 
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modeled and realized in self-stabilizing devices such 
as a walking robot. Although the real stabilizing 
mechanisms in a human brain and a robot are 
different, the stabilizing feedback principles remain 
the same. The model presented in this paper can be 
considered as a drug-using robot whose behavior 
mimics smoking patterns of a human under certain 
conditions. The feedback mechanisms modeled in 
this robot are based on the regulating principal of 
opponent process described below. Unlike a biological 
model that aims to uniquely describe “the truth,” a 
number of control process models can lead to the 
same phenomenological description. In this sense, we 
present a model rather than the model. A proposed 
control theoretic model has a module structure 
allowing one to replace individual components with 
specific neurobiological models.

Homeostasis, Opponent Process, and 
Allostasis
Scientists and researchers historically conceptualized 
the brain as designed to maintain a steady emotional 
state (homeostasis). Specifically, there exists a certain 
homeostatic set point, and when deviations from 
it occur (e.g., because of an external stimulus), the 
neurobiological processes bring the system back 
to the set point, thus maintaining a steady state. 
Homeostasis in the reward circuits means that 
when a strong reward creates a lasting effect, it must 
be countered by the opposite counter effect (i.e., 
“opponent process”), thus limiting the reward and 
returning brain neurocircuitry to the steady state. 
Similar to a thermostat in cold weather that responds 
to a door left open, the response is not immediate and 
cannot immediately change the state, but it works its 
way to establish the steady state. Solomon and Corbit 
(1973, 1974) formally introduced the concept of the 
opponent process with respect to emotional states 
in 1973 and further developed it in 1974; however, 
anecdotal mentions of an opponent process can be 
spotted in Plato (Fowler, 1966, p. 209):

What a strange thing, my friends, that seems to 
be which men call pleasure! How wonderfully it 
is related to that which seems to be its opposite, 
pain, in that they will not both come to a man at 
the same time, and yet if he pursues the one and 
captures it he is generally obliged to take the other 
also, as if the two were joined together in one head.

Solomon (1980) described drug addiction as the 
result of an emotional pairing of pleasure and 
the delayed emotional symptoms associated with 
withdrawal. According to this theory, during 
recreational drug use pleasure levels are high and 
withdrawal levels are low. After long use, levels 
of pleasure from using the drug decrease and 
withdrawal increases. Thus, eventually a switch in 
motivation occurs: rather than using the drug for 
pleasure, the subject is using to alleviate withdrawal. 
Such a long-term shift cannot be explained by 
the homeostasis theory because the optimization 
objective changes from optimizing pleasure to 
minimizing withdrawal (Ahmed & Koob, 2005). 
Interestingly, the hedonic theory of addiction, as 
Solomon phrased it, was modified in recent years 
to focus more on motivation rather than emotional 
impact. Ample evidence has shown that liking a drug 
and wanting a drug are dissociable and that the latter 
actually drives the addiction process. In this way, the 
initial drive to seek a drug is based on its motivation-
reinforcing properties, whereas the opponent process 
is linked to motivational withdrawal states. In the 
negative reinforcement theory of addiction (Koob 
& LeMoal, 2006; Koob & Volkow, 2010), the drug 
addict finds him- or herself in a motivationally 
suboptimal state when the drug is absent and is 
therefore motivated to seek and take the drug to 
redress the imbalance. Most clearly one can observe 
the dissociation between the motivation and hedonic 
impact for nicotine. It is a highly addictive substance, 
yet it has virtually no euphorogenic properties and 
produces rather mild hedonic withdrawal symptoms.

The concept of allostasis (Sterling & Eyer, 1988) 
expands the homeostasis theory by allowing 
adaptation through slow long-term changes in the set 
point. It suggests that long-term (chronic) adaptive 
change occurs to the reward set point. For example, 
after prolonged use of a drug, achieving the satiated 
state requires increasingly larger drug doses, which in 
turn can lead to loss of control over the drug taking, 
eventually leading to dependence (Koob & LeMoal, 
2006).

