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Abstract
We show how calibration weighting can be employed to combine a probability 
and a nonprobability sample of the same population in a statistically defensible 
manner. This is done by assuming that the probability of a population element 
being included in the nonprobability sample can be modeled as a logit function of 
variables known for all members of both samples. Estimating these probabilities for 
the members of the nonprobability sample with a calibration equation and treating 
their inverses as quasi-probability weights is a key to creating composite weights for 
the blended sample. We use the WTADJX procedure in SUDAAN® to generate those 
weights and then measure the standard errors of the resulting estimated means 
and totals as well as assess the potential for bias in those estimates. The appendix 
contains the SAS-callable code for the SUDAAN procedures used in this paper.
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Introduction
Nonprobability survey samples—whose members do 
not have known probabilities of sample inclusion—
are everywhere and have considerable potential 
for bias (see Baker et al., 2013, and the references 
therein). It has become popular to attempt to remove 
the bias of an estimate derived from a nonprobability 
sample by first combining that sample, denoted here 
by S0, with a probability sample S1 that covers the 
same population U but shares no members with it. 
After that, one estimates the probability γk that a 
population unit k in the blended sample S = S0 ∪ 
S1 was originally from the nonprobability sample 
as a function of a vector of covariates zk available 
for members from both samples (when used here, 
“sample” always refers to a respondent sample). 

Valliant and Dever (2011) suggest that the inverse 
of this estimated probability—which they, following 
much of the literature, call a “propensity”—can be 
used as a quasi-probability sampling weight either 
directly, wk = 1/̂γ       k   ,  or indirectly after some form or 
poststratification. For example, Lee (2006) proposes 
sorting the blended sample by ̂    γ    k    values, then 
breaking the sample into cells of nearly equal size, and 
finally assigning the weight w    k   = ̂N       1 c   /n  0c  , where ̂N        1 c   
is the estimated-from-the-probability-sample 
population size of cell c containing nonprobability-
sampled unit k, and n0c is the number of members of 
S0 in c.

Although estimating γk = Pr(k ∈ S0 | k ∈ S ; zk) 
by fitting a logistic regression on the unweighted 
blended sample is often treated as an estimate for 
Pr(k ∈ S0 | zk), Robbins and colleagues (2021) argue 
that a better estimate for the quasi-probability that k 
is in the nonprobability sample when S0 ∩ S1 = ∅ is

p0k = Pr(k ∈ S0   | zk) = πk   ̂γ k/(1 - γ̂ k),

where π    k    is the probability that k is chosen for the 
probability sample (which can include an adjustment 
for unit nonresponse when it is needed). It is assumed 
that π    k    is known for members in the population that 
are not in S1.

To see how    p  0k   = Pr(  k ∈ S0     |   z  k   )     is derived, start with

πk = Pr(k ∈ S1 | k ∈ S ; zk) × Pr(k ∈ S | zk), and

 ​    ​​ 

 

 ​ ​  

	​​​  ​  ​​    ​ ​​ ​​​​​​ ​  ​​​ ​​  ​ ​  ​​    ​​  ​​   ​ ​​    ​​    ​​  ​​​ ​​​​

 

  ​ ​ ​ ​

	​​  ​  ​​  ​

	​​Pr(k ∈  S0| x  k   ) = Pr(k ∈ S0 | k ∈ S ; xk) × Pr(k ∈ S | xk),

then solve for   Pr(   k ∈ S0     |   z  k   ).     Elliott and Valliant 
(2017) make a similar point, suggesting a more 
sophisticated method could be used to estimate γk.

Robbins and colleagues (2021) offer methods for 
weighting the blended sample, but for now, we 
assume there are survey items of interest collected in 
the nonprobability sample but not in the probability 
sample so that quasi-probability weights for those 
items are only needed for the members of S0.

There are two critical assumptions underlying the use 
of p    0k   . One is that the probability and nonprobability 
sample have no member in common. This can be 
assured by removing any member of S1 from the 
nonprobability sample. The other is that Pr(k ∈ S0 | 
k ∈ S ; zk) can be modeled, whether by a logistic 
function (as in Robbins et al., 2021) or some other 
functional form (as suggested by Elliott & Valliant, 
2017). We believe that it is more reasonable to assume 
that   Pr(  k ∈ S 0     |   z  k   )     itself can be modeled by a logistic 
(or some other) function whether or not S0 ∩ S1 = ∅.

We first describe in general terms how that 
assumption can be used to generate quasi-probability 
weights for a nonprobability sample given either 
population totals for the component of zk or their 
probability-sample–estimated analogues. In our 
setup, when the population total is known for a 
component zk, it does not need to be collected on the 
probability sample (only the nonprobability sample).

Using the WTADJX procedure in SUDAAN 11, we 
then show how to estimate population means for 
variables collected from the nonprobability sample 
and for variables of interest collected from a blended 
sample comprising a nonprobability and a probability 
sample drawn from the same population when there 
are auxiliary variables collected on both samples that 
can be used to reduce or remove the biases of the 
estimates for the variables of interest.

