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1 KEY MESSAGES 

The “Value” of forecast information and improved skill has different 

qualitative and quantitative interpretations 

Direct measures of value include hydropower generation or storage volumes, but value can come in a 

range of social, environmental, and economic forms. Value includes improved trust between operators 

and end-users; value is fish habitat sustainability; value is farm production and economic gains; value is 

reduced risk and dam safety; value is sustainable water for rituals and ceremonies. Assessing the value 

from improvements in forecast skill is a multi-perspective and not necessarily quantitative approach. 

Conservative bias in reservoir management reduces the potential value 

from improved forecast information 

Historical poor performance of reservoir metrics from errors in forecasts has resulted in issues with down-

stream stakeholders, including irrigators, flood managers, and recreational groups – those directly af-

fected by reservoir management decisions. To limit the risk of over-promising, operators act conserva-

tively to maintain an, ‘under-promise and over-perform’ approach to operations. This conservatism helps 

limit complaints from end-users but is sub-optimal and reduces the potential value achievable from the 

system. Efforts to improve forecasts and the resulting utility of the system may not be fully realized due 

to operator conservatism. To realize greater benefits, both improved forecast skill in addition to end-user 

confidence in best utilizing this information is required. 

Legal or contextual parameters may override benefits from improved 

forecast skill 

The western United States follows a prior appropriation doctrine of water allocation; thus, irrigation and 

water supply deliveries are prescribed by law, rather than what may ‘optimize’ production. Increasing 

forecast skill can support improved decision-making, but laws, agreements, or other constraints may limit 

the potential benefits from the improved forecast skill. 

Reduction in ensemble streamflow bias provides significantly better 

outcome metrics over ensemble dispersion when evaluated in an opti-

mization framework 

Using an optimization framework based on the Stochastic Sampling Dynamic Programming algorithm, 

which explicitly uses all members of a forecast ensemble, can result in much better outcomes when bias 

is reduced compared to reductions in dispersion of the ensemble. Therefore, effortsto improve forecast 

skill that reduce bias should provide much greater value to the end-user community. 
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Optimization tools nearly match historical performance only when us-

ing perfect foresight, indicating real-time assimilation of data beyond 

ensemble members 

Optimization models provide an unbiased means of directly comparing performance metrics using a range 

of variable ensemble forecast quality but can only match historical performance levels when using perfect 

foresight – information not available to operators in real-time. This is an indication that even though op-

erators are using the same probabilistic information to inform decisions, they are supplementing with 

additional data beyond the ensemble streamflow forecasts. These data include either qualitative or quan-

titative assimilation of weather forecasts, opinions of Nation Weather Service operators, real-time ground 

based hydrometeorological observations, or operator experience and domain knowledge – information 

not easily ingested into an optimization framework. 

Water supply forecast errors are associated with reduced farm yields 

and economic returns for irrigators 

An analysis of annual irrigation and production data for farms receiving water from Dolores Water Con-

servancy District (via McPhee Reservoir on the Dolores River) indicates that seasonal (April-July) water 

supply forecasts provide tangible economic value to producers. Alfalfa and other hay producers must 

make early season planning decisions before total water supplies and allocations for the year are known 

with certainty. As a result, they must rely at least in part on projections based on streamflow forecasts. 

Using an ex-post analysis that allows us to control for actual full-season water supply levels, we find that 

larger forecast errors are associated with lower annual production levels. Therefore, improved forecasts 

with lower error can measurably increase farm revenues and income. 

Higher confidence in the timing and size of excess reservoir inflows in 

wet years would result in higher economic value for recreational rafting 

Because the Dolores project’s main priority is to supply water for agricultural users, planned spills from 

the reservoir for whitewater rafting are only contemplated in years when there is high confidence of ex-

cess water supplies – i.e., when inflows are expected to be greater than reservoir storage capacity. Even 

then, uncertainty regarding the timing and size of these excess flows often means that dam operators are 

unwilling to make spill announcements with the advance notice that boaters prefer for planning multi-

week trips. When, for example, a 10-day spill on the Dolores River is fully utilized for rafting, we estimate 

that it can provide recreational benefits of $1M to $2M. Therefore, in wetter years improved forecasts 

can result in meaningful benefits for rafters; however, these benefits are primarily associated with im-

proved shorter-term streamflow forecasts based on weather conditions rather than on seasonal forecasts 

based mainly on snowpack estimates. 
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2 INTRODUCTION 

The Upper Colorado River supplies water for agricultural, municipal and industrial, recreation and ecolog-

ical services for about 20 million Americans living in the Western United States covering a watershed area 

of 111,700 square miles across four states [1]. The Upper Colorado River Basin (UCRB) receives most of 

its precipitation in the form of snow that falls above 9,000 feet, with 85% of the annual basin runoff pro-

duced from snowpack covering only 15% of the basin area [2]. Predicting the amount and timing of runoff 

is essential for the various stakeholders that not only use this water, but make economic, environmental, 

and social decisions based on the streamflow forecasts. 