We developed and applied the model to describe 
self-administration of cocaine among rats; we then 
showed that the control-theoretic model fitted to 
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the data from one experiment would accurately 
predict multiscale patterns in another experiment 
with a different group of rats and different setting 
(Bobashev et al., 2015). Encouraged by these results, 
we attempted to develop a similar model for a 
cigarette smoker, because smoking remains a major 
public health problem. Additionally, there is large 
public health interest in understanding the use of 
electronic cigarettes because the rates of use are rising 
among middle and high school youth (CDC, 2016). 
Cigarettes are legal (at least for adults), and before 
the wide adoption of public health policy banning 
smoking in public places, an individual could smoke 
a cigarette almost whenever he or she wanted. Many 
studies have addressed smoking habits, quitting 
attempts, and the development of tolerance, which 
provides data and parameterization for control theory 
models. Our approach is to start with a simpler model 
(a smoking robot) and eventually increase model 
complexity to incorporate more complex behavior 
that the simple model does not describe. Our initial 
model focuses on the period when an individual 
has been introduced to smoking and is transitioning 
toward dependence.

Control process models that describe the 
phenomenology of allostasis implemented in a 
practical software application/tool can be used in 
both prevention and treatment of drug dependence. 
As summarized in Koob and Volkow (2010) the 
drug-dependent brain moves through three states 
(binge/intoxication, withdrawal, and craving) that 
are distinctly characterized by activations in specific 
parts of the brain. Interactive visualization of brain 
regions activated when a drug user moves through 
these stages can illustrate the biological addiction for 
patients.

The rest of the paper describes the working prototype 
of a control-theoretic model that simulates daily 
smoking patterns governed by the opponent process; 
presents the results of several experiments producing 
realistic patterns of smoking; and links the processes 
with visualizations of the brain areas that are 
activated during each of the drug use phases: binge, 
withdrawal, and craving. Potential extensions and 
future work are described in the discussion.

The Model
We considered a mathematical model of cascading 
feedback loops aimed to represent the following 
scientific narrative of allostasis and opponent process. 
Following Koob and LeMoal (2006) we considered 
a set point corresponding to a satiated state. If the 
actual state is lower than the set point, a signal is sent 
to use the drug (i.e., smoke a cigarette). If the drug 
is available, it is immediately consumed producing 
a hedonistic stimulus in the brain, which in turn 
excites a cascade of stabilizing processes. Each next 
process in a sequence is slower than the predecessor, 
producing a delay between the peak values of 
these processes. The set point is a function of the 
combined effect of the slower processes reflecting 
the accumulation of the deviation from the satiated 
state because of prolonged use. Thus, the set point 
slowly moves toward increased consumption (when 
consumption is intense) and toward less consumption 
(when consumption is slower). Intermediate 
time scale processes that could be interpreted as 
accumulated toxicity affect the infinite drift of the set 
point to guard against unlimited drug consumption. 
Relapse after long abstinence is controlled by a very 
slow process that can be vaguely interpreted as long-
term memory. This process quickly resets use to the 
preabstinence level.

Main Model
Many biological processes are related to a 
concentration of some substance. We thus chose a 
family of continuous functions to represent cascading 
processes. We considered linear accumulation 
(i.e., increase in concentration) and first-order 
extraction. The mathematical model of such a process 
is sometimes called a running weighted mean or 
“leaky” integration in analogy with a leaky bucket in 
which water pours in with constant speed and leaks 
out with speed depending on the amount of water 
in the bucket (Newlin et al., 2012). Each process is 
characterized by a temporal scale associated with the 
accumulation and extraction rates. Because the next 
process is constructed as a weighted integration of the 
previous process, the characteristic scale of the next 
one is longer than the scale of the previous process.
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Although the equations are not designed to represent 
any real biological process, they are developed with 
a phenomenological interpretation in mind. The first 
process, Y1, corresponds to the effect of the drug, 
which is modeled with a pharmacokinetic equation. 
We assume that hedonistic effect depends on drug 
concentration and for smoking is defined on the scale 
of hours. The second process, Y2, vaguely corresponds 
to toxicity and describes the accumulation of the 
drug and the body’s processing of it. This process 
is modeled as a running weighted mean of Y1. The 
third process, Y3, characterizes how much drug 
an individual consumes over a long period, and is 
sensitive to the consumption mode (e.g., constant 
vs. binge) even if the amount consumed is the 
same. This process can thus resemble a “habit” and 
is defined on the scale of days. It was modeled as a 
running weighted mean of Y2. Process Y4 is again a 
running weighted mean of Y3. We did not interpret 
this process, which represents an even longer period. 
We keep process Y4 primarily for mathematical 
consistency to identify process Y5 as a long-term 
hedonistic memory defined on the scale of years. 
After a long period of abstinence, when processes 
Y1 through Y3 are quite low or virtually zero, Y5 
process holds its slow-changing values. A diagram of 
the model is presented in Figure 1.

The corresponding system of equations becomes the 
following:

Process A: dY1 /dt = e−αt − b1 Y1

Process B: dY2 /dt = a1 Y1 − b2 Y2

Process C: dY3 /dt = a2 Y2 − b3 Y3  (1)

Process D: dY4 /dt = a3 Y3 − b4 Y4 

Process E: dY5 /dt = a4 Y4 − b5 Y5, 

where a, b, and α are the scaling coefficients, and the 
initial conditions of all Yi are equal to zero.

To sustain recurrent drug-using behavior, we 
introduced a trigger that prompts self-administration. 
If the drug is available at that point, it is immediately 
used. We thus defined a dynamic threshold T such 
that when the effect Y1 drops below T, drug self-
administration is prompted. The higher the threshold, 
the faster the drug effect drops below it and, 
therefore, the shorter the time intervals are between 
self-administrations. If the decision to use a drug 
after reaching a threshold is not deterministic but 
probabilistic, the intervals between the consequent 
uses vary (i.e., the drug could be occasionally used 
either before or after the effect crosses the threshold).

We modeled the threshold after the following 
narrative: Process Y3 reflects the level of use over a 
long period (e.g., habit); thus, the threshold should be 

Figure 1. A schematic diagram of the model

Exogenous factors: 
Drug availability

Processes A, B, 
C, D, E, etc.

Effect 
(concentration) A(t,τ1)Threshold B(t,τ2)Y/N C(t,τ3)

Endogenous factors: Dose 
size, Time since the last dose

Exogenous factors: Competition with other 
reinforcers, External Cues, Stress, etc.

D(t,τ4) E(t,τ5)
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positively correlated with this process. A long-term 
memory process, Y5, allows resumption of use after 
long abstinence when process Y3 is close to zero; thus, 
the threshold should be positively associated with 
Y5. Process Y2 reflects toxicity and should prevent 
unlimited loading with the drug (e.g., smoking 
100 cigarettes in a row) so the threshold should be 
negatively balanced by toxicity Y2. We modeled such 
relationships as multiplicative effects.

T = (β3 Y3 + β5 Y5) / (1 + β2Y2),  (2)

where parameters β2, β3, and β5 are calibrating 
coefficients. Because process Y2 can be zero, we added 
a stabilizing unit “1” in the denominator.

External pressures and stressors can prompt use even 
when a person is in a satiated state. This is modeled 
through lifting the threshold by adding a “stressor” 
factor:

T = T + Tstress (3)

These stressors could be internal (mood, stress) or 
external (environmental) cues such as peer pressure, 
places that are associated with smoking, smell of 
tobacco smoke, etc. (Weirs et al. 2007, 2013).

Finally, the availability of cigarettes was modeled 
as a binary (0,1) indicator at each time point. If 
use is prompted but the availability indicator is 
zero, then no smoking occurs. Such formulation of 
the threshold concludes the model, which is then 
calibrated to specific patterns of smoking. The model 
was implemented in Java as a virtual smoker tool and 
in R as a developer tool.

Representations of Withdrawal and Craving 
States
As a person continues regular use of the drug and 
moves into addiction, he or she can experience 
emotional states of withdrawal and craving. The 
mechanisms of withdrawal and craving have been 
intensely discussed in scientific and popular literature 
(Goldstein & Volkow, 2002; Koob & Volkow, 2010; 
Nicotine and tobacco, 2015). Although we do not 
model the biology of these states, we do use existing 
narrative to define withdrawal- and craving-like 
states as functions of prolonged use without access 
to cigarettes. We conceptualize that these states 

are continuous functions of the underlying control 
processes; the manifestation of withdrawal or 
craving occurs when a certain threshold is crossed. 
Under this conceptualization, the withdrawal- and 
craving-like processes start immediately with use, 
but their manifestation is negligible. As the person 
uses more, these processes evolve and, after crossing 
their respective thresholds, define withdrawal- and 
craving-like states. Several studies and reviews 
(Benowitz, 2010; Shadel et al., 2000) show that the 
signs and symptoms of nicotine withdrawal syndrome 
can appear within 2 hours of the last use of tobacco, 
usually peak between 24 and 48 hours after cessation, 
and last from a few days to a week. This timing is 
supported by discussions in smoking cessation online 
forums. In our control-theoretic model we introduced 
a W-process aimed to represent withdrawal as a 
function of how far the current drug effect Y1 is from 
the satiation threshold T. This difference is modified 
by representative use level Y3, and attenuated by the 
drug effect:

W = d3Y3(T − Y1) / (Y0w+Y1), (3)

Similarly, we defined a craving-like process Cr as a 
function of the difference between the threshold and 
the effect but modified by the long-term processes Y5.

Cr = d5 Y5(T − Y1) / (Y0c + Y1), (4)

where d5 and Y0c are the calibrating coefficients. Two 
thresholds Tw and Tc are defined to indicate when 
each of the states manifests itself. Once again, we 
emphasize that these formulations are mathematical 
representations of narratives, not necessarily 
biological processes.

Although binge/intoxication is not common for many 
regular smokers even with unrestricted access to 
cigarettes, sometimes external stimuli such as extreme 
stress, social environment associated with heavy 
drinking, and chain smoking create situations for 
nicotine binge/intoxication. In our model, such events 
are possible when external factors artificially lift the 
trigger threshold T. A smaller amount of binging can 
be also observed after a period of abstinence when an 
individual is “loading up.” We thus introduce a notion 
of binge/intoxication, which is quantified in terms of 
effect Y1 exceeding a binge threshold Tb. We define 
the threshold as the multiple of the maximum effect 
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during regular smoking. The value of the multiplier is 
somewhat arbitrary (e.g., 10 cigarettes in a row). The 
problem with a practical definition of intoxication 
for cigarettes is that the dose for nicotine poisoning 
might be higher than the dose usually received when 
the user reports intoxication because of the role of 
numerous additives to tobacco. This topic, however, 
becomes of increased importance with electronic 
cigarettes when users can manipulate the dose they 
self-administer.

Simulation Scenarios
The model was calibrated to the following typical 
scenario: A subject started smoking with seven 
cigarettes a day and in 9 months progressed to 
smoking a pack a day. Such scenarios were described, 
for example, in http://www.smokingfeelsgood.com, 
Benowitz (2010), and Stolerman and Jarvis (1995). 
The subject had unrestricted access to cigarettes 
during the day except for 8 hours at night for sleep.

Model parameters were then fixed and used to 
simulate the following scenarios where cigarettes 
were not available for short and long periods. Such 
scenarios can occur, for example, when an individual 
attempts to quit and restricts smoking. In this simple 
model, we do not describe tobacco-seeking behavior 
leading to relapse but rather restrict or not restrict 
access to cigarettes without modeling the reasons. 
Both an R model and the JAVA-based application 
allow one to select any restriction schedule. Here we 
present two scenarios that illustrate the consequences 
of short- and long-term abstinence.

• Short-term restrictions. We restricted access to 
cigarettes for two 5-day periods mimicking an 
individual who attempts to quit but relapses after 
5 days.

• Long-term restrictions. Following results in peer-
reviewed literature (Cosgrove et al., 2009; Ward et 
al., 2001) that abstaining from smoking for a period 
longer than a month (90 days is recommended) 
is critical for long-term abstinence, we restricted 
access to cigarettes for more than 30 days but 
allowed for relapse.

Results
The actual simulation model is available upon request 
from the lead author. In this section, we present the 
results of the simulated scenarios and show a few 
model screenshots.

Model Calibration by Describing Regular 
Daily Use
We calibrated model parameters to produce a 
long-term steady state of smoking about a pack of 
cigarettes a day.

The model shows a gradual increase in the number 
of cigarettes per day, low levels of withdrawal- or 
craving-like functions (both under the respective 
thresholds), and a low level of the long-term process 
Y5. After repeated use of the drug, W gradually 
increases in value; this, combined with an increase 
in the number of cigarettes per day, leads to crossing 
the Tw threshold and manifestation of withdrawal. 
Craving function Cr slowly increases, too, but does 
not reach the threshold point. These effects signal the 
pathway to dependence when both W and Cr cross 
their respective thresholds. The times when increase 
in use by one cigarette per day occurs is noticeable by 
a slight dip in withdrawal (e.g., on day 29). Starting 
with 10 cigarettes per day, the individual in month 
6 stabilizes consumption at around 24 cigarettes 
per day, the rate identified by the American Cancer 
Society as heavy smoking. This rate of increase 
in consumption corresponds to the average rate 
(11 months for women and 16 months for men) 
at which individuals who start smoking reach the 
level of a pack a day (Thorner et al., 2007). In our 
model, such stabilization is achieved because of the 
inherent slow-changing negative feedback loops that 
eventually restrict unlimited use.

When an individual stops smoking for a short time, 
there is little effect on craving, which is illustrated 
in the example of a smoking break during sleep. 
When cigarettes are available any time, both W and 
Cr functions are virtually zero and the pattern of 
self-administration repeats almost perfectly. Some 
scientists view this process as a biological clock 
resulting in regular self-administration (Al-Delaimy 
et al., 2007, Tsibulsky & Norman, 2012). After a 

http://www.smokingfeelsgood.com


RTI Press: Occasional Paper A Control Theory Model of Smoking 7

RTI Press Publication No. OP-0040-1706. Research Triangle Park, NC: RTI Press.   https://doi.org/10.3768/rtipress.2017.op.0040.1706

period of forced abstinence 
(8 hours of sleep), the levels of 
both Cr and W functions increase, 
but the increase in W is much 
faster. Because both function 
W and the trigger threshold T 
are influenced by the growing 
function Y3, the increase in W 
is associated with a slight rise 
in the second nicotine dose and 
shortening of the interval between 
the first and the second dose 
compared to the rest of the doses 
(Figure 2).

After we calibrated the model to 
represent this pathway, we used 
the model without modifying its 
parameters to represent scenarios 
that reflect life events.

Scenario 1. Stop Smoking for a 
Short Time (5 Days), Relapse, and 
Then Stop Again
We turned off cigarette availability 
for 5 days, turned it back on for a 
week, and turned it off again for 
5 days. The resulting plot with 
overlaid drug effect, Cr, and W 
functions is presented in Figure 3.

This plot illustrates the difficulty 
in quitting and the high likelihood 
of relapse after a few days. 
W grows quickly and peaks 
around a day or two after quitting. 
Then, while W declines over the a 
few days, the Cr process builds up 
slowly. Figure 4 presents the same 
simulation as Figure 3 without 
overlaying the drug effect to 
emphasize the increased dynamics 
of Cr and W functions.

Figure 2. A plot of the drug effect, with overlaid withdrawal-like (W) and 
craving-like (Cr) functions

Figure 3. Plots of drug effect, Cr and W functions for multiple short-term 
abstinence

Figure 4. W and Cr processes reaching their thresholds after short-term break in 
smoking

Note: Each peak of the effect plot corresponds to smoking a cigarette when nicotine concentration quickly 
rises, and then drops. Withdrawal-like function builds up overnight but disappears after the first smoked 
cigarette. Craving-like function slowly builds up overnight but is quite weak to manifest craving.

Note: After stopping use for a few days, withdrawal-like function W is high at the beginning but quickly 
diminishes. Craving-like function increases slowly and disappears immediately after smoking is resumed. At 
the second abstinence after a few days, both withdrawal-like and craving-like functions reach higher levels 
than during the first abstinence period.
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Scenario 2. Stop Using for a Long 
Time
We restricted drug availability 
for a long time to illustrate how 
long-term effects of abstinence 
impact withdrawal- and craving-
like processes. Although process 
W can be strong at the beginning 
of the abstinence period, it wanes 
over the next few days. The Cr 
process continuously builds up 
over a longer time and peaks 
sometimes over a month after 
stopping use (Figure 5). Although 
the Cr process stays high for 
quite a while, it eventually declines to low levels. This 
observation reveals an important message: the feeling 
of craving will eventually subside if the subject stays 
abstinent for a long enough time.

Discussion
We developed a multiscale simulation model and 
a visualization tool to illustrate how theoretical 
narratives can be modeled through a control process 
model. The model incorporates an opponent 
process theory and reproduces allostatic behavior. 
In addition, the model illustrates how drug self-
administration is governed by a dynamically 
changing threshold with a number of processes 
governing slow and fast changes. Our model 
illustrates smoking behaviors of a heavy smoker and 
introduces withdrawal- and craving-like functions to 
link controlled processes. The model was calibrated 
to mimic an increase in smoking consumption from 
10 to 24 cigarettes a day. When use is disturbed 
by a lack of drug availability, the model illustrates 
why most individuals relapse within a day or two 
because of withdrawal and why repeated quitting and 
relapsing leads to the buildup of withdrawal. In terms 
of long-term effects, the model illustrates how craving 
builds up over a long period, but after a longer time, 
generally 2 to 3 months, craving mostly disappears. 
Finally, our model shows that even after a long period 
of abstinence, a small priming of use (e.g., smoking a 

single cigarette) can lead to a return to the use pattern 
before abrupt quitting.

By manipulating model parameters in Equations 
(1) and (2), one can control the rate at which an 
individual increases the daily rate of consumption, 
reaches the steady consumption, and responds to 
abstinence. Parameters in Equations (3) and (4) allow 
one to manipulate the time period when withdrawal 
and craving reach their peaks and how fast they 
disappear. Thus, the model provides the means to 
describe heterogeneity of behaviors.

For prevention, the visualization of possible behaviors 
and underlying mechanisms provides a powerful 
message to teenagers and young adults about 
the short- and long-term effects of smoking. For 
treatment, the tool provides a potential explanation 
of the recovery process and the short- and long-
term emotional effects of drug use reduction and 
abstinence. As discussed in Weirs et al. (2013), 
cognitive biases among drug users could be at 
least partially attenuated by self-awareness and 
understanding of neurobiological processes. Tools 
are needed to bring underlying, implicit, dynamics of 
craving to the explicit attention of substance abusers. 
After calibrating the model to typical behaviors, the 
users can further explore “what if ” scenarios through 
simulations and develop additional awareness of 
potential outcomes.

Figure 5. Illustration of the long-term dynamics of W and Cr functions
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Note: After abstinence for several months, both withdrawal- and craving-like functions drop below their 
respective threshold levels.
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Visualizations of Brain Regions
Intoxication, withdrawal, and craving are 
characterized by the activation of certain brain 
regions that Koob and Volkow (2010) clearly defined. 
We developed an interactive 3D visualization tool 
that highlights each of the regions as described in 
Koob and Volkow (2010) (Figure 6).

We also created still 2D slice images of the 3D brain 
that correspond to each stage using three different 
angles. Our withdrawal- and craving-like functions 
offer a link between the use and manifestation of 
these states and visualizations of active areas in 
the brain. These images were incorporated in the 
simulation application such that when processes Cr 
or W reach their corresponding threshold, the brain 
images corresponding to craving and withdrawal 
appear on the screen. For example, in Figure 5, on 
day 40 process Cr is above the threshold Tc while 

process W is below its threshold, indicating that the 
person is at the craving stage. Figure 7 is a snapshot of 
the part of the screen that highlights regions activated 
during the craving stage.

Figure 6. Screenshot of the interactive 3D model 
visualizing affected brain areas

Source: Model developed at RTI International by Georgiy Bobashev and 
John Holloway. Special thanks to Nicole Seider.

Figure 7. Application screenshot illustrating activated brain components during craving stage after no smoking for 12 days
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Limitations and Future Work
The results of the simulations are as good as 
the model assumptions, and there are plenty of 
them. Two key assumptions are that the drug is 
always available and that it is the only behavioral 
reinforcer. These assumptions are practical for 
laboratory experiments and allow translation of 
such experiments to real life. For smoking, these 
assumptions are somewhat justifiable: before 
restrictions on public smoking, cigarettes were 
broadly available and there were no adequate 
substitutions for the effects of having a cigarette. 
Other assumptions simplify parameter variation, 
an impact of environmental stressors, and ignore 
potential drug-seeking behaviors during withdrawal 
and craving. Although several complex models 
(Lamy, 2011; Levy, 2013) simultaneously include 
many aspects of measurable and unmeasurable 
human behavior, we started with a relatively simple 
model that was recently validated on data from 
animal experiments (Bobashev et al., 2015) and 
developed a representation of a specific substance use 
theory. 

Future work on the model will expand it in two 
directions. One is the inclusion of factors that changed 
the dynamics of use, such as restrictions on smoking 
in public spaces, social acceptance of smoking, 
the availability of nicotine replacement therapies 
such as Nicorette, and environmental cues. Data 
collected from Ecological Momentary Assessment 
(EMA), wearable sensors and laboratory experiments 
(Shiffman et al., 2009, 2014; Stevenson et al., 2017) 
could be used for calibration and validation of the 
enhanced behavioral model. Another direction is 
the replacement of specific individual components 
of the control theory model with corresponding 
neurobiological models as in Keramati & Gutkin, 
(2013). Many neurobiological theories are developed 
from animal experiments that are infeasible or 
unethical for use on humans. How applicable are these 
theories to realistic human life? Simulation modeling 
using virtual patients (in our case smokers) allows 
one to test the limits of theories developed from a 
controlled laboratory experiment, and thus to provide 
a translational link to behavioral science.
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