This methodology was applied to a stratified 
simple random probability sample blended with 
a nonprobability sample drawn from the same 
population. The methodology can be used to assess 
the potential for bias in estimates based on the 
blended sample.

​ ​​ ​  ​​​​​​ ​​ ​​

​ ​ ​

​ ​
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Solving a Calibration Equation
The model

	​​ Pr​(​​k ∈ ​S​ 0​​​|​​ ​z​ k​​​)​​  = ​​ [​​1 + exp​(​​ ​z​ k​ T​ g​)​​​]​​​​ -1​​​	 (1)

is a selection model. If correctly specified, it 
models the probability that k ∈ U is included in the 
nonprobability sample S0 (which can involve self-
selection and response) as a logistic function of the 
vector zk with unknown parameter-vector g. Kott 
(2019) points out that this selection model can often 
be estimated by solving a calibration equation when 
each component of the population total  
Tz = ​​∑ kϵU​​ ​z​ k​​​​ is either known or consistently 
estimated from a probability sample, which itself can 
have been weighted to account for unit nonresponse 
(here “a consistent estimate” computed from a 
probability sample converges into the population 
parameter it estimates as the probability sample size 
and population sizes grow arbitrarily large).

A calibration equation that can be used to estimate g 
in equation (1) is

	​​ ∑ kϵ​S​ 0​​​​ ​[​​1 + exp​(​​ ​z​ k​ T​​   g​​)​​​]​​​ ​z​ k​​ = ​​   T​​ z​​​ ,	 (2)

where each component of ​​​   T​​ z​​​ is either assumed to be 
a known population quantity or a consistent estimate 
from a probability sample. The solution for ​​   g​​ in 
equation (2), when it exists, can usually be found 
using Newton’s method as Deville and colleagues 
(1993) show. That approach has been programmed 
into the SUDAAN 11® routines WTADJUST and 
WTADJX (RTI International, 2012), the R routines 
‘calib’ and ‘gencalib’ in ‘Sampling’ (Tille & Matei, 
2023), and elsewhere. We will describe how to use 
SUDAAN’s WTADJX for our purposes later. Other 
software packages could be used in a similar manner.

When a solution to equation (2) exists—and we will 
assume here it does—​​   g​​ is a consistent estimator for g 
under mild conditions we assume to hold. The quasi-
probability weight for k∈ S0 is then

	​​​ w​ k​​  = ​ [​​1 + exp​(​​ ​z​ k​ T​ ​   g​​)​​​]​​​​.	 (3)

The theory supporting this use of an assumed 
selection model like that in equation (1) together 
with a calibration equation like (2) first to estimate 
consistently the parameters of the selection model 

and then with an equation like (3) to use those 
estimates in generating quasi-probability weights 
(asymptotically equal to the inverses of the sample 
members’ probabilities of inclusion into the 
nonprobability sample) is analogous to the quasi-
random theory supporting the use and calibration-
equation fitting of a selection model for the response/
nonresponse mechanism in a probability sample. See, 
for example, Kott and Liao (2012).

In the nonresponse-adjustment setting of a 
probability sample, S1 ⊂ ​​S​ 1​ *​​, the selection (response) 
model ​​Pr​(k ∈ ​S​ 1​​|​ ​z​ k​​; ​S​ 1​ *​​)​​ = ​​[1 + exp​(​z​ k​ T​ g)​]​​​ -1​, ​​where ​​
S​ 1​ *​​ is the probability sample before unit nonresponse, 
replaces equation (1), and ​​w​ k​​ =​ ​​​𝝅​ k​ -1​​[​​1 + exp​(​​ ​z​ k​ T​​ ̂  g​​)​​​]​​​​ 
replaces equation (3), where ​​𝝅​ k​​​ is the probability that 
k has been chosen for ​​S​ 1​ *​​.

The assumption that every member of the population 
has a probability of selection into the nonprobability 
sample equal to​​ Pr​(​​k ∈ ​S​ 0​​​|​​ ​z​ k​​​)​​  = ​​ [​​1 + exp​(​​ ​z​ k​ T​ g​)​​​]​​​​ -1​​​ 
or any other monotonic differentiable function is a 
strong one.

An alternative justification for using equations (1) 
through (3) in creating weights in estimating a 
total like Y = ∑k∈U yk from a nonprobability sample 
of y-values follows. Suppose each yk ∈ U behaves 
like random variables with mean z​ k​ T​ β for some 
unknown parameter β whether (or not) k is in the 
nonprobability sample. That is, selection is ignorable 
in expectation with respect to this prediction model, 
so called because the model predicts a value for yk 
(Royall, 1970). Given ​​​   T​​ z​​​ and assuming equation (2) 
has a solution, if either this prediction model or the 
selection model holds among the members of the 
population, estimating Y with ​​   Y ​  = ​ ∑ k∈​S​ 0​​​​ ​w​ k​​​ ​y​ k​​​ will 
be nearly unbiased in some sense (technically, ​​   Y ​​ is a 
predictor, not an estimator, for the random variable 
Y under the prediction model). See Kott and Liao 
(2012) for a proof of this assertion. A similarly 
“doubly robust” approach can be found in in Chen 
and colleagues (2020).

When one of more components of ​​​   T​​ z​​​ is consistently 
estimated from a probability sample, the near 
unbiasedness of ​​   Y ​​ requires the combination of 
probability-sampling inference (for ​​​   T​​ z​​​) and either 
the selection model or prediction model (for ​​   Y ​​|​​   T​​ z​​)​.​ 
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Nevertheless, we call the former the selection-model 
framework and the latter the prediction-model 
framework.

Observe that ​​∑ k∈​S​ 0​​​​ ​w​ k​​​ ​y​ k​​ / ​∑ k∈​S​ 0​​​​ ​w​ k​​​​ is a nearly 
unbiased predictor for the population mean ​​y​​ - ​ =​∑k∈U 
yk/∑k∈U 1, when each yk ∈ U behaves like a random 
variable with mean z​ k​ T​ β, and 1 is either a component 
of zk or the linear combination of the components of 
zk.

As mentioned previously, when selected members 
of a probability sample S1 have design weights {dk} 
before unit nonresponse, where dk = ​​π​ k​ -1​​, then we can 
weight the unit respondents with

	​​​ w​ k​​  = ​ d​ k​​​[​​1 + exp​(​​z​ k​ T ​​   g​​)​​​]​​​​,	 (4)

when response is a logistic function of zk (which 
need not be the same as the vector in equation 
[1]), and ​​   g​​ (which likewise need not be the vector 
in equation [1]) satisfies the calibration equation ​​
∑ kϵ​S​ 1​​​​ ​d​ k​​​[​​1 + exp​(​​ ​z​ k​ T​​   g​​)​​​]​​​ ​z​ k​​ = ​​   T​​ z​​​.

Calibration weighting was originally proposed to 
reduce the standard error of an estimated total in 
the absence of nonresponse. It works when yk can be 
approximated by a linear function of the components 
of zk, and the weight-adjustment function within the 
square brackets of equation (4) is replaced by ​exp​
(​z​ k​ T​​   g​)​, ​where ​​   g​​ converges to 0 and consequently the 
wk converges to dk as the probability sample grows 
arbitrarily large.

Both weight adjustments are special cases of the 
following more general weight-adjustment function:

	 α​​​(​​θ​)​​  = ​   L + exp​(​​θ​)​​ _ 1 + exp​(θ)​ / U​​​,	 (5)

where [L , U] is the range of α(θ), and 0 ≤ L < U ≤ 
∞. Software packages that do calibration weighting 
via what has been called “the logit transformation” 
in equation (5) allow the user to set L and U. Some 
packages (like ‘calib’ in Tille & Matei, 2023) are only 
designed for probability samples with full response 
and restrict L to a value less than 1. When used 
to adjust for unit nonresponse or nonprobability 
selection, however, the range for the implicitly 
estimated probability of unit response or selection 

is [1/U, 1/L]. Consequently, it is sensible to set L at 
either 1 or a value greater than 1.

Calibration Weighting a Blended Sample
Suppose we have a probability sample and a 
nonprobability sample both chosen from the 
same population. We denote them by S1 and S0, 
respectively. At first, suppose both collect a variable 
yk with the intention of estimating its population 
mean. The probability sample is a stratified 
multistage sample, which may suffer from some 
unit nonresponse. If used by itself, a vector z1k of 
variables including one with known population totals 
can be employed to generate calibration weights 
for the probability sample rendering estimates for 
the population mean using those weights both 
nearly unbiased with respect to the selection model 
(probability sampling is a type of selection model) 
and with respect to the linear prediction model: 
E(yk) = z1kTβ1. If there is any unit nonresponse, the 
selection model assumes that the probability of unit 
response is correctly specified by the inverse of a 
weight-adjustment function of the components of 
z1k, while the linear prediction model assumes unit 
nonresponse is ignorable in expectation.

Similarly, a vector z0k of variables including one with 
known population totals can be used to generate 
calibration weights for the nonprobability sample 
rendering estimates for the population mean using 
those weights both nearly unbiased with respect to 
the selection model when the probability of selection 
into the nonprobability sample is correctly specified 
by the inverse of a weight-adjustment function of 
the components of z0k and with respect to the linear 
outcome model: E(yk) = z0kTβ0, assuming selection 
into S0 is ignorable in expectation.

Many of the components of z1k and z0k may coincide. 
We do not require that the two samples be disjoint 
but they must be selected independently.

The WTADJUST procedure in SUDAAN can be 
used to create weights and estimate the population 
means as described previously as long as the weight-
adjustment function in equation (5) is used for 
both samples. WTADJUST allows L and U to differ 
across the members of a sample. Here, one can set 
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values L1 and U1 for every member of S1 and values 
L0 and U0 for every member of S0. When Uf, f = 0 
or 1, is unspecified, it is treated as virtually infinite 
(1020), and a finite centering parameter Cf needs to 
be added to WTADJUST for the members of Sf; say, 
max{1, 2Lf}, but the choice (as long as it is finite) has 
no impact on the results.

WTADJUST will also estimate standard errors that 
are nearly unbiased under the selection-model 
framework. Moreover, any linear combination of 
the two estimates is also a nearly unbiased estimator 
of the population mean and has a standard error 
that can be estimated (under the selection-model 
framework) using WTADJUST.

To this end, let S be the union of S1 and S0. A sample 
member may be in S twice, with each such member 
treated as two separate members of the blended 
sample S. We treat the H design strata of S1 and the 
entire nonprobability sample as the H + 1 design 
stratum of the blended sample S. For any k in S, let 
zkT = (z1kT z0kT), where all the components of z1k are 
0 when k is in S0 and all the components of z0k are 0 
when k is in S1. The L and U parameters are the same 
for each member of S1, and they are the same for each 
member of S0, but the former and latter pairs may 
differ.

Consider the following calibration equation, which 
can be used to create quasi-probability weights for 
any positive λ:

	​​∑ k∈S​​ ​d​ k​​​ ​α​ ​(​​k​)​​​​​(​z ​ k​ T​ ​   g​)​ ​z​ k​​ = ​(​ λ∑ kϵ​S​ 1​​​​ ​π​ k​ -1​ ​α​ 1​​​(​z​ 1 k​ T  ​ ​​   g​​ 1​​)​​ ​z​ 1k​​
​  

​∑ kϵ​S​ 0​​​​ ​α​ 0​​​(​z​ 0 k​ T  ​ ​​   g​​ 0​​)​​ ​z​ 0k​​
 ​ )​​ = ​​(​​λT​ ​z​ 1​​​​​ ​T​ ​z​ 0​​​​

​)​ ​
	 = T​ ​z​​ ​(λ​)​,​​​​	 (6)

where​ ​α​ ​(​​k​)​​​​​(​z​ k​ T​​   g​)​  = ​ α​ f​​​ (​z​ fk​ T ​ ​​   g​​ f​​)​​ for k∈Sf, ​​ α​ f​​​ (​z​ fk​ T ​ ​​   g​​ f​​)​​ is 
weight-adjustment function for Sf (f = 0 or 1), ​​​   g​​​ T​  = ​
(​​   g​​ 1​ T​ ​ ​   g​​ 2​ T​)​, and​

	 dk = δkλπk-1 + (1− δk),	 (7)

δk = 1 when k was originally from S1 and 0 otherwise 
(we labeled the weight on the left-hand side of this 
equation dk for convenience, although it depends 
on the choice of λ; a more formal label would be 
dk(λ)). Observe that the relative contribution of the 
probability sample when estimating​ ​y​​ - ​ ​is λ/(1+ λ). 

WTADJUST estimates both ​​y​​ - ​ ​with the weights 
implied by equation (6) and the standard error of that 
estimate.

WTADJUST has one glaring limitation, however. 
It cannot be used to estimate standard errors when 
the probability of selection into the nonprobability 
sample includes variables with unknown population 
totals that need to be estimated by the probability 
sample. For that, one needs WTADJX (or something 
like it; Chen et al., 2020, discuss another approach).

For our purposes, the equation for the quasi-weights 
in S using WTADJX is

	​​ w​ k​​  = ​ d​ k​​ ​  ​L​ k​​ + exp​(​​ ​x​ k​ T ​​   g​​)​​ ___________ 1 + exp​(​x​ k​ T​​  ̂  g​)​ / ​U​ k​​​​ ,	 (8)

where Lk = L1δk + L0(1−δk) and Uk = U1δk + 
U0(1−δk), and the model variable xk is a vector with 
the same number of components as the vector of 
values on which we are calibrating, such as the zk.in 
equation (1). (When xk = zk, WTADJUST can be used 
in place of WTADJX.)

Let qk denote a vector of additional variables included 
in the nonprobability sample’s selection model,

	​​ Pr​(k ∈ ​S​ 0​​|​ ​z​ 0k​​, ​q​ k​​​)  = ​
1 +exp​(​z​ 0k​ T ​ ​g​ 0​​+ ​q​ k​ T​ ​g​ q​​)​ / ​U​ 0​​ 

  _________________  ​L​ 0​​ + exp​(​z​ 0k​ T ​ ​g​ 0​​+ ​q​ k​ T​ ​g​ q​​)​  ​​​ ,

but with unknown population totals that need be 
estimated by the probability sample. With

               xkT = (z1kT z0kT [1−δk ]qkT), and

	 zkT = (z1kT z0kT {1− δk[1 + 1/λ]}qkT),	 (9)

WTADJX can be used to estimate the population 
mean ​​y​​ - ​​ by finding the ​​   g​​ satisfying:

	​​ ∑ k∈S​​ ​d​ k​​​ ​  ​L​ k​​ + exp​(​​ ​x​ k​ T ​​   g​​)​​ ___________ 1 + exp​(​x​ k​ T​ ​   g​)​ / ​U​ k​​​ ​z​ k​​​ =​​(λ​
​∑ kϵU​​ ​z​ 1k​​​

​ ​∑ kϵU​​ ​z​ 0k​​​​ 
0

 ​ )​​,	 (10)

where 0 has as many components as ​​q​ k​​​ (so that ​​
∑ kϵ​S​ 0​​​​ ​w​ k​​ ​q​ k​​ = ​​ ​​∑ kϵ​S​ 1​​​​ ​​w​ k​​ q​ k​​​)​​ .​​ To estimate the 
population total Y = ∑k∈U yk, the quasi-weights in 
equation (8) need to be divided by 1+λ.

One can vary the choice of λ to find the optimal value 
that minimizes the standard error of the estimated 
mean. Recall that every choice for λ results in nearly 
unbiased estimation. Moreover, observe that given 
how the dk in equation (7) and zk in equation (9) 

__
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are defined, the choice of λ has no impact on the ​​   g​​ 
satisfying equation (10).

After choosing λ, the components of the vector on 
the right-hand side of equation (10) are known before 
sampling. Because of this, WTADJX can estimate 
the standard error of an estimated total or mean 
(under the selection-model framework), assuming 
the indicators of selection into the nonprobability 
sample are independent of each other. When there 
is unit nonresponse in the probability sample, an 
analogous assumption is made about the indicators’ 
unit response.

Ignoring finite population correction (as we will), 
the key to nearly unbiased variance estimation via 
linearization is the near (i.e., asymptotic) equality of 
∑S wkek = ∑S dkα(​​x​ k​ T​​   g​​)ek and ∑S dkα(​​x​ k​ T​ g​)ek, where

	 ek = yk − ​​z​ k​ T​ ​​[​∑ S​​ ​d​ j​​� ​'​(​​x​ j​ T ​​   g​​)​​ x​ 
j
​​ ​z​ 

j
​ T​​]​​​ -1​ ​∑ S​​ ​​d​ j​​� '​(​​x​ j​ T ​​   g​​) ​​x​ 

j
​​ ​y​ 

j
​​​​.	(11)

The inclusion of the ​​​​​ �'​​(​x​ j​ T​​   g​)​​ terms in ek allows us 
to avoid directly accounting for ​​   g​​ itself being an 
estimate in large-sample variance estimation. For 
more theoretical details on variance estimation for a 
calibrated estimator when xk ≠ zk, see Kott and Liao 
(2015).

When there are many variables for which one needs 
to estimate a population mean from the blended 
sample, the optimal λ will likely vary across the 
variables. Consequently, a compromise will be needed 
if one desires a single λ to be used for all variables.

Estimation from the Nonprobability Sample
Often y-values are collected from the nonprobability 
sample but not the probability sample. We can treat 
whether (or not) an element of the blended sample 
was originally a member of the nonprobability sample 
as a class variable in WTADJX and then estimate ​​
y​​ - ​ ​and the standard error of that estimate with 
WTADJX. The estimates of ​​y​​ - ​ ​based on the blended 
sample and for the class defined as the probability 
sample will be missing, while the estimate for the 
class defined by the nonprobability sample will be 
a nearly unbiased estimate for ​​y​​ - ​​. A nearly unbiased 
estimate for its standard error will accompany it. The 

selection of λ in equation (1) does not matter. Setting 
λ = 1 for simplicity is a straightforward choice.

An Example
Benoit-Bryan and Mulrow (2021) describe a 
simulated population of 113,549 (N) individuals 
created from the Culture and Community in a Time 
of Crisis survey of behavior and attitudes before and 
during the Covid-19 crisis. Both 10,000 stratified 
simple random probability samples of 1,000 persons 
and 10,000 vaguely described nonprobability samples 
of 4,000 persons were drawn from the population. 
There are no missing values in the data set as it 
now stands (in Mulrow, 2022). This allows for pure 
analyses of blending methodologies.

To demonstrate our methodology, we focus on a 
single probability and a single nonprobability sample. 
Our goal is to estimate population means for 14 
survey variables of interest (that were chosen by 
Benoit-Bryan and Mulrow for a competition) using 
information from 32 not-of-interest (NOI) survey 
variables (chosen by us) as well as variables for which 
the population means were known. The last group 
includes 9 region indicators, 3 levels of urbanization, 
an Hispanicity indicator, 6 race categories, 4 age 
categories, and 7 education-level categories.

Most of the survey variables of interest and NOI 
variables were yes/no (1/0). Two of the survey 
variables of interest were originally on a five-point 
Likert scale. Thus, we had for analytical purposes 20 
variables of interest whose proportion of 1s we were 
trying to estimate.

The survey variables are described and given variable 
names (e.g., q7_22) below:

Variables of Interest

q7_22	 Attended classical music in 2019

q10_1	 Missed experiencing artwork, 
performances

q_11	 Offered online exhibitions or galleries

q25_11	 Will see a play or musical when able in 
short term

q1_15	 Participated in a live interactive event in 
past 30 days
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q6_9	 Want more fun in life

q11_4	 Offered online materials or activities for 
kids

q10_3	 Miss celebrating cultural heritage

q7_14	 Attended community festival in 2019

q6_1	 Want more hope in life

q1_6	 Watch movie or tv series in past 30 days

q25_13	 Will take art, music, or dance class when 
able in short term

The two five-level original variables of interest 
(and their replacements):

q17	 During Covid, how important are arts and 
cultural organizations

q18	 Before Covid, how important were arts and 
cultural organizations

     _2	 Slightly (e.g., q17 = 2 becomes q17_2 = 1)

     _3	 Moderately

     _4	 Important

     _5	 Very

NOI Variables

In 2019, did you attend or participate in . . .

q7_1	 Art museum

q7_2	 Children’s museum

q7_3	 Art gallery/fair

q7_4 	 Botanical garden

q7_5	 Zoo or aquarium

q7_6	 Science or technology museum

q7_7	 Natural history museum

q7_8	 Public park

q7_9	 Architectural tour

q7_10	 Public/street art

q7_11 	 Film festival

q7_12	 Music festival

q7_13 	 Performing arts festival

q7_15 	 Craft or design fair

q7_16	 Read books/literature

q7_17	 Food and drink experience

q7_18	 Nonmusical play

q7_19	 Musical

q7_20	 Variety or comedy show

q7_21	 Popular music

q7_23	 Jazz music

q7_24 	 Opera

q7_25	 World music

q7_26	 Contemporary dance

q7_27 	 Ballet

q7_28	 Regional dance

q7_29	 Historic attraction/museum

q7_30 	 Television program

q7_31	 Movies/film

q7_32	 Library

q7_33	 Cultural center

q7_34	 Video games/online gaming

There were 18 strata in the stratified simple random 
probability sample. We assigned each member of 
that sample to Domain 1 and the members of the 
nonprobability sample to Domain 2 and to Stratum 
19. Implicitly assuming λ =1, both domains were at 
first calibrated separately to 30 population variables 
defined by region, urbanization, race, Hispanicity, 
age, and education level using WTADJUST with the 
weight-adjustment-function parameters in equation 
(5) set at L = 0 and U = 1020 (virtually infinity).

An attempt at setting an initial weight of 1 with L = 
1 for the nonprobability sample failed for technical 
reasons related to how the SUDAAN program runs 
rather than to the underlying theory. We set the 
initial weight for each member of the nonprobability 
sample at 25 (slightly less than N/n0 = 113,549/4,000 
= 28.38725, which is what we set as the initial 
weight for each member) and L at 1/25 = 0.04. 
That is mathematically equivalent to assuming the 
probability on inclusion is a logistic function, because 
1 + exp(​​​x​ j​ T​ g​)​​​​ = 25 (1/25 + exp(​​​x​ j​ T​ ​g​​ *​​)​​,​​ so that only 
the coefficients of the intercepts for g and g*, or their 
equivalents, differ.

Table 1 displays differences in the estimated means 
(the proportion of 1s expressed as a percent) for the 
variables of interest computed from the probability 
and nonprobability samples separately using 
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WTADJUST for both estimates (the code is in the 
Appendix). These differences are sorted by their 
ascending p-values.

Because there are so many differences being measured 
(20), it is advisable to use a Bonferroni correction 
when assessing whether estimated differences are 
significant. This correction divides the p-values 
for the variables of interest by 20. If the difference 
with the smallest p-value among the variables of 
interest remains significant at some level, then the 
hypothesis of no difference between probability-
sample and nonprobability-sample estimates for the 
variables of interest fails. The Bonferroni correction 
is known to be conservative, so it may be prudent 
to assesses significance at the .1 level rather than at 
the conventional .05 level. With this in mind, the 
hypothesis of no differences between the estimates 
fails among the variables of interest (.00196 < .1/20 
= .005). It would fail at the Bonferroni-corrected .05 
level as well.

Table 2 is analogous to Table 1 displaying the 
differences among the estimates for the NOI variables 

with the 10 smallest p-values (the code is in the 
Appendix). We took the four NOI variables with 
significant differences at the Bonferroni-corrected 
.1 level (p-value < .1/32) and added them to the 
selection model for the nonprobability samples and 
recomputed the estimates for the nonprobability 
sample using WTAJDX. The revised differences 
between the probability-sample estimates and 
nonprobability-sample estimates for the variables of 
interest are displayed in Table 3. The t- and p-values 
of these differences were computed, without loss of 
generality, setting λ =1.

Using a Bonferroni correction, the null hypothesis 
of no significant difference between the probability-
sample estimates and revised nonprobability-sample 
estimates among the variables of interest no longer 
fails at either the .1 level (.1/20 < .00594) or at the .05 
level. This gives us some confidence that the revised 
nonprobability-sample estimates for the variables 
of interest, unlike the original ones, are nearly 
unbiased. That confidence is mitigated somewhat 
by the observation that 6 out of the 20 differences 

Table 1. Differences in estimated domain means of variables of interest (in percentage point) using WTADJUST

Variable Difference t-value p-value

q7_22 -5.87071 -3.09817 0.00196

q17_5 -5.67015 -2.77586 0.00553

q17_4 5.19282 2.75408 0.00591

q6_9 5.42981 2.65408 0.00798

q1_15 -4.96485 -2.44432 0.01455

q10_1 -4.51152 -2.40899 0.01603

q18_5 -4.76654 -2.38859 0.01695

q18_3 2.11118 1.71476 0.08645

q18_4 2.19730 1.18603 0.23567

q25_13 -1.26753 -1.09874 0.27194

q1_6 1.21429 1.07647 0.28177

q11_1 -2.11664 -1.05061 0.29349

q18_2 0.49995 0.97542 0.32940

q17_2 0.61545 0.78579 0.43203

q10_3 -0.67250 -0.78239 0.43402

q25_11 -1.15565 -0.61314 0.53981

q11_4 -0.70367 -0.36134 0.71786

q6_1 0.63118 0.31783 0.75063

q17_3 -0.31811 -0.22483 0.82212

q7_14 -0.03445 -0.01706 0.98639
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in Table 3 have p-values less than .05. Even though 
the differences are not independent, we would have 
hoped to see only one difference to have a p-value less 
than or equal to .05.

Some Concluding Remarks
In practice, users will not be able to compare their 
estimates with full-population statistics as could 
have been done here. Nevertheless, users will be able 
to assess whether calibrated estimates from their 
nonprobability sample are significantly different 
from analogous probability estimates, as Tables 1 

Table 2. Ten largest differences in estimated domain means of NOI variables using WTADJUST (in terms of their 
p-values)

Variable Difference t-value p-value

Q7_28 -3.15237 -3.58028 0.00035

Q7_4 -6.97418 -3.45283 0.00056

Q7_5 -6.05481 -3.22138 0.00128

Q7_32 -6.15135 -3.07216 0.00214

Q7_24 -4.34578 -2.67472 0.00750

Q7_1 -4.42137 -2.51749 0.01185

Q7_27 -3.69502 -2.33730 0.01946

Q7_11 -3.42707 -2.27782 0.02278

Q7_13 -4.50724 -2.20741 0.02733

Q7_6 -3.90890 -2.09830 0.03593

Table 3. Revised differences in estimated domain means of variables of interest after using WTADJX

Variable Difference t-value p-value

q6_9 5.64438 2.75222 0.00594

q7_22 -4.92017 -2.59090 0.00960

q17_4 4.82479 2.54737 0.01088

q10_1 -4.12273 -2.18439 0.02898

q17_5 -4.40463 -2.14937 0.03165

q1_15 -4.23211 -2.09599 0.03613

q18_5 -3.68356 -1.85614 0.06349

q1_6 1.56700 1.37592 0.16891

q7_14 2.56980 1.31451 0.18874

q18_3 1.53855 1.23678 0.21623

q18_4 1.85522 1.00026 0.31723

q25_11 -1.67931 -0.88706 0.37509

q17_3 -1.04803 -0.72978 0.46556

q18_2 0.36094 0.69342 0.48808

q17_2 0.46723 0.59242 0.55360

q11_4 1.09904 0.57548 0.56499

q10_3 -0.44952 -0.52322 0.60084

q25_13 -0.60311 -0.52262 0.60126

q6_1 0.89665 0.45045 0.65240

q11_1 -0.78112 -0.38946 0.69695
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and 3 show. This remains true even if the method 
used here for choosing which NOI variables needed 
to be included in the calibration—beginning with 
a pared list of potential NOI variables without any 
interactions followed by the use of Bonferroni-
adjusted p-values to reduce those variables further—
proves not to be generally successful.

One thing that we did not consider is variance 
estimation under the linear-prediction-model 
framework (which is dubious for binary variables like 
those in our example). When there are no estimated 
variable totals from the probability sample used 
in the calibration equation for the nonprobability 
sample, and one assumes the errors in the linear 
models for the probability and nonprobability 
samples are independent across sample members, 
the near independence of the residuals in equation 
(11) suggest the variance estimator developed in 
the test is nearly unbiased under the prediction-
model framework as long as the probability and 
nonprobability samples are distinct. This is an 
unnecessary assumption under a selection-model 
framework. When it fails, a delete-a-group jackknife 

variance estimator (Kott, 2001) may be used with 
group membership of any repeated sample member 
for both its appearances. When it does not fail, 
however, replacing ​​​�(​​​x​ j​ T​​   g​​)​​​​ with its derivative ​​�'​(​​ ​x​ j​ T​​   g​​)​​​​ 
in equation (11) is unnecessary because ​​   g​​ is no 
longer an estimator for a selection-model parameter. 
Although the selection-model–based WTADJUST 
and WTADJX make this replacement when 
estimating variances, to our knowledge, analogous 
routines in R, such those found in ‘Survey’ (Lumley, 
2023), do not.

We can show that the test being nearly unbiased 
under the prediction-model framework remains 
true when there are estimated variable totals from 
the probability sample used in the calibration 
equation for the nonprobability sample, although the 
revised prediction model assumes E(yk) is a linear 
function of the components of xk rather than zk as 
in Kott and Chang (2010) (and the expected value 
of each component of zk is a linear function of the 
components of xk). The proof of this assertion is 
beyond the scope of this endeavor.
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Appendix. SAS-Callable SUDAAN Code Used in Tables 1 and 2

Table 1: WTADJUST code
*The user needs to specify <inputdat>;

*This can be put inside a macro to do a separate run 
for each &var.;

*<numstrat> is a numeric stratification variable from 
the design information;

*<sudcaseid> is a numeric case ID;

*<dwt> is the design weight;

*The values in the postwgt statement are the 
control totals for each variable on the 
class statement repeated for each level of 
domain;

*DOMAIN takes the value 1 for the observations in 
the probability data and the value 2 for the 
observations in the nonprobability data;

*The output variables populate what is in Table 1;

PROC WTADJUST DESIGN = STRWR ADJUST = 
POST DATA = <inputdat> NOTSORTED 
MAXITER=500;

    NEST <numstrat>;

    IDVAR <sudcaseid>;

    WEIGHT <dwt>;

    POSTWEIGHT

     5290 106063 2196

     5290 106063 2196

     157 2077 9480 4771 39074 38429 18643 918

     157 2077 9480 4771 39074 38429 18643 918

     11810 21452 29406 46048 4833

     11810 21452 29406 46048 4833

     3852 3169 416 94984 2592 2254 6282

     3852 3169 416 94984 2592 2254 6282

     1541 108431 3577

     1541 108431 3577

     8391 19824 16859 8235 22560 2999 9180 7100 
18401

     8391 19824 16859 8235 22560 2999 9180 7100 
18401

     ;

     CLASS DOMAIN NUM_Q38 NUM_Q40 
NUM_AGECAT NUM_CENSUSRACE 
METROMICRORECODE REGION9 &var. 
/ NOFREQS;

     VAR &var.;

     MODEL _ONE_ = NUM_Q38 NUM_Q40 
NUM_AGECAT NUM_CENSUSRACE 
METROMICRORECODE REGION9 / 
NOINT;

     LOWERBD LOWER_BOUND;

     CENTER CENTER_VAL;

     VDIFFVAR DOMAIN =(1 2);

     OUTPUT MEAN SE_MEAN T_MEAN P_MEAN 
/ FILENAME=VDIFF_&var. REPLACE;

RUN;

Table 2: WTADJX Code
*The code can also be run within a macro across 

multiple values of &var.;

*Same notes as above with regard to <numstrat>, 
<sudcaseid>, <dwt> and DOMAIN;

*The Mi and Ci (i = 1,2,3,4) variables, which 
correspond respectively to the components 
of xk and zk in equation (9), are for the four 
NOI variables with significant differences at 
the Bonferroni-corrected .1 level (p-value 
< .1/32);

PROC WTADJX DESIGN = STRWR ADJUST = 
POST DATA = <inputdat> NOTSORTED 
MAXITER=500;

     NEST <numstrat>;

     IDVAR <sudcaseid>;

     WEIGHT <dwt>;

     LOWERBD lower_bound;

     CENTER center_val;
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     CLASS DOMAIN NUM_Q38 NUM_Q40 
NUM_AGECAT NUM_CENSUSRACE 
METROMICRORECODE REGION9 
&VAR. / NOFREQS;

     VAR &var.;

MODEL _ONE_ = NUM_Q38 NUM_Q40 
NUM_AGECAT NUM_CENSUSRACE 
METROMICRORECODE REGION9 M1 
M2 M3 M4 / NOINT;

     CALVARS NUM_Q38 NUM_Q40 NUM_
AGECAT NUM_CENSUSRACE 
METROMICRORECODE REGION9 C1 
C2 C3 C4 / NOINT;

     POSTWGT

     5290 106063 2196

     5290 106063 2196

     157 2077 9480 4771 39074 38429 18643 918

     157 2077 9480 4771 39074 38429 18643 918

     11810 21452 29406 46048 4833

     11810 21452 29406 46048 4833

     3852 3169 416 94984 2592 2254 6282

     3852 3169 416 94984 2592 2254 6282

     1541 108431 3577

     1541 108431 3577

     8391 19824 16859 8235 22560 2999 9180 7100 
18401

     8391 19824 16859 8235 22560 2999 9180 7100 
18401

     0 0 0 0

     ;

     VDIFFVAR DOMAIN =(1 2);

     OUTPUT MEAN SE_MEAN T_MEAN P_
MEAN / FILENAME=POSTADJX_&var. 
REPLACE;

RUN;
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