Forecasts developed by the Colorado Basin River Forecast Center (CBRFC) are used for a variety of deci-

sions, including planning reservoir operations, flood-management decisions, drought declarations and dis-

aster assistance, water and power purchases, Colorado River Compact planning, scheduling system 

maintenance, diverting flows through tunnels, and for public messaging [3]. Creating accurate river fore-

casts is challenging due to uncertainties in snow conditions, complex physical processes in hydrologic 

models, the need for assimilation of ground- and space-based observations, and inclusion of weather and 

climate forecast information in probabilistic forecast products. 

The ability to increase the skill of hydrologic forecasts was the focus of an initial investigation led by Re-

search Triangle Institute (RTI) under this program. New spatially distributed hydrologic models were cali-

brated for 27 basins across the UCRB, which used a new snow data assimilation approach integrating 

remotely sensed data with ground observations [4] (In Review). This approach did improve forecast skill 

in a majority of basins, although improvements over the well-calibrated and manually tuned CBRFC mod-

els were marginal, and end-users may not immediately see the skill improvements. Nonetheless, these 

forecasts provided a base for enquiring about how they are used in the UCRB, and how end-users could 

benefit from any improvements of forecast skill. 

Previous studies have assessed the value of weather forecasts [5], long lead-time forecasts [6], or the 

value of forecasts for flood control [7]. Here, we focus on the value provided not by the forecast, but 

rather how users can benefit from improved forecasts – what is the marginal gain in value from improved 

forecasts, and what is the potential value of this marginal improvement? 

To study this question, we engaged with two unique water management groups in the UCRB and utilized 

a range of elicitation and modeling processes to understand how decisions are currently made, and more 

importantly, how those decisions may change when given forecasts of increased skill. Further, what are 

the economic, environmental, or social ramifications of these ‘improved’ decisions, and what are potential 

constraints from fully utilizing this improved forecast information? 

The study starts with a review of these two main water management agencies (Chapter 3), followed by a 

study using an interactive game to elicit changes in decisions (Chapter 4) with one stakeholder. A review 

using an interview-style approach of eliciting information with extensive document review was completed 

with the other stakeholder, including many details of impacts on downstream users (Chapter 5). To assess 

numerically how decisions may change with varying forecast skill, an optimization model was used with 

varying synthetic probabilistic forecast skills (Chapter 6), followed by an assessment of the potential eco-

nomic values from improved forecasts (Chapter 7). 
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3 STAKEHOLDER PROFILES 

The range of stakeholders managing water, and affected by water, is both expansive and diverse, espe-

cially in the western United States with greater demand for a limited supply of water. We can divide stake-

holders into two main groups – those that make direct water management decisions, and those that are 

affected by water management decisions. The latter may be making decisions in response to either fore-

casts or water availability, whereas the former is directly operating and managing the water resources. 

For this study, we focus on two unique groups managing water in the mountain west – Denver Water, a 

water supply utility for the front-range of Colorado, and Dolores Water Conservancy District, a group 

providing water supply and irrigation water in southwest Colorado. Each of these groups has a unique set 

of stakeholders directly affected by their water management decisions, which have social, environmental, 

and economic ramifications. 

Focusing on these two groups has allowed us a more detailed assessment of how forecasts are used, how 

the systems are managed, and how improved forecasts could affect a range of stakeholders. Each com-

ponent of the study pulls from one of these water management groups, and thus a high-level overview of 

each is provided in this section. 

3.1 DENVER WATER 
Denver Water (DW) is the major utility providing raw and treated water to the Colorado front-range, in-

cluding the Denver metropolitan area. They operate three major systems – the South Platte system, 

Moffat system, and the West Slope system – each with a series of reservoirs and diversions. In total, DW 

operates and maintains eleven reservoirs that are highly interconnected and require careful planning to 

balance storages, limit spilled water, and limit the unnecessary inter-basin transfer of water to the front 

range from the western slopes feeding the Colorado River Basin (Figure 3-1). 

This delicate balance of managing reservoir storage, moving water through tunnels and natural rivers, and 

meeting other water rights obligations relies heavily on seasonal spring forecasts provided by CBRFC. 

To keep any assessment of the value of forecasts tractable, all studies completed herein are focused on 

Dillon Reservoir, the largest reservoir in the DW system. Dillon Reservoir is within the Blue River water-

shed – a snowmelt dominated basin with unregulated flows upstream – and is one of the major forecast 

locations for the CBRFC. Flows can be diverted out of Dillon Reservoir through the Roberts Tunnel towards 

the front range, otherwise flows may be released downstream to the Green Mountain Reservoir. 
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Figure 3-1 - Schematic of Denver Raw Water Distribution System (courtesy of Denver Water) 
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3.1.1 Operational Objectives 

Objectives specific to the Dillon Reservoir were elicited through interviews and discussions with DW, and 

are highlighted below. As with most reservoir management systems, explicit rules and targets can be dif-

ficult to define due to the many potential exogenous influences, such as storage in other reservoirs, 

maintenance outages, wildfires, water quality, environmental targets, or many other factors. The list here 

represents generalized targets for this system. 

 

Other operating constraints include a regulated target maximum flow rate of 1,900 cfs for downstream 

safety and flood control. Certain large rain events may make this target impossible in the spring if the 

reservoir is full resulting in uncontrolled releases through the morning glory spillway. 

For downstream water quality and habitat, the project must meet a minimum flow rate of 50 cfs at all 

times. Further, DW is obligated to release certain volumes of water to Green Mountain reservoir as part 

of existing water rights agreements. 

The Dillon Reservoirs incudes a hydropower plant that operates from 50 - 100 cfs but is not a primary 

operational objective – rather, it takes advantage of the available head with the required releases down-

stream as an ancillary benefit. Further downstream at the BOR’s Green Mountain facility, where they 

operate in a range from 100 and 1,400 cfs, hydropower is a significant objective. 

3.1.2 How forecasts are used 

Denver Water relies heavily on the CBRFC streamflow forecasts in their reservoir operation planning dur-

ing both flood and drought conditions. Given the current state of system storages, DW considers a range 

of scenarios from low, average, and high flow conditions to determine operational strategies. The likeli-

hoods of each scenario are adjusted over time using the CBRFC forecasts. 

DW also utilizes the CBRFC ensemble traces, not just the exceedance probabilities for volumes, in opera-

tional modeling tools. This process results in ‘spaghetti plots’ of different scenarios given a range of po-

tential ensemble members. The reservoir filling season is roughly from April 1st to July 4th with the ablation 

of the seasonal snowpack. 

Currently, DW is also experimenting with assimilating the NASA Airborne Snow Observatory (ASO) data 

through an empirical correlation approach with observed runoff volumes. This approach is intended to 

Denver Water Operational Priorities for Dillon Reservoir 

• Balance system-wide storage to maximize a) total storage and b) equal distribution across 

the system for increased flexibility. 

• Minimize required trans-basin diversions to the front-range through Roberts Tunnel. 

• Minimize downstream flooding – limit total discharge to less than 1800 cfs. 

• Fill Dillon Reservoir to El. 9012’ and maintain near this level for upstream recreation and 

marina access. 

• Maintain releases for downstream recreation for fishing (100-400 cfs) when possible and 

rafting (500-1700 cfs) for a period of 21-days to support rafting companies. 

• Maintain releases between 50 and 100 cfs to maximize hydropower generation. 

https://www.jpl.nasa.gov/missions/airborne-snow-observatory-aso/
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supplement the CBRFC forecasts and provide another data point rather than replace these forecast prod-

ucts. 

3.2 DOLORES WATER CONSERVANCY DISTRICT 
The Dolores Water Conservancy District (DWCD) is located in southwest Colorado, where the Dolores 

Project is comprised of McPhee Dam and Reservoir on the Dolores River. This project provides water to 

approximately 12,000 people in the towns of Cortez, Dove Creek, and Towaoc, as well as irrigation water 

to approximately 63,000 acres of farm and range land in Dolores and Montezuma counties and the Ute 

Mountain Ute Indian Reservation. The DWCD is the operational manager of McPhee and is in charge of 

delivery of municipal water and irrigation water to 122 individual users in the Full-Service Area (29,000 

acres) and the Ute Mountain Ute Farm and Ranch Enterprise (7,700 acres). The Montezuma Valley Irriga-

tion Company (MVIC) has senior water rights on the Dolores River, and although it cooperates with the 

DWCD, it is a private business operation that owns and operates diversion tunnels, canals, and ditches 

which deliver irrigation water to shareholders on 26,300 acres in Montezuma County (Figure 3-2). 

 

Figure 3-2 - Map of DWCD Irrigation Districts 

The agriculture and recreation sectors are important water stakeholders in the Dolores, where agricultural 

uses constitute the majority of allocated of Colorado River water. Recreational water users are highly 

dependent upon water supply and are a powerful constituency group in DWCD water management deci-

sions. Anglers and boaters directly depend on water levels for recreation, and stream ecology depends on 
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the seasonal flow regime for spawning and benthic stream quality. Improved or diminished stream ecol-

ogy impacts direct users along with nonusers who may value the riparian ecosystem and its connection 

to the larger area ecosystem. 

Because the Dolores Project is a trans-basin project that removes water from the Dolores River Basin into 

the San Juan River Basin, the project poses additional challenges to recreational users and for stream 

ecology below the dam. Managers at the DWCD work with the recreation sector and with Colorado Parks 

and Wildlife, the Bureau of Land Management, and the US Forest Service to provide year-round flows 

below the dam for ecological purposes, including maintaining stream habitat. In years with high enough 

run-off, DWCD works with recreational and ecological interests to provide spills that provide recreational 

opportunities for boating and rafting as well as flows to improve stream habitat. 

 
Figure 3-3 - McPhee Reservoir Historical Operations (a) storage volumes with full pool shown as dashed line, (b) daily inflow and 
outflow via dam releases to downstream channel (source: USBR) 

3.2.1 Operational Objectives 

The primary objective for operation of McPhee Reservoir is water storage for meeting downstream or 

trans-basin diversion requirements by filling the reservoir each year. As seen in Figure 3-3(a), the dashed 

line represents full storage of 381,195 ac-ft, but this level is not achieved each year due to insufficient 

yield. Figure 3-3(b) represents the inflow hydrograph (blue) and the releases to the downstream channel 

(a) 

(b) 
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as ‘excess’ flow (orange). In this case, variability can be observed in downstream spring releases with some 

obtaining levels suitable for rafting, and other years experiencing no spill event. 

 

3.2.2 How forecasts are used 

Forecasts are mainly used to a) position the reservoir storage and time and downstream releases, and b) 

determine early-season announcement levels or shortages for irrigation allocations. 

DWCD relies heavily on the CBRFC forecasts to inform their short- and long-term operations of the 

McPhee Reservoir. Shorter term real-time operations also rely on a larger set of both observational hy-

drometeorological data and forecasts, including SNOTEL stations, weather stations, USGS stream gages, 

weather forecasts, and even snow albedo to help estimate dust-on-snow effects that may impact melting 

rates. This information goes above and beyond the CBRFC forecasts and is assimilated subjectively using 

expert knowledge, rather than through numerical estimates. 

DWCD also retains both an internal bias in its responses to the forecasts, and a learned conservatism in 

operations to limit the false-alarm rate or over-promised conditions. For example, allocations are deter-

mined using the 70% exceedance level (P70) to limit the potential for overly committed allocations. As 

we’ll discuss using different approaches, this may lead to sub-optimal utilization of water resources and 

benefits. The combination of improved forecast skill with improved decision-maker confidence in fore-

casts could increase potential benefits from the use of streamflow forecasts. 

  

DWCD Operational Priorities for McPhee Reservoir in order of priority 

• Maintain safe operating levels of McPhee Reservoir for dam safety 

• Fill McPhee Reservoir to allow full water allocations 

• Maintain acceptable environmental flows downstream 

• Time any ‘excess’ volume releases in a manner beneficial to the rafting community down-

stream 

• Generate hydropower from downstream releases 
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4 VALUE OF FORECASTS USING GAME ELICITATION 

The objective is to assess how decisions change, and how metrics improve, with improved forecast skill. 

There are several methods to elicit this information and infer effects directly or indirectly, one of which is 

the use of simulation models using a ‘gaming’ approach. Here, we interact with one of the stakeholders 

using a simulation game where input, actions, and responses are recorded, from which the impacts of 

improved forecasts can be inferred. 

4.1 APPROACH 
Our team created a custom web-based game to compare operational decisions made with different fore-

cast information (e.g., “scenarios”). This allowed us to elicit decision differences in response to both real-

ized forecast improvements (e.g., RTI ESP) and/or synthetic improvements (for both bias and uncertainty). 

Each scenario consists of a specific year (e.g., where DW had flow measurement data available) and a 

forecast scenario. The scenario game presented participants with an ESP volume forecast, similar to the 

information available through CBRFC, including the 10%, 30%, 50%, 70%, and 90% exceedance probabili-

ties and the SNOTEL information for the area beginning on March 1 (Figure 4-1). The participant was then 

asked to make a water management plan for the month of March including when and how much water 

they would choose to release and/or divert. 

Within the gaming interface, participants used slider widgets to change diversion or release amounts for 

a given month, and there is a window that allowed them to see how these changes would impact the 

overall elevation of the reservoir (Figure 4-1 and Figure 4-2). Once the participant finalized a plan for the 

month and decisions were submitted without recourse, the game advanced to the following month. This 

process repeated until July 1, representing the end of the runoff season, and the game advanced to the 

next scenario year (different water year and different forecast skill level). 

The scenarios game was built on a simple water balance model using reservoir storage volumes that re-

spond to both realized and predicted inflows and user-defined diversions. To perform the elevation pre-

diction, daily reservoir volumes were calculated by subtracting user-defined outflows and observed evap-

oration volumes from the daily volumetric ESPs of inflows. This volume was associated with an elevation 

based on volume-elevation relationships derived from available records. 

The game recorded daily water diversions and shortages to downstream water users—a timescale that is 

compatible with agricultural production modelling—which is useful for a range of industries and sectors. 

4.2 DENVER WATER 
The reservoir management game was designed to simulate the decisions that the Denver Water managers 

make in response to Ensemble Streamflow Predictions (ESPs) of various forecast skill levels. In it, players 

were asked to make daily diversion schedules on a monthly decision increment according to target objec-

tives that they set prior to the game. As elicited from engagement with Denver Water, targets were to: 

1. maximize Denver Water runoff storage and water balance across their system, 

2. minimize trans-basin diversions to the front-range through the Roberts Tunnel, 

3. maximize the number of days between 500 and 1,400 cfs for rafters and 100 and 400 cfs for fish-

ers, and 
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4. maximize the number of days above El. 9,012’ for marina boating access. 

Model developed forecast volumes were converted to exceedance probabilities to recreate the infor-

mation typically available to managers. These probabilities were calculated using a lognormal cumulative 

probability function derived from streamflow records between 1989 to 2010. A lognormal distribution 

was chosen to align with the methodology outlined in Day, 1985 [8], allowing volumes for the 10, 30, 50, 

70, and 90% exceedance probabilities to be presented. 

The RTI Data-Assimilated ESP product for Dillon Reservoir inflows was found to have similar forecast skill 

as the CBRFC forecast methodology. Therefore, ESP predictions were synthetically improved by a simple 

reduction in bias and uncertainty. Bias was improved by reducing the difference between the 50% ex-

ceedance probability prediction (P50) and the historically realized streamflow. All other ESP values were 

adjusted by the same amount and the ensemble spread is initially maintained. Uncertainty was then ad-

justed by reducing the difference between the P50 and each other exceedance probability according to 

the same percentage as with bias. 

In an attempt to recreate the informational context in which the ESPs influence decision-making, a small 

suite of additional information was made available to players within the gaming interface: 

a) SNOTEL data (precipitation, temperature, and snow water equivalent) for one or more sites sur-

rounding the reservoir acquired from the National Resource Conservation Service’s Water and 

Climate Center web service. 

b) Summary statistics of historical flows from Denver Water’s own streamflow records, volumetric 

estimates of remaining inflows 

c) Time series of observed inflows, diversion, evaporation and reservoir elevations up to the deci-

sion-making period 

d) Predicted future reservoir elevations were all provided. 

To help keep track of user decisions, a “water score” portal was made available to show each player their 

progression towards the pre-defined goals. 

The historical year of the current scenario is hidden from the user and, because the same year will be 

played multiple times with different ESPs, inflow figures are slightly perturbed (+- 0.15 kaf) to help anon-

ymize the specific year. All streamflow decisions for all players, game years, and ESP forecast “skill levels” 

are recorded and stored in a database as the game is played. 

For the DW participants, the game consisted of sixteen scenarios: four years (2006, 2007, 2008, 2009) 

each with four treatments (CBRFC forecast, two systematically improved forecasts, and the climatological 

average (1989-2010)). The synthetically improved scenarios were developed by decreasing the bias and 

uncertainty by 10% and 30%. We selected 10% and 30% improvements to test decision-making sensitivity 

and threshold about bias and uncertainty. To reduce bias in responses, the scenarios were ordered to 

minimize the chance the players would recognize the different treatments for a year that they had already 

seen (Table 4-1). 
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Table 4-1 - Order for the DW game scenarios 

 F1= CRBFC F2= Climate F3= Small Imp 
(10%) 

F4= Larger Imp 
(30%) 

Y1 1 12 7 4 
Y2 3 8 10 6 
Y3 5 11 9 2 
Y4 13 16 14 15 

 

 

Figure 4-1 - Sample screenshot of the scenario game showing the ESP forecast for March 1 

 

Figure 4-2 - Sample screenshot of the scenario game showing the diversion input portal with the “drag and drop” plan (bottom) 
and the graph showing the elevation based on the participant’s decision at the 50% exceedance probability level (top) 
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4.3 RESULTS OF GAME ELICITATION 
The interface developed for this process worked very well for the operators at DW and was designed 

specifically to mimic the information available to operators in real-time. Future values are hidden from 

the users, and thus they must make decisions based on probabilistic information. Decisions are no-re-

course, thus the state is updated based on their decision and realized inflows at the next timestep. Feed-

back from the operators and engineers at DW was positive in using this interface to elicit decisions, even 

though the interface was entirely different than what they use normal day-to-day operations. 

One of the challenges in working with the operations group was their limited availability – each simulation 

scenario, which includes decisions over multiple stages through a runoff season, takes 15-30 minutes or 

more. Ideally, each operator would complete hundreds of scenarios, but their ability to commit to the 

program and repeat trials was limited to only a few hours. 

 

Figure 4-3 - Game deployment and engagement with Denver Water raw water reservoir operators, (September 2019) 

A scenario is composed of the following: 

1. A unique year, perturbed to anonymize the year of the data 

2. A unique scenario of forecast skill [Climate, CBRFC, Improvement 1, Improvement 2] 

In total, the elicitation process resulted in 67 unique and independent scenario runs completed by three 

separate DW operators. Although operators may be completing the same scenario (working inde-

pendently), they may choose completely different approaches to manage the reservoir. 

To attempt to understand if the operators were able to make better decisions with better forecast infor-

mation the results were pooled into different groups as shown in Figure 4-4. One immediate observation 

is the consistent differences between all three users for the four different forecast improvement treat-

ment groups – User 3 consistently has higher water elevations in June. Looking across forecast skill treat-

ment groups, with lowest skill on the left to the highest skill on the right, there is no identifiable trend of 

higher storage levels in June (July, not shown, shows similar pattern). 
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Figure 4-4 - Performance of users across years with variable forecast quality – water surface elevations in June 

Alternatively, we can group all operators and assess impacts on various reservoir metrics for each forecast 

improvement treatment group (Figure 4-5). The maximum reservoir elevation for Dillon Reservoir is seen 

in Figure 4-5(a); with very little information, such as the Climate treatment, there is increased chance of 

an unforeseen large inflow causing greater than desired pool levels (i.e. upstream flooding). Conversely, 

with improved forecasts, preemptive measures can be taken to reduce any potential adverse peak storage 

levels – this improvement is not obvious in the mean across the treatments, but rather in the upper ex-

tremes across treatments. 

Figure 4-5(b) shows tunnel diversions that move water from the western slope to the front range – a 

necessary but ideally minimized operational decision. With improved skill across treatments we can see a 

general reduction in the volume transferred, especially with respect to the improved forecasts over the 

Climate treatment, and well minimized for the most skillful forecast, Improvement 2. 

Rather than considering annual maximum peak levels, we can look at quantiles to represent increased 

pool exceedance levels - Figure 4-5(c) shows the 85% quantile exceedance indicative of acceptable higher 

pool storage levels. There is no difference across treatments – improved forecast skill does not impact a 

more common pool level at the 85% exceedance level. 

Finally, we can consider how much flow is diverted into the downstream channel across different treat-

ment groups in Figure 4-5(d). Again, there is no change in how much is diverted across forecast skill treat-

ments for this metric of diversion. 
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Figure 4-5 - Reservoir performance metrics for each forecast skill treatment group 

The elicitation process using a gaming technique proved very successful in engaging DW operators with a 

system mimicking the information available to decision-makers, but the limited sample sizes made it chal-

lenging to differentiate clearly between small improvements in the result metrics. The greatest improve-

ments in the decision-making process appear to be on the extremes when there is indication of a potential 

large event not provided in the Climate or lower skill forecast sets. 

Improvements to this elicitation process may include means to expedite different scenarios to increase 

sample size; increase the number of knowledgeable operators playing the game who are capable of re-

viewing information and making operational decisions; and the addition of a ‘perfect forecast’ to under-

stand the upper limit of operations against probabilistic information. 

Finally, users were not aware of the different forecast qualities – users make decisions based on the fore-

cast assuming each is the best available, thus when improvements are realized, it’s simply because better 

information was given rather than their decisions were different. The gaming approach could be modified 

to provide the users some indication of forecast quality to control how their decisions are impacted. For 

example, would operators be less conservative under a high flow conditions pushing the storage higher if 

they knew the forecast was of higher quality? With that knowledge, we could then infer the value of not 

only improved forecasts creating better outcomes, but also improved user confidence affecting their op-

erational strategy, further increasing the potential benefits from improved forecast skill. 

  

(a) (b) 

(c) (d) 



Impacts and Benefits from Improved Streamflow Forecasts NASA ROSES 

23 of 97 

5 VALUE OF FORECASTS USING STAKEHOLDER INTERVIEWS 

The characteristics of the Dolores Project made it possible to examine how improved forecasts might im-

pact reservoir management and operations by the DWCD, but also trace how water supply and forecast 

information impact the decision-making processes of agricultural and recreational users. 

We conducted 23 semi-structured interviews with personnel from the DWCD, BOR, CBRFC, and MVIC, as 

well as with managers and technicians at the Ute Mountain Ute Farm and Ranch Enterprise, Dolores and 

Montezuma county extension agents, natural resource management agencies, recreational water users, 

and we conducted one focus group with four agricultural producers in the Full Service Area (Appendices 

3 and 4). These interviews focused on if, and how, these water users were using streamflow forecasts or 

other water supply data, and how their decisions were impacted by water supply and DWCD’s manage-

ment decisions. To supplement these interviews, we conducted document analysis of nineteen years of 

DWCD board minutes (2001-2019) from March thru November. These documents provided insight into 

how allocation decisions for irrigation are made and communicated to users, and how those operational 

plans may evolve throughout the runoff season. 

5.1 DOLORES PROJECT STAKEHOLDERS 

5.1.1 Full-Service Irrigation Area 

Irrigation has drastically changed the agricultural landscape in the area. The DWCD supplies irrigation wa-

ter to 122 individual agricultural producers in the Full-Service Area (29,000 acres) in Dolores and Monte-

zuma counties. Alfalfa is the primary cash crop grown on irrigated land, followed by corn, wheat, and 

beans. Most irrigators in the Full-Service Area can get three cuttings of alfalfa hay during the growing 

season. 

5.1.2 Ute Mountain Ute Farm and Ranch Enterprise and Towaoc Municipal Water 

The DWCD provides irrigation water to 7,700 acres of the Ute Mountain Ute Farm and Ranch Enterprise 

(FRE), and municipal water to the Town of Towaoc. In the mid-late 1800s, after being forced to cede their 

land to white settler encroachment, they settled in arid lands in southwest Colorado and Utah. They re-

jected the Dawes Act and land apportionment, and instead kept communal lands that were too arid for 

most farming, although some ranching was possible. Water is important culturally and ceremonially. For 

ritual purposes, water must be high quality and pure (e.g., spring water) in order to purify and rejuvenate 

ritual participants. 

Prior to the Dolores Project, the Ute Mountain Ute tribe had unrealized legal rights to water since they 

did not have the infrastructure to deliver that water to the reservation. They accepted a smaller volume 

of junior water rights in the Dolores Project in exchange for foregoing their treaty rights. The build-out of 

the Dolores Project included the Towaoc Highline canal to provide agricultural and municipal water to the 

Town of Towaoc and surrounding areas. 

The FRE is a tribally run commercial agriculture enterprise that primarily grows alfalfa, corn, and winter 

and spring wheat on 7700 acres of irrigated land. The FRE employs about 30-35 full time employees in 

addition to 5-7 contractors who bale the hay and an additional 5-7 employees at their corn mill facility. As 

the largest single recipient of water in the DWCD, the FRE receives approximately 24,000-acre feet of 
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agricultural water, and often leases up to 4,000 AF of additional water from the DWCD or MVIC when it is 

available. Because FRE receives approximately 37” of water per acre for irrigation, and their irrigation 

water begins arriving almost a month earlier than in the FSA in early- to mid-April, the FRE can get five 

cuttings of alfalfa in the best years. 

5.1.3 Recreational Users – Boating, River Access, and Fishing 

Recreational users are highly dependent on water supply forecast information to understand if there will 

likely be managed releases or spills from the reservoir, and if so, what might be the recreational opportu-

nities. 

The Dolores River is ranked as one of the premier rafting experiences in the US. The main stem of the 

Dolores below McPhee Reservoir is one of the least developed river corridors in the western United States 

and has been considered for Wild and Scenic designation. 

Prior to the completion of the McPhee dam, there was a strong recreation economy centered on rafting 

during the spring runoff season; however, after the completion of the project, rafting on the Dolores only 

occurs when there is runoff in excess of what the DWCD requires for allocated storage. Furthermore, 

multiple efforts to spur communication and cooperation between the recreational community, the agri-

cultural community, DWCD, and environmentalist groups to increase releases to improve recreation op-

portunities and stream ecology have stalled [9]. 

There has been significant effort on the part of the boating community and DWCD to improve communi-

cations around the potential and timing for boatable spills. Based on conversations between DWCD, BOR, 

and the boating community, the DWCD now issues written summaries about the potential for managed 

releases1. Before the runoff season begins, the narratives from DWCD include probabilistic information 

about the likelihood of a spill. For example, “it is highly unlikely that a release will occur” in 2018 (DWCD, 

March 15, 2018) or “The record snowfalls of early March have pushed forecasts up 50% driving the chances 

of a McPhee managed release, ‘spill’, over 50%.” (DWCD, March 20, 2019). 

When spills are likely, the DWCD convenes the Spill Committee that has representatives from the boating 

and agricultural communities, Colorado Parks and Wildlife (CPW), and environmental groups. They meet 

weekly to discuss the CBRFC forecasts and the potential timing and flow rates for any managed releases 

or spills. The DWCD has an understanding with the boaters that once release announcements are made 

on Thursday, they will not change them until after the weekend. DWCD also tries to meet the boaters’ 

preference of flow releases between 800-3000 cfs for approximately five days, particularly on weekends 

and holidays (e.g., Memorial Day weekend). These are not contractual agreements but are made in good 

faith between the boating community and the DWCD. 

Like most communities, there is a diversity in levels of understanding and engagement with raw stream-

flow forecast information. Both private boaters and commercial outfitters we spoke with were sophisti-

cated users of SNOTEL data and CBRFC forecasts who actively monitored snowpack and runoff conditions 

for the Dolores watershed as well as other major rivers in the area (e.g., the San Juan, Animas, and San 

Miguel). 

 

1 http://doloreswater.com/releases/ 

http://doloreswater.com/releases/
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Figure 5-1 - Public fishing access on the Dolores River 

5.2 FORECAST INFLUENCED DECISION-MAKING - HOW DWCD USES FORECASTS 
The reservoir operators at McPhee are heavily dependent on water supply forecast information based on 

a range of quantitative and qualitative sources. They use the official CBRFC probabilistic2 volumetric fore-

casts that are issued at the beginning of each month and, beginning in 2000, the middle of the month 

during the April thru July runoff season as well. During the runoff season, the CBRFC provides forecasts 

for the volumes expected for each month. By the DWCD’s request, CBRFC also provides a 15-day deter-

ministic3 ensemble forecast which is updated daily and includes recent weather events which would im-

pact the rate of runoff. This information is particularly important for managed releases. During the runoff 

seasons, the reservoir operators communicate daily, or nearly every day, with the CBRFC forecasters who 

provide additional details about how the forecasts evolve and characterize the uncertainty in the fore-

casts. 

DWCD also monitors the NRCS SNOTEL sites4 that provide snowpack information and have their own low-

elevation snow courses to help them gauge the accuracy of the CBRFC forecