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Abstract
Full information maximum likelihood (FIML) is an important approach for 
compensating for nonresponse in data analysis. Unfortunately, only a few software 
packages implement FIML and even fewer have the capability to compensate for 
missing not at random (MNAR) nonresponse. One of these packages is Statistical 
Innovations’ Latent GOLD; however, the user documentation for Latent GOLD 
provides no mention of this capability. The purpose of this paper is to provide 
guidance for fitting MNAR FIML models for categorical data items using the Latent 
GOLD 5.0 software. By way of comparison, we also provide guidance on fitting 
FIML models for nonresponse missing at random (MAR) using the method of Fuchs 
(1982) as well as the approach by Fay (1986), who incorporated item nonresponse 
indicators within a structural modeling framework. We compare implementation 
and results for both FIML for MAR and MNAR nonresponse models for independent 
and dependent variables. Recommendations for future applications of FIML using 
Latent GOLD are provided.
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Introduction
Nonresponse can occur for several reasons including 
refusals, inconsistent or invalid responses, “don’t 
knows,” and inadvertent skips. In the statistical 
literature, nonresponse is assumed to arise from three 
types of stochastic mechanisms (see, for example, 
Rubin, 1976). Missing completely at random (MCAR) 
occurs when the nonresponse is completely unrelated 
to independent or dependent variables (i.e., not 
dependent on any attributes); missing at random 
(MAR) occurs when the nonresponse is related to 
the observed information but not the dependent 
variable(s); and missing not at random (MNAR) 
occurs when the nonresponse is not MCAR or MAR.

Regardless of the underlying mechanism, ignoring 
missing data in a data analysis can lead to biased and/
or inefficient inference. Fortunately, many techniques 
have been developed to handle missing data. Some 
common techniques are listwise deletion and single 
imputation including mean imputation, hot deck 
imputation, and predictive mean matching. Multiple 
imputation and full information maximum likelihood 
(FIML) are among the newer techniques that can 
yield unbiased inferences and valid standard error 
estimates. Asymptotically, multiple imputation can 
yield results that are identical to those obtained using 
FIML (Graham, 2009; Little & Rubin, 2002).

Several statistical software packages have 
incorporated methods for addressing nonresponse. 
Some of these are LEM, MPlus, SAS, Stata, R, and 
Latent GOLD (LG). Implementing more standard 
approaches for handling missing data is quite 
often straightforward in these software packages; 
for instance, regression analyses using SAS and 
Stata employ listwise deletion by default. However, 
implementing more complex missing data techniques 
may require a more intimate knowledge of the 
software and the data.

This report provides a primer for applying FIML to 
compensate for missing data in log-linear models 
for users of LG. While not detailed in this report, the 
techniques presented can apply to latent class models 
(see the supplementary article materials published 
with Edwards, Berzofsky, & Biemer, 2017 for LG 

code applying these techniques to Markov latent class 
models).

Two methods for handling missing data in LG are 
well documented and specified as user options: 
complete case analysis (i.e., listwise deletion) and 
FIML using Fuchs’ (1982) method, which assumes 
MAR (Vermunt & Magidson, 2005, 2016). The latter 
method can only be applied for missing data in 
the dependent variables and automatically invokes 
mean imputation to address any missing data in the 
independent variables. Although Fuchs’ approach 
works well for MAR data, the method by Fay (1986) is 
more general; it can be applied for both MAR and 
MNAR nonresponse by incorporating and modeling 
item nonresponse indicators. Unfortunately, Fay’s 
method is not a user option in LG; however, it is 
not difficult to set up the LG software to force-fit 
Fay’s method for handling missing data, as we show 
for MAR nonresponse in the section Modeling 
Assuming Data Missing at Random (MAR). The 
section Modeling Assuming Data Missing Not at 
Random (MNAR) describes in detail how to model 
item missing data for all variables in categorical 
data analysis using LG models when the missing 
data mechanism is MNAR. Doing so allows us to 
model both MAR and MNAR missingness for both 
dependent and independent variables. This makes 
LG unique since Fay’s method is not available in 
any other data analysis software packages to our 
knowledge.

The rest of this introduction discusses missing data 
mechanisms, FIML assumptions, and available 
software packages in more depth. The Methods and 
Results section details the LG syntax for fitting FIML 
models using two different approaches (Fuchs’ and 
Fay’s) under each response mechanism for both 
dependent and independent variables. The discussion 
summarizes these various methods and discusses 
potential difficulties with implementing each 
approach.

Missing Data Mechanisms
Every imputation method makes assumptions about 
the causal nature of the missing data; this is known 
as the missing data mechanism. Nonresponse is often 
classified according to one of three missing data 
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mechanisms: missing completely at random (MCAR), 
missing at random (MAR), or missing not at random 
(MNAR). Originally defined by Rubin (1976), MCAR 
occurs when the missingness does not depend on 
either the observed or unobserved data; MAR is a 
less restrictive assumption in that the missingness 
depends only on the observed data; and MNAR is 
the least restrictive mechanism regarding modeling 
assumptions, where the missingness depends on both 
the observed and unobserved data.

Under MAR and MNAR the respondents and 
nonrespondents may differ on the outcome 
variable of interest. Under a MAR mechanism, the 
missing outcomes are explained by other observed 
independent variables, so the response mechanism 
is assumed to be ignorable conditional on these 
observed independent variables. Under a MNAR 
approach, the missing data mechanism interacts 
with the outcome variable. This interaction can be 
expressed using a response indicator to incorporate 
information regarding the response mechanism into 
the imputation model (Rubin, 1976). Thus, to model 
MNAR data, the observed data and the response 
mechanism must be modeled jointly to account 
for observed and unobserved influences on the 
missingness.

Current approaches to modeling MNAR data can be 
classified into two types: selection models and pattern 
mixture models (Heckman, 1976; Little, 1993). 
Selection models require fitting a two-part model—
with one model for the outcome variable and another 
model for the response mechanism given the outcome 
variable. Pattern mixture models form subgroups 
of cases that share the same missing data pattern 
and then fit a model for each pattern. The overall 
model is then estimated using a weighted average 
of the individual models; standard error estimates 
for a pattern mixture model are often estimated 
using the delta method (Enders, 2010). Formulas 
for these models are presented in 
Table 1, where Y is the incomplete 
outcome variable of interest and R is 
a response indicator of Y.

These MNAR techniques require 
strong assumptions about the 
data in order for the models to be 

identifiable (that is, to contain reliable estimates). 
Selection models assume that the underlying 
response probabilities and the incomplete outcome 
variable follow a bivariate normal distribution. 
Pattern mixture models require the researcher to 
specify values for the inestimable parameters and 
have largely been used in conducting sensitivity 
analyses (Enders, 2010). When these assumptions 
are met, and the missing data mechanism is MNAR, 
simulation studies have shown that these methods 
tend to inflate the variance estimates (Fay, 1986). 
Our report addresses MNAR missing data through a 
selection model approach. For more information on 
pattern mixture modeling, refer to Little (1993) and 
references citing Little (1993).

Full Information Maximum Likelihood (FIML)
When the general conditions for estimation are 
satisfied, FIML methods can be used to fit a structural 
(or substantive) model for the outcome variable 
and nonresponse model simultaneously. While 
not an imputation method, FIML makes use of all 
available data (including partially observed data) 
to maximize the log-likelihood of this joint model 
(Enders, 2010). A considerable amount of work has 
been done around applying FIML under a MAR 
response mechanism and modeling MNAR data with 
a continuous outcome (Anderson, 1957; Arbuckle, 
1996; Graham, 2003; Little & Rubin, 2002).

For analysis of categorical dependent variables, 
FIML approaches are similar to those developed to 
handle continuous data in that partially observed 
information is used when maximizing a log-linear 
likelihood function. The primary difference is in 
the assumption about the sampling distribution: 
continuous data analysis assumes normality, and 
categorical data analysis assumes a multinomial 
sampling distribution (Vermunt, 1997).

Table 1. Missing not at random (MNAR) modeling approaches

MNAR Model:
P(Y,R) = joint distribution of observed data and response pattern

Approach 1: Selection Model
P(Y,R) = P(Y)P(R|Y)

Approach 2: Pattern Mixture Model
P(Y,R)=P(R)P(Y|R)

P stands for probability function, Y is the incomplete outcome variable of interest, and R is a response 
indicator of Y.
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If the data follow a MAR (or MCAR) response 
mechanism, this implies the response probabilities are 
independent of the missing variables. In this case, the 
likelihood can be factored into two components—one 
for the log-linear parameters and another for the 
response mechanism:

log L(π,Θ)=log L(π) + log L(Θ)	 (1)

where the structural probabilities are represented 
by π and the response probabilities are represented 
by Θ. Under the MAR assumption, only the structural 
parameters need to be estimated since these two 
components can be maximized separately and the 
response mechanism is ignorable.

In 1982, Fuchs extended the methodology of FIML 
to estimate the parameters of a saturated log-linear 
model using the estimation-maximization algorithm 
when item nonresponse is ignorable. The chi-squared 
statistic of model fit resulting from the saturated 
MAR model jointly tests the MCAR assumption and 
the model fit. When the nonresponse mechanism is 
MNAR, this approach is not appropriate because, in 
that case, the log likelihood does not factor, as shown 
in equation (1).

Fay extended the FIML methodology to model 
the response mechanism by using recursive 
causal log-linear models which treat the response 
indicators as dependent variables, thus providing 
a FIML technique that applies to data with either 
nonignorable nonresponse (MNAR) and ignorable 
nonresponse (MAR or MCAR). In Fay’s approach, 
which uses a selection model, response indicators are 
created for all variables with partially observed data, 
and outcome and nonresponse models are fit using 
their joint likelihood.

Software Packages
Many programs are capable of applying FIML 
approaches to handle MAR missing data. A few of 
these programs include LEM, MPlus, SAS, Stata, R, 
and Latent GOLD (LG). While all of these packages 
are widely used, LG is specifically designed to analyze 
nominal, ordinal, and interval-level categorical data 
by assuming a multinomial sampling distribution 
with the capability to account for complex survey 
designs. LG fits all models as log-linear models, 

which can be conceptualized as mixture models. In 
LG, missing data are addressed by default through 
Fuchs’ FIML approach for dependent variables 
and a stochastic mean imputation for independent 
variables (Vermunt & Magidson, 2016). With some 
adjustments that are not documented in the 5.0 user 
manual, LG can accommodate both Fuchs’ and Fay’s 
FIML approaches on all variables with nonresponse 
in the log-linear model.

MPlus is a popular package used in structural 
equation modeling to analyze continuous, ordinal, 
nominal, and count data; MPlus can address a 
complex survey design and apply FIML to missing 
data. MPlus assumes a normal sampling distribution 
to implement FIML on categorical variables (Muthén 
& Muthén, 1998–2011). Due to the distributional 
assumptions, these models are not fit as log-linear 
models. While this approach may be logical for 
binary, ordinal, or interval-level categorical variables, 
its effectiveness when used on nominal categorical 
variables is unclear. We are unaware whether MPlus 
can apply FIML in a log-linear model. Although 
MPlus handles MNAR missing mechanisms for 
continuous variables in a FIML construct, for 
categorical MNAR response, multiple imputation 
is the suggested approach (Asparouhov & Muthén, 
2010).

This report focuses on using LG 5.0 to account for 
missing data, with particular focus on highlighting 
a technique to use Fuchs’ and Fay’s FIML 
approaches to address item nonresponse through 
the syntax module. These features of LG can make 
applying FIML to variables with MAR and MNAR 
nonresponse more accessible to researchers, as shown 
in the following section.

Methods and Results: Implementing the Full 
Information Maximum Likelihood (FIML) 
Technique

Modeling Assuming Data Missing Completely at 
Random (MCAR)
Fitting a model using cases where all data points 
are observed (i.e., listwise deletion or complete case 
analysis) is one of the easiest methods to implement 
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to account for MCAR data. A path diagram of an 
MCAR model with four complete independent 
variables and one dependent variable with missing 
values is shown in Figure 1.

Figure 1. Missing completely at random (MCAR) model 
path diagram

Y

A

B

C

D
ρ

R

In LG 5.0, complete case analysis is requested in the 
options section of the syntax code with the keyword 
“missing excludeall” (line 6 of Figure 2). In Figure 2, 
a main effects multinomial-logistic model for the 
dependent variable Y is defined with covariates A, 
B, C, and D using only observations with complete 
data for variables Y, A, B, C, and D. In Figure 2, all 
variables are multinomial. If Y is a binary variable, 
a log-linear logistic model is fit; if Y has more than 
two levels, a log-linear model is fit. In later figures we 
illustrate applications of FIML using binary variables 
for simplicity; these models can easily be extended to 
higher level multinomial variables, either ordinal or 
nominal.

The LG syntax code consists of three sections—
options, variables, and equations. The options section 
is used to set and turn off features available in LG. 
In the options section of LG 5.0, Bayes smoothers 
can be set to prevent boundary solutions, Monte-
Carlo simulation requested, and power calculation 
methods invoked, although this is not shown in 
Figure 2. Refer to the LG technical manual for more 
guidance on how to implement these options. The 
variables section is used to declare all dependent, 
independent, and latent variables. Latent variables 
are unobserved variables that are inferred from other 
observed variables; they can be either continuous 
or categorical. Elements of a complex survey design 
would also be set in the variables section. Finally, the 
equations section contains any models of interest.

Once executed, LG creates several windows 
of output—Model Summary Output, Syntax, 
Parameters, and Profile. The Model Summary 
Output provides information on the model—the 
number of observations used to fit the model, the 
number of parameters in the model, seed values, 
and fit statistics—and can be viewed by clicking on 
the model name. Any warning or error messages 
regarding model estimation are listed in this window. 
The Parameters window contains model estimates for 
every model specified in the equations section of the 
syntax. Figures 3 and 4 contain example screenshots 
of the Model Summary Output and Parameters 
windows, respectively. For more information on the 
output windows refer to the LG users guide.

Figure 2. Listwise (MCAR) model syntax in Latent GOLD 5.0

1 options 
2    algorithm  
3       tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50; 
4    startvalues 
5       seed=0 sets=15 tolerance=1e-005 iterations=50; 
6    missing  excludeall; 
7    output   parameters=last standarderrors; 
8 variables 
9    dependent Y nominal; 
10    independent A nominal, B nominal, C nominal, D nominal; 
11 equations 
12    Y <- 1 + A + B + C + D; 
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Figure 3. Example model summary output from Latent GOLD

Figure 4. Example parameters output from Latent GOLD
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Modeling Assuming Data Missing at Random (MAR)
Models that implement a MAR mechanism can 
be fit a variety of ways using either a saturated 
MAR (Fuchs’) or response indicator (Fay’s) FIML 
approach. These methods are detailed in Table 2. 
Mean imputation is included as an option for the 
independent variables since it is the default method 
for handling item-nonresponse in independent 
variables in LG. From here on, we refer to models 
by model type, which is an abbreviation of the 
missing data approach applied to the dependent and 
independent variables, separated by a hyphen.

Table 2. Modeling approaches assuming MAR

Model Type Dependent Variable Independent 
Variables

1—Fuchs-Mean FIML MAR via Saturated 
MAR (Fuchs)

Mean Imputation

2—Fay-Mean 
(MAR)

FIML MAR via Response 
Indicator (Fay)

Mean Imputation

3—Fuchs-Fuchs FIML MAR via Saturated 
MAR (Fuchs)

FIML MAR via 
Saturated MAR 
(Fuchs)

4—Fay-Fuchs 
(MAR)

FIML MAR via Response 
Indicator (Fay)

FIML MAR via 
Saturated MAR 
(Fuchs)

5—Fay-Fay 
(MAR)

FIML MAR via Response 
Indicator (Fay)

FIML MAR via 
Response Indicator 
(Fay)

FIML = full information maximum likelihood; MAR = missing at random.

A path diagram showing the relationship between 
an outcome variable, its response indicator, and four 
independent variables in a MAR model is displayed 
in Figure 5. As in Figure 1, the four independent 
variables are complete, and the outcome variable 
suffers from item nonresponse. To model the missing 
at random response pattern, the response mechanism, 
ρ, is dependent on 
the four independent 
variables. In this 
single model case 
with missing only 
in the dependent 
variable, the FIML 
model estimates are 
equivalent to those 
from a MCAR model.

LG applies Fuchs’ approach to dependent variables 
by default. Since Fuchs’ FIML approach requires 
complete independent variables during modeling, LG 
by default applies mean imputation on independent 
variables with missing data. A Fuchs-Mean model 
estimation can be requested by specifying “missing 
includeall” in the options section of the syntax code 
(line 6 of Figure 6). We use this scenario to illustrate 
the simplest form of FIML that LG offers.

Figure 7 illustrates code for a multinomial dependent 
variable of any level with four independent variables: 
A and B are complete and are multinomial of any 
level, C is an incomplete 2-level multinomial variable, 
and D is an incomplete 3-level multinomial variable. 
Applying Fuchs’ approach to the independent 
variables requires the use of quasi-latent variables: a 
quasi-latent variable is a latent variable used to define 
a single manifest variable. In LG, latent variables 
can be specified on either side of an equation, but 
manifest variables can only be used on one side 
(independent variables on the right side; dependent 
variables on the left side). In our five-variable 
example, above, to fit a model for Y where C and D 
have been estimated using FIML techniques rather 

Figure 5. Missing at random (MAR) model path diagram
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Figure 6. Fuchs-Mean model syntax in Latent GOLD 5.0

 

1 options 
2    algorithm   
3       tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50; 
4    startvalues 
5       seed=0 sets=15 tolerance=1e-005 iterations=50; 
6    missing  includeall; 
7    output   parameters=last standarderrors; 
8 variables 
9    dependent Y nominal; 
10    independent A nominal, B nominal, C nominal, D nominal; 
11 equations 
12    Y <- 1 + A + B + C + D; 
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than mean imputation, independent variables C and D 
must be modeled in a latent framework. This is done 
by specifying categorical latent variables (line 11) and 
equations (lines 13 and 14) in Figure 7. The use of the 

weight statement (w2~wei and w3~wei) on lines 13 
and 14 preserves the observed values. Weight equations 
are always specified at the end of the equations section 
(see line 18). LG by default applies Fuchs’ FIML 

estimation to variables 
on the left side of 
an equation. These 
FIML-estimated values 
for C and D are then 
used in the regression 
formula on line 16 to 
model Y using Fuchs’ 
FIML approach. This 
process is repeated in 
an iterative estimation-
maximization fashion 
until convergence is 
reached for each model 
specified.

To use Fay’s approach 
in LG, response 
indicators must be 
added to the dataset 
for all variables with 
item nonresponse 
where Fay’s FIML 
approach is desired. 
In Figures 8 and 9, 
only the dependent 
variable is modeled 
using Fay’s approach; 
the response indicator 
for the dependent 
variable (iY) is added 
to the variables section 
on line 9. In Figure 8, 
the missing values 
on independent 
variables C and D are 
imputed via the default 
mean imputation. In 
Figure 9, these values 
are estimated using 
Fuchs’ FIML approach. 
Notice on line 14 of 
Figure 8 and line 18 
of Figure 9 that iY is 

Figure 8. Fay-Mean (MAR) model syntax in Latent GOLD 5.0

 

1 options 
2    algorithm   
3       tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50; 
4    startvalues 
5       seed=0 sets=15 tolerance=1e-005 iterations=50; 
6    missing  includeall; 
7    output   parameters=last standarderrors; 
8 variables 
9    dependent Y nominal, iY nominal; 
10    independent A nominal, B nominal, C nominal, D nominal; 
11 equations 
12    Y <- 1 + A + B + C + D; 
13 
14    iY <- 1 + A + B + A * B; 

Figure 9. Fay-Fuchs (MAR) model syntax in Latent GOLD 5.0

 

1 options 
2    algorithm   
3       tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50; 
4    startvalues 
5       seed=0 sets=15 tolerance=1e-005 iterations=50; 
6    missing  includeall; 
7    output   parameters=last standarderrors; 
8 variables 
9    dependent Y nominal, iY nominal; 
10    independent A nominal, B nominal, C nominal, D nominal; 
11    latent      q_C nominal 2, q_D nominal 2; 
12 equations 
13    q_C <- (w2~wei) C; 
14    q_D <- (w2~wei) D; 
15 
16    Y <- 1 + A + B + q_C + q_D; 
17 
18    iY <- 1 + A + B + A * B; 
19 
20    w2 <- {1 0   0 1}; 

Figure 7. Fuchs-Fuchs model syntax in Latent GOLD 5.0

 

1 options 
2    algorithm   
3       tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50; 
4    startvalues 
5       seed=0 sets=15 tolerance=1e-005 iterations=50; 
6    missing  includeall; 
7    output   parameters=last standarderrors; 
8 variables 
9    dependent Y nominal; 
10    independent A nominal, B nominal, C nominal, D nominal; 
11    latent      q_C nominal 2, q_D nominal 3; 
12 equations 
13    q_C <- (w2~wei) C; 
14    q_D <- (w3~wei) D; 
15 
16    Y <- 1 + A + B + q_C + q_D; 
17 
18    w2 <- {1 0   0 1}; 
19    w3 <- {1 0 0   0 1 0   0 0 1}; 
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dependent on the structural variables A and B only. 
Under the MAR assumption, the model for iY can 
depend on any of the complete structural variables 
other than Y. Therefore, several response pattern 
models can be defined to model iY. The estimates of 
the structural model and the response models are 
influenced through the error terms; thus, various 
MAR response models should result in similar 
parameter and variance estimates for the model of Y.

Similar to Fuchs’ approach, Fay’s approach can also 
be applied to the independent variables through 
the use of quasi-latent variables. For the five-
variable example, consider response indicators R, S, 
and T, which take on values of 1 when the variable is 
observed and 2 otherwise for variables Y, C, and D, 
respectively.

Models with more than one variable for Fay’s 
method are more complicated. Every variable with 
missingness for which Fay’s method is desired must 
have a response indicator on the dataset. These 
response indicators are added to the dependent line 
of the variables section (line 9 of Figure 10). Next, 
quasi-latent variables for each dependent variable 
and its response 
indicator that are 
needed on both sides 
of an equation must 
be specified on the 
latent line (line 11). 
Unless the joint 
distribution for the 
response indicators 
is known, each 
response indicator 
must be modeled 
separately.

The equation section begins by estimating the quasi-
latent independent variables using all complete 
independent data. The equations for the quasi-latent 
variables must be defined working from least amount 
of missing to most amount of missing. Note that on 
line 14 the equation for the quasi-latent D variable 
contains the quasi-latent C variable. After line 13, all 
values for quasi-latent C are estimated. After all quasi-
latent independent variables are estimated, the model 
of interest (Y) can be specified using all variables. 
Following Fay’s instruction, the response indicators 
are specified and modeled after the model of interest. 
In Figure 10, starting on line 18, the missingness 
of Y is dependent on A and B; the missingness of 
C is dependent on A; and the missingness of D 
is dependent on B. Again, several MAR models 
could be specified here. Lines 22 to 25 connect the 
quasi-latent variables to the observed data. When 
this set of equations is estimated at the same time 
using estimation-maximization techniques, Fay’s 
FIML approach is applied to both the independent 
and dependent variables with a MAR response 
mechanism.

Figure 10. Fay-Fay (MAR) model syntax in Latent GOLD 5.0

 

1 options 
2    algorithm   
3       tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50; 
4    startvalues 
5       seed=0 sets=15 tolerance=1e-005 iterations=50; 
6    missing  includeall; 
7    output   parameters=last standarderrors; 
8 variables 
9    dependent Y nominal, C nominal, D nominal, 
                      iY nominal, iC nominal, iD nominal; 
10    independent A nominal, B nominal; 
11    latent      q_C nominal 2, q_D nominal 2, 

 q_iY nominal 2, q_iC nominal 2; 
12 equations 
13    q_C <- 1 + A + B; 
14    q_D <- 1 + A + B + q_C; 
15 
16    Y <- 1 + A + B + q_C + q_D; 
17 
18    q_iY <- 1 + A + B; 
19    q_iC <- 1 + A + q_iY; 
20         iD <- 1 + B + q_iY + q_iC + q_iY*q_iC; 
21 
22    iY <- (w2~wei) q_iY; 
23    iC <- (w2~wei) q_iC; 
24    C  <- (w2~wei) q_C; 
25    D  <- (w2~wei) q_D; 
26 
27    w2 <- {1 0   0 1}; 
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Modeling Assuming Data Missing Not at Random 
(MNAR)
Extending Fay’s MAR application to MNAR 
is straightforward. Under a MNAR response 
mechanism, the missingness of a variable depends on 
the variable itself; see Figure 11.

Consider the case of the Fay-Mean MAR application 
in Figure 8. To convert this model to a MNAR 
model, line 14 must be modified by adding Y to the 
dependent side. Since Y must now be used on both 
the independent and dependent sides of separate 
equations, a quasi-latent variable for Y must be 
created. By creating a latent variable for Y, we can 
now use the unobserved latent value of Y to predict 
the response probabilities and the observed values of 
Y. Therefore, the MNAR code for a Fay-Mean model 

looks similar to Figure 12. Note this is the simplest 
MNAR response pattern, but other response patterns 
can be specified. Similar modifications allow Fay’s 
FIML application to model MNAR for the dependent 
variables as well. Fay’s method can be mixed with 
Fuchs’ method.

Discussion
This report demonstrates how to fit FIML models that 
compensate for item nonresponse in categorical data 
analysis using Latent GOLD 5.0. Here we consider 
and contrast the two approaches (Fuchs’ and Fay’s) 
and discuss a few noteworthy results that emerged.

Implementing Fay’s method in LG presents a few 
unique challenges. Applying Fay’s method to only one 
variable in the model with LG requires the creation 
of a response indicator, two quasi-latent variables, 
and four equations. When missingness for more than 
one variable is being modeled, the addition of these 
variables and equations can result in models that 
sometimes do not converge. Specifically, the models 
invoking Fay’s FIML approach on all variables may 
produce convergence warnings regarding boundaries 
and rank deficiencies. These warnings may be the 
result of the additional response indicators, quasi-
latent variables, and equations required to apply Fay’s 
approach in LG, which may indicate models with 
questionable stability. In some cases, Bayes smoothers 
can be used to resolve these warnings; directions for 

implementing Bayes 
smoothers in LG 
can be found in the 
technical manual.

An important 
advantage of the 
ability to fit MNAR 
models is to test 
whether missingness 
for one or more 
variables is MNAR 
or MAR. The 
appropriate missing 
data mechanism 
can be tested 

Figure 11. Missing not at random (MNAR) model path 
diagram

 

Y

A

B

C

D

R

ρ

Figure 12. Fay-Mean (MNAR) model syntax in Latent GOLD 5.0

 

1 options 
2    algorithm   
3       tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50; 
4    startvalues 
5       seed=0 sets=15 tolerance=1e-005 iterations=50; 
6    missing  includeall; 
7    output   parameters=last standarderrors; 
8 variables 
9    dependent Y nominal, iY nominal; 
10    independent A nominal, B nominal, C nominal, D nominal; 
12    latent    q_Y nominal 3; 
13 equations 
14    q_Y <- 1 + A + B + C + D; 
15 
16    iY <- 1 + q_Y; 
17 
18    Y  <- (w3~wei) q_Y; 
19 
20    w3 <- {1 0 0    0 1 0    0 0 1}; 
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by visually comparing estimates from MAR and 
MNAR models; when estimates differ significantly 
between the two methods in either direction, then 
a MNAR nonresponse mechanism may be present. 
The disadvantages of treating item missingness as 
MNAR are larger variances and increased model 
complexity, which can lead to model instability due 
to weak identifiability and local minima (Bartolucci, 
Farmcomeni, & Pennoni, 2013; Biemer, 2011).

It is possible that not all variables in a model are 
subject to the same missing data mechanism. Given 
the flexibility of LG, the code demonstrated in this 
methods report may be adjusted to model a mix of 
FIML MAR and MNAR approaches. Mixing these 
techniques might produce better estimates, but the 
impact on complexity, variance, and burden of fitting 
such models must be considered.

In conclusion, these FIML techniques are best used 
as a set. When MAR and MNAR FIML models are 

fit to categorical data, the nature of the missing 
data mechanism can be identified through model 
comparison. Given the potential difficulties of coding 
and fitting Fay’s response indicator models in LG, 
we recommend using LG’s default procedure that 
uses Fuchs’ approach whenever a MAR mechanism 
seems appropriate based on visual comparison of 
the estimates and fit statistics of the considered 
models. However, Fay’s response indicator approach 
is currently the only choice for fitting MNAR models 
in LG. For testing whether missingness is MNAR 
or MAR, Fay’s method should be used—but for 
best results, use it on the MNAR variable. Fitting 
various models under MNAR and MAR nonresponse 
mechanisms is recommended to identify variables 
with missing data that are MNAR. This approach will 
also identify when MNAR models produce invalid 
estimates due to either model convergence errors or 
software coding errors. 
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