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Abstract
Coverage intervals for a parameter estimate computed using complex survey data 
are often constructed by assuming the parameter estimate has an asymptotically 
normal distribution and the measure of the estimator’s variance is roughly chi-
squared. The size of the sample and the nature of the parameter being estimated 
render this conventional “Wald” methodology dubious in many applications. 
I developed a revised method of coverage-interval construction that “speeds up 
the asymptotics” by incorporating an estimated measure of skewness. I discuss 
how skewness-adjusted intervals can be computed for ratios, differences between 
domain means, and regression coefficients.
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Introduction
Statisticians are interested in estimating intervals 
likely to contain a parameter. Wald intervals are most 
commonly used for this purpose. A hypothesis test 
for the location of the parameter can be conducted 
using Wald intervals.

Suppose θ̂ is a nearly (i.e., asymptotically) unbiased 
estimator for a parameter θ estimated from a complex 
probability sample. The one-sided Wald intervals at 
the α (e.g., 95%) level for θ are

θ θ Φ α−≤ + 1ˆ ( ) v  and θ θ Φ α−≥ − 1ˆ ( ) v , (1)

where v is a good estimator for V, the variance of 
θ̂, under either probability-sampling theory or 
a reasonable model, and Φ(.) is the cumulative 
distribution function of a standard normal 
distribution. It is well-known that when the sample 
size is large enough, both inequalities hold for 
roughly α percent of samples drawn using the same 
sampling design as the probability survey. That is 
because the random variable θ̂ is asymptotically 
normal under mild conditions, and those conditions 
are assumed to hold.

A symmetric two-sided α percent Wald interval easily 
derivable from Equation 1 is

θ Φ α θ θ Φ α− −− + ≤ ≤ + +1 1ˆ ˆ([1 ]/ 2) ([1 ]/ 2)v v .

In this paper, we will focus on one-sided intervals 
because creating a symmetric two-sided interval 
from two one-sided intervals is easily done, as just 
demonstrated. For similar reasons, we will not discuss 
hypothesis tests derived from coverage intervals.

Often, the sample size in an application will not be 
nearly large enough for a one-sided Wald interval to 
contain (“cover”) θ with the frequency suggested by 
the asymptotic theory. We will use the term “coverage 
interval” here rather than “confidence interval” 
because one rarely has confidence that the true value 
of θ falls within the designated interval at least α 
percent of the time across repeated realizations of 
the random variable θ̂ (as it would were θ̂ normally 
distributed and Φ(.) replaced with the appropriate 
Student’s t-distribution).

Kott and Liu (2010) proposed using skewness-
adjusted one-sided coverage intervals in place of the 
Wald intervals to “speed up the asymptotics” (i.e., be 
roughly correct for samples that are not very large). 
The next section describes those intervals. The section 
after that looks at intervals based on a stratified 
simple random sample and a stratified multistage 
sample with attention to intervals for a ratio and for 
the difference between two domain means. The next 
section shows how skewness adjustments can affect 
estimates produced from a stratified cluster sample. 
It is followed by a section providing additional 
comments on a range of topics, from coverage 
intervals for regression coefficients, to potentially 
useful approximations when constructing skewness-
adjusted intervals is impractical, to intervals based on 
estimates computed with calibrated weights. Finally, 
the paper offers some concluding remarks.

Much of the research into the impact of slow 
asymptotic normality on coverage has concentrated 
on proportions either estimated from an independent 
and identically distributed (iid) sample (e.g., 
Clopper & Pearson, 1934; Hall, 1982; Newcombe, 
1998; Brown, Cai, & Dasgupta, 2001; Cai, 2005) 
or a complex probability sample (e.g., Korn & 
Graubard, 1998; Kott & Liu, 2009; Franco, Little, 
Lewis, & Slud, 2014). Kott, Andersson, & Nerman 
(2001) demonstrated the close relationship between 
the two-sided version of the Anderson-Nerman 
interval and the Wilson (score) coverage interval 
for a proportion (Andersson & Nerman, 2000). Kott 
(2017) showed the relationship between the Wilson 
interval and the logistic-transformation approach to 
creating coverage intervals for proportions (described 
in Liu & Kott, 2009, and elsewhere).

Here, we will look at more-general estimators 
computed from complex probability samples; 
in particular, we focus on estimators for ratios, 
differences between domain means, and regression 
coefficients. Critical to this endeavor will be 
estimating the third central moment of θ̂. We will use 
probability sampling (design-based) theory in the 
investigation. Analogous conclusions using models-
based assumptions are straightforward.
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Skewness-Adjusted Intervals
Kott and Liu (2010) propose the following α-percent 
one-sided skewness-adjusted coverage intervals for 
a parameter θ estimated from a complex probability 
sample by θ̂:

θ θ δ δ≤ + + +2 2ˆ z v and θ θ δ δ≥ + − +2 2ˆ z v , (2)

where 

δ = − +
2

2 31 (1 )
6 2

m zz b
v

, (3)

α−= Φ ), 1
3(z m  is a nearly unbiased estimator for the 

third central moment of θ̂: θ θ= − 3
3

ˆ[( ) ]M E  and b is a 

nearly unbiased estimator for θ θ−
=

ˆ[ ( )]E vB
v

.

The  
 
 

2

2
z b term on the right-hand side of 

Equation (3) derives from replacing v in the 
asymptotically normal Wald pivotal, θ θ−ˆ( ) / v , with 
the more asymptotically efficient θ θ= − −ˆ( )bv v b , 
and then solving the resulting quadratic inequalities 
for θ̂. Andersson and Nerman (2000) suggested this 
after observing that the variance of β θ θβ = − −ˆ( )v v , 
a conceptual estimator for V, is minimized when 
β = B.

The remainder of the right-hand side of Equation 3  

has the opposite sign of  
 
 

2

2
z b  when z > 1. It comes 

from an Edgeworth expansion of θ̂, which is Kott and 
Liu’s contribution to the intervals in Equation 2. A 
similar result for estimators based on iid samples can 
be found in Abramovitch and Singh (1985). Note that 
although a nonzero δ in Equation 2 expands the size 
of Kott and Liu’s skewness-adjusted coverage interval 
slightly, its primary impact is to move the interval, 
which can be in either a positive or negative direction.

If ≈ 3 /b m v , which is true in many contexts (as we 
shall see in the next section), then, Kott and Liu 
noted,

2
31

6 3
mz
v

δ
 

≈   
 

+ .  (4)

When Equation 4 holds, the coverage intervals in 
Equation 2 can be expressed as

θ θ τ δ
 

≤ + + + + 
 

2
2 21ˆ ˆ 1 / ( )

6 3
z v z v z v  and

θ θ τ δ
 

≥ + + − + 
 

2
2 21ˆ ˆ 1 / ( )

6 3
z v z v z v ,

 
or

θ θ τ τ
      ≤ + + + + +     

       

1/222 2
2

2

1 1 1ˆ ˆ ˆ1
6 3 6 3

z zz v
z

  and

θ θ τ τ
      ≥ + + − + +     

       

1/222 2
2

2

1 1 1ˆ ˆ ˆ1
6 3 6 3

z zz v
z

, (5)

where τ = 3/2
3ˆ /m v  is the estimated skewness for θ̂  

and τ = 3/2
3 /M V  is the skewness measure τ̂ is 

estimating.

Kott and Liu conjecture that |τ| should be less than 1 
for their skewness-adjusted intervals to be effective. 
For Wald coverage intervals, τ needs to be close to 0. 
Cochran (1977, p. 42) suggests |τ| should be less 
than 0.2. (Cochran’s original suggestion is for simple 
random sampling. We expand it here.)

The skewness, τ, of an estimator tends to decrease in 
absolute value as the sample size increases (the central 
limits theorem tells us that it converges to zero as the 
sample size grows arbitrarily large). For an estimated 
proportion, p, under either simple random sampling 
with replacement or an iid model,  

= − − − − = − −3 (1 )(1 2 )/[( 1)( 2)], (1 2 )/ ( 1),m p p p n n b p n
and τ ≈ − − 1/2ˆ [(1 2 )/ (1 )]p np p .

When v is not too close to zero, the following 
modification on Equation 5 drops terms of a smaller 
asymptotic order (rendering τ ≈2ˆ 0 ):

θ θ τ
  

≤ + + +  
  

21ˆ ˆ
6 3

z z v  and 

θ θ τ
  

≥ + + +  
  

21ˆ ˆ
6 3

z z v  ,

or 

θ θ
 

≤ + + + 
 

21ˆ
6 3

z b z v  and

θ θ
 

≥ + + + 
 

21ˆ
6 3

z b z v .  (6)

These are the one-sided Wald intervals shifted by  

τ
   

+ = +   
   

2 21 1ˆ
6 3 6 3

z zv b .
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Two Common Complex Survey Frameworks

Stratified Simple Random Sampling
In a population sample-survey design, the population 
U is divided H into mutually exclusive strata, where 
Uh denotes the population of stratum h, h=1,…, H. 
Each stratum h contains Nh units. Let Sh be a simple 
random sample of nh units selected without 
replacement from Uh, and ∈= ∪h H hS S .

Next, suppose we are interested in constructing one-
sided coverage intervals for a finite-population total 
or mean based on a stratified simple random sample. 
The former can be expressed as ∈= ∑ ∑

h

H
y k U kT y  , 

where yk is the variable of interest for element k. The 

corresponding population mean is = = ∑y H
h h

T
Y W Y

N
, 

where = ∑ =,H h
h h

NN N W
N

, and −= ∑1
h h h kUY N y .  

An unbiased estimator for the finite-population total 
Ty using probability sampling theory is =ŷ yT Nt , 
where = = ∑H

y h ht y W y  and −= ∑1
hh h S ky n y .

Kott and Liu (2010) showed that when every stratum 
has at least three sampled members (i.e., nh ≥ 3), one 
can construct one-sided coverage intervals for Y  
based on probability-sampling theory by setting

∈
=

− 
= Σ −  − 

∑ 2
2

1

( )
1

( 1)
h

k hk SH h
h h

h h h

y ynv W
N n n

,

∈
=

−  
= Σ − −   − −  

∑ 3
3

3 1

( )21 1
( 1)( 2)

h
k hk SH h h

h h
h h h h h

y yn nm W
N N n n n

, and

∈
=

− 
∑ −  − − =

∑ 32
3

1

( )
1

( 1)( 2)
h

k hk SH h
h h

h h h h

y ynW
N n n n

b
v

 (7)

in Equations 2 and 3. The first two equalities in 
Equation 7 provide unbiased estimators for the 
second and third central moments of θ = y , and b is 
a consistent estimator for B under mild conditions 
we assume to hold (e.g., that those central moments 
exist). When all the 2nh / Nh are small enough to 
be ignored, ≈ 3 /b m v , and Equation 3 can be 
approximated by Equation 4. Surprisingly, when  
2nh / Nh = 1, stratum h has no impact on m3. When 
2nh < Nh, the impact of stratum h on m3 is in the 
opposite direction of ∈

−∑ 3( )
h

k hk S
y y .

It is important to realize that when one nh is less than 
3, Equation 7 becomes useless. Useful approximations 
for m3 and b become necessary. We discuss some 
in a later section (“Some Simple Approximations”), 
although there are other possibilities beyond those 
discussed.

The ratio of two totals, /x zT T , can be estimated 
in a consistent manner using data from a without-
replacement stratified simple random sample by 

=/
ˆ ˆ ˆ/x z x zt t t . In other words, the difference between 

/x̂ zt  and /x zT T  tends to zero in probability as 
the sample size grows arbitrarily large under mild 
conditions (i.e., the population and sample design are 
such that the relative mean squared errors of 

2 2
ˆ ˆ ˆ ˆ, , ,x z x z
t t t t , and x̂zt  are all O(1/ )n , where 

= ∑H
hn n  , while Tz is positive and converges 

asymptotically to a positive value). The variance and 
third central moment of /x̂ zt  can be estimated using 
Equation 7 with each yk replaced by the linearized 
term = − /

ˆ ˆ[ ( ) ]/k k x z k ze x t z t , which is asymptotically 
indistinguishable from = − /

ˆ[ ( ) ]/k k x z k zu x t z t . Observe 
that − = ∑/ /

ˆ H
x z x z h ht t W u .

A ratio estimator of special interest is the estimator 
of a domain mean. If dk = 1 for an element in the 
domain and 0 otherwise, then the estimated mean 
of y-values in the domain has the form =/

ˆ ˆ ˆ/x z x zt t t , 
where zk = dk and xk = dkyk.

A Stratified Multistage Sample
Consider now constructing a coverage interval for 
a population mean based on stratified multistage 
sample when a nearly unbiased estimator for that 
parameter can be put in the form

1 1

1ˆ ˆ
hH n

hi
h ih

t t
n= =

= ∑ ∑  ,  (8)

where there are nh primary sampling units (PSUs) in 
stratum h, and each ĥit  for a PSU i in stratum h is a 
nearly unbiased estimator for the same value. We will 
make the common (but often inaccurate) assumption 
that the PSUs were selected randomly but with 
replacement, while any subsampling was done using 
probability sampling principles.

A univariate component of an estimated linear 
regression coefficient can also be put into the form of 
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Equation 8. We focus now on the difference between 
two domain means estimated using data from the 
same sample, S. Each element in S had a value yk and 
a sampling weight wk attached to it, so the estimated 
different in domains means can be expressed as 
follows:

(1) (2)

(1) (2)(1) (2)

k k k k k k
k S k S

k k k k
k S k S

w y d w y d
y y

w d w d
∈ ∈

∈ ∈

− = −
∑ ∑
∑ ∑

,

where ( ) 1a
kd =  when k is in Domain a and 0 

otherwise. Here: 
(1) (2)

1 2

ˆ ,ˆ ˆhi

k k
hi hi k kk S

d dt u w y
N N∈

 
 
 
 

≈ = −∑ ,

where Shi is the set of sampled elements in PSU i of 
stratum h, and ( )ˆ a

a q qq S
N w d

∈
= ∑ is the estimated 

population size of Domain a, that is, Na. Observe that 
the

(1) (2)

1 2

ˆ
hi

k k
hi hi k kk S

d dt u w y
N N∈

 
  
 

≈ = −∑
are independent under probability sampling theory 
for PSUs in the same stratum (recall we are assuming 
with-replacement sampling in the first stage of sample 
selection).

When all 3hn ≥ , the following equalities can be used 
in Equations 2 and 3:

( )
= = = =

− −
= =

− − −∑ ∑ ∑ ∑
22 3 3

3
1 1 1 1

( ),
( 1) ( 1)( 2)

h hH n H n
hi hh h hi h

h i h ih h h h h

e eN N e ev m
n n n n n

,

and = 3mb
v

, (9)

where each ehi has the following linearized expression:

∈

 
= − − − 

 
∑

(1) (2)

(1) (2)
1 2

[ ] [ ]ˆ ˆhi

k k
hi h k k kk S

d de n w y y y y
N N

 .

We ignore finite-population correction when 
comparing domain means because an analyst is 
usually interested in whether there is an underlying 
process causing the domain means to be different, not 
the actual difference between the means in the finite 
population. Strictly speaking, this assumes models 
are generating the domain models, but, following a 
probability-sampling framework, those domains are 
vaguely specified.

An Example
In this section, we will look at computing one-sided 
coverage intervals for two sets of parameters for 
the MU284 population from Särndal, Swennsson, 
& Wretman (1992), available at http://lib.stat.cmu.
edu/datasets/mu284. The population consists of 284 
Swedish administrative municipalities separated into 
50 clusters with eight strata. We collapse the final 
two strata, creating seven strata total. We divide the 
population into two domains. The 26 municipalities 
with a 1985 population of more than 64,000 are in 
Domain 1, and the remaining 258 municipalities 
are in Domain 2. We are interested in constructing 
coverage intervals for (1) the arithmetic average 
across municipalities in 1985 of the municipal 
taxation per person within each domain and (2) the 
fraction of municipalities within each domain 
with more tax receipts than 9 million kronor per 
1,000 persons in 1985. We are also interested in 
constructing coverage intervals for the differences 
between the domains.

We suppose a cluster sample of three clusters per 
stratum (nh = 3) are selected from the MU284 
population via simple random sampling with 
replacement. Letting yk be either the tax revenue 
per person in municipality k or a (0/1) indicator of 
whether that ratio is greater than 9 million kronor per 
1,000 persons, we define

∈

 
= − 

 
∑

( )

( )
1

[ ]ˆ
hi

a
k

hi h k a
k S

de N y y
N

for Domain a (a= 1 or 2),

and 

∈

 
= − − − 

 
∑

(1) (2)

(1) (2)
1 2

[ ] [ ]ˆ ˆ
hi

k k
hi h k k

k S

d de N y y y y
N N

for the difference between the domains, where Nh is 
the number of clusters in stratum h; Shi is the sample 
of municipalities in cluster i of stratum h (in this 
example, Shi is every municipality in the cluster); 

=( ) 1a
kd  when municipality k is in Domain a, and 0 

otherwise; ( )ay  is the estimated mean of the y–values 
in Domain a; and ˆ aN  is the estimated number of 
municipalities in Domain a.

For constructing coverage intervals in this example, 
we replace v, m3, and τ̂  in Equation 9 by what they 
estimate:

http://lib.stat.cmu.edu/datasets/mu284
http://lib.stat.cmu.edu/datasets/mu284
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=

=

=

=

−
=

−

−
=

− −

∑
∑

∑
∑

2
7

2 1

1

3
7

3 1
3 2

1

( )
,

( 1)

( )
, and

( 1)( 2)

h

h

N

hi h
i

h
h h n

N

h hi h
i

h
h h h h

e E
V N

n N

N e E
M N

n N N

 (10)

τ = 3/2
3 /M V ,

where 
=

= ∑ 1
/hN

h hi hi
E e N . By using these replacements, 

we produce coverage intervals around the respective 
estimates close to what the average from an infinite 
number of simulations would produce.

Table 1 compares one-sided 95% and 99% Wald 
coverage intervals to skewness-adjusted coverage 
intervals computed with Equation 10 replacing 7. The 
bounds in the table are also the bounds of two-sided 
90% and 98% coverage intervals, respectively. The 
table displays the estimands (targets) for context. 
In practice, the intervals are computed from the 
sample rather than the population and are added 
to estimates, which are likewise computed from the 
sample.

The symmetric Wald and asymmetric skewness-
adjusted intervals in Table 1 tend to be closer to 
each other in Domain 2 than in Domain 1. The 
larger sample size in Domain 2 reduces the impact 
of skewness adjustment. The sizes of the coverage 

intervals for the differences tend to be dominated by 
the smaller Domain 1 samples.

Additional Comments

Coverage Intervals for a Regression Coefficient
Suppose β  is a vector of regression coefficients of yk 
on =

1, ,( )T
k Jk kx xx . Each component j of β̂ − β  can 

be expressed or approximated as

ˆ ˆ[ ( )]T T
j j k j k k kk S

w y fβ β
∈

− ≈ −∑ g x x β ,

so that

∈
= −∑ ˆ[ ( )]

hi

T T
hi h k j k k kk S

e n w y fg x x β , (11)

where θ = θ( )f  for linear regression and  
θ = + −θ)]( ) 1/[1 exp(f  for logistic regression, and gj is 

the jth row of the matrix 

( ) −

∈
 ′=  ∑

1ˆT T
a a aa S aw fA x x xβ . 

We assume matrix A to exist while the components 
of NA have finite limits as the population of size N 
grows arbitrarily large. Strictly speaking, the estimator 
for a logistic regression coefficient is determined by 
solving the weighted estimating equation

{ }−

∈
 − + = ∑

1ˆ1 ( )T
k k k kk S

w y exp 0x x β ,

which cannot be expressed in the form of 
Equation (8). Nevertheless, the variance and third 

Table 1. Idealized coverage intervals

Estimates Target τ

One-sided 95% intervals  
(compared with estimate)

One-sided 99% intervals  
(compared with estimate)

Wald

Skewness-adjusted

Wald

Skewness-adjusted

Lower Upper Lower Upper

Municipal tax per person (in 1,000s)

Domain 1 6.88 -0.60  ± 1.19 -1.66 0.72  ± 1.68 -2.54 0.82

Domain 2 6.90 -0.09  ± 0.19 -0.20 0.18  ± 0.27 -0.29 0.25

Difference -0.02 -0.62  ± 1.15 -1.61 0.68  ± 1.62 -2.48 0.76

Fraction above 9 million per thousand persons

Domain 1 0.15 0.66  ± 0.17 -0.10 0.24  ± 0.24 -0.10 0.37

Domain 2 0.02* 0.48  ± 0.02 -0.01 0.03  ± 0.03 -0.02* 0.04

Difference 0.13 0.69  ± 0.16 -0.09 0.24  ± 0.23 -0.10 0.37

* Computed to another digit, the target is 0.023, while the lower bound is -0.018.

Notes: The average lower Wald interval is bound from below by the estimate minus the unsigned value in the table. The average lower skewness-adjusted interval 
is bound from below by the estimate plus the lower value in the table. The average upper Wald interval and skewness-adjusted interval are bound from above; the 
bounds are the estimate plus the unsigned value or plus the upper value, respectively.
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central moment of the estimator can be measured by 
implementing Equations 9 and 11.

Although the ehi in Equation 11 are not independent 
within strata, each is almost equal to a uhi, in which 
the β̂ on the right-hand size of Equation 11 is 
replaced by β  and the components of Ngj by their 
asymptotic limits. The uhi are independent in a 
probability-sampling sense under the assumption that 
the first-stage sample is drawn with replacement.

Observe that we can only create coverage intervals 
for one regression coefficient at a time. A coverage 
interval for a univariate linear combination or 
regression coefficients can be created using the same 
principles. To test a vector of r regression coefficients, 
one may need to use a conservative r-dimensional 
Bonferroni box rather than a Wald-based coverage 
ellipsoid.

Some Simple Approximations
There is a practical problem in computing m3, and 
consequently τ̂  using either Equation 7 or 9: there 
is no available software routine to do so. Even if 
there were or a statistician wanted to program the 
equations, there may not be three PSUs in every 
stratum. Unlike collapsing strata for variance 
estimation, the direction of the potential bias of τ̂  
can be positive or negative when the population 
means of the strata being combined are different 
(the population means are either the expected 
value of the yk in each stratum in Equation 7 or the 
expected values of the uhi corresponding to the ehi for 
a particular h in Equation 9). Consequently, strata 
collapsed together should have equal (or nearly equal) 
expected population means.

A key to skewness-adjusted coverage intervals, 
especially when finite-population correction can 
be ignored, is the estimated value = 3 /b m v. From 
the last section, assuming a large sample, the value 
of this term for the difference between proportions 
estimated for two distinct domains from a simple 
random sample is approximately

− − − − −
= ≈

− + −

2 2
3 1 1 1 1 2 2 2 2

1 1 1 2 2 2

(1 )(1 2 ) / (1 )(1 ) /
(1 ) / (1 ) /

m p p p n p p p nb
v p p n p p n

,

where pa is the estimated proportion in Domain a 
based on na sampled elements being in Domain a. 

When p1 = p2, this collapses to
 

≈ − − 
 

1
1 2

1 1(1 2 )b p
n n .

These results are similar (for large na) to what 
we would get looking at the estimate of the two 
proportions as coming from independent simple 
random samples (which they are conditionally given 
their respective realized domain sample sizes): the 
estimated variance of the difference equals the sum 
of the individual estimated variances, whereas the 
estimated third central moment of the difference is 
the difference between the individual estimated third 
central moments.

To many, these results might suggest that when 
assessing the difference between proportions in 
two distinct domains estimated using a complex 
probability sample, one simply multiplies the domain 
sample sizes above by their respective design effects. 
Such a practice is not recommended, however, for 
two reasons. One, the design effect captures the effect 
of clustering and stratification on the variance of an 
estimator, not on its third central moment. Two, the 
unequal weighting effect, another component of the 
design effect, is not the same for the third central 
moment of an estimator and its variance.

A wiser procedure might be to estimate = 3 /B M V
for an estimated proportion 

∈ ∈
= ∑ ∑k k kk S k S

p w y w , 
where p estimates the fraction of the population with 
yk = 1 rather than 0, with

∈

∈ ∈

= −∑
∑ ∑

3

2 (1 2 )kk S
simple

k kk S k S

w
b p

w w
,  (12)

and then inserting τ =ŝimple simpleb v  into 
Equation 5 or 6. This estimate ignores the impact of 
stratification and clustering on b. When estimating 
the proportion in a domain, the S in Equation 12 and 
in the definition of p are replaced by the subset of the 
sample within the domain. For the difference between 
two domain means, τ =ŝimple simpleb v  with

− − − −
=

− + −
 

2 2
1 1 1 1 2 2 2

* *
1 1 1 2 2 2

(1 )(1 2 ) / (1 ) /
(1 ) / (1 ) /simple

p p p n p p nb
p p n p p n

 

where

 
( )

=
∑
∑



3

2
3

a

a

kS
a

kS

w
n

w
, and 

( )
=

∑
∑

2

*
2

a

a

kS
a

kS

w
n

w
 (13)
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For a more-general population or domain mean of a 
y–variable , one can replace τ̂ in Equation 5 or 6 with 
τ =ŝimple simpleb v , where

( )∈

∈ ∈

−
=

−
∑

∑ ∑

33

2 2( )
k kk S

simple
k k kk S k S

w y y
b

w w y y
  (14)

and 

= ∑ ∑k k kS S
y w y w . 

Table 2 assesses Equations 12 through 14 with the 

examples from Table 1, replacing terms of the form  

∈∑
a

b
k kk S

w z  with −
∈∑ 1

a

b
k kk U

w z . The approximations 
in the table may not be perfect, but they are closer to 
the true = 3 /B M V  than 0, the value implied when 
Wald intervals are constructed.

Calibration Weighting and the Jackknife
So far, we have implicitly assumed either that wk is 
the inverse of the probability of selected element k 
into the sample or that the nh elements in stratum h 
were selected with equal probability in each stratum. 
We have ignored the effect of coverage error and unit 
nonresponse on the respondent sample ultimately 
used in estimation.

Under simple random sampling without replacement, 
it is common to assume that the list from which the 
sample has been drawn is complete and without 
duplication and that elements in the same stratum are 
either equally likely to respond (treating response as 
a phase of probability sampling) or have a common 
means whether or not they respond. This allows 

one to use the formulae in Equations 2 through 6, 
replacing the sample and stratum samples with 
the analogous respondent samples; nh is redefined 
accordingly.

For multistage sampling calibration, weighting 
can be used either to adjust for nonresponse or 
undercoverage (Kott, 2006) or simply to reduce the 
standard error of the estimates (Deville & Särndal, 
1992). When wk is a calibrated weight, the ehi in 
Equation (8) are weighted sums of calibration 
residuals. For example, when estimating a total, the ehi 
are the weighted totals within PSU hi of

−

∈ ∈
 = − ξ ξ ∑ ∑

1
'( '(T T T T

k k k a a a a a a a aa S a S
e y d d yz z q)z z z q)z ,

where zk is the vector of calibration variables, dk 
is the weight of k before calibration, the calibrated 
weight of k is = ξ ξ( ), (.)T

k k kw d z q  is the weight-
adjustment function connecting the weight before 
calibration to the calibrated weights (e.g., ξ(θ)  can 
be + θ, θ)1 exp( , or + θ))1 exp( ), and q is chosen so 
that 

∈
ξ∑ ( T

k zk S
w Tzz q) =  is the vector of population 

totals for the components of zk or an estimate for 
that vector calculated using information outside the 
respondent sample (e.g., from the frame; a larger, 
more-efficient sample than S ; or the full sample 
before nonresponse).

Calibration weighting often removes much of 
the impact of stratification and clustering from 
an estimated mean. For example, calibration by 
region can reduce the impact of stratification by 
geographical units, whereas calibration by race and 
ethnicity can reduce the impact of clustering within 
neighborhoods. As a result, estimating the skewness 
of an estimated proportion or mean using Equations 
10 or 11 may not be unreasonable, although it would 
often be better to replace the yk with a calibrated 
residual. Moreover, when estimating domain means, 
the impact of calibration weighting, like that of 
stratification and clustering, is diminished, except 
for any impact caused by increased variability of the 
weights themselves. Calibration weighting makes the 
use of Equations 12, 13, or 14 within the intervals in 
Equation 5 or 6 more viable.

If calibrated jackknife weights have been constructed 
to compute v for an estimator t̂ , then these weights 

Table 2. Approximating B

Estimates B

Bsimple  
(Equation 

[14])

Bsimple  
(Equation [12] 

or [13])

Municipal tax per person (in 1,000s)

Domain 1 -0.436 -0.486

Domain 2 -0.011 -0.020

Difference -0.436 -0.477

Fraction above 9 million per thousand persons

Domain 1 0.068 0.073 0.067

Domain 2 0.006 0.008 0.010

Difference 0.069 0.072 0.066
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can also be used in estimating the third central 
moment of t̂ :

= =

−
= −

−∑ ∑
2

3
3( ) ( )

1 1

( 1) ˆ ˆ( )
( 2)

hH n
h

J hi
h ih h

nm t t
n n

,

where t̂ is computed with calibrated weights, t̂(hi) is 
computed with the calibrated weights for the stratum 
h, PSU i jackknife replicate, and

1 2

2

( 1)11
( 1) ( 2)

h

h h h

n
n n n

−
  −

− = − − 
.

Noting that 

2

( )
1 1

( 1)1ˆ ˆ ˆ ˆ( ) ,
1 ( 2)

h hn n
h

hi hi hj
i jh h h

j i

nt t t t
n n n= =

≠

−
− ≈ −

− −∑ ∑   

2

( )
1 1

( 1)1ˆ ˆ ˆ ˆ( ) ,
1 ( 2)

h hn n
h

hi hi hj
i jh h h

j i

nt t t t
n n n= =

≠

−
− ≈ −

− −∑ ∑ in 3( )Jm  is analogous to

1
( 1)11

( 1)
h

h h

n
n n

−
  −

+ = − 

in the jackknife variance estimator:

2
( ) ( )

1 1

( 1) ˆ ˆ( )
hH n

h
J hi

h ih

nv t t
n= −

−
= −∑ ∑ .

Estimating the variance and third central moment 
of an estimator whose weights incorporate more 
than one calibration step can be difficult using the 
linearization methods applied previously. Computing 
jackknife measures is much simpler.

Some Concluding Remarks
Statisticians who base their inferences on probability 
samples often claim that those inferences are model-
free. One deviation from that claim is the assumption 
that the sample under study is large enough that 
an estimator based on the sample is approximately 
normally distributed. This assumption, which is 
often only made implicitly, justifies constructing 
Wald intervals for the parameter being estimated and 
conducting hypothesis tests based on those intervals.

This asymptotic assumption may not be justified 
in practice. Many alternatives to Wald intervals 
have been suggested in the literature for when the 

estimand is a proportion based on a simple random 
sample, Kott and Liu (2010) provide the means for 
constructing skewness-adjusted coverage intervals 
for estimators other than proportions. Moreover, 
these estimators can be based on more complex 
designs than simple random sampling. . We follow 
up on those intervals, describing interval estimates 
for ratios, differences between domain means, and 
regression coefficients based on either a stratified 
simple random sample or a stratified multistage 
probability sample employing with-replacement 
sampling at the first stage.

The practical stumbling block to using skewness-
adjusted intervals is that the statisticians must 
estimate the third central moment of their estimator. 
This cannot be done if any stratum contains less than 
three PSUs. Several approximations have been offered 
here instead.

Simulations assessing the viability of those 
approximations are still needed, as are simulations 
of the skewness-adjusted intervals themselves with 
realistic data (a few simulations are presented in Kott 
and Liu [2009], for stratified simple random samples). 
Here, the estimator’s population-based third central 
moment was used in place of its estimate in the 
examples. In practice, a statistician will usually have 
to estimate a third central moment. The impact of this 
estimation, which may not be very stable, needs to be 
evaluated.

It may be that using skewness-adjusted intervals or 
their approximations is roughly equivalent to using 
Wald intervals for a particular application. If that is 
the case, then assuming asymptotic normality may be 
justified. The skewness-adjusted intervals discussed 
here can be used to make that justification.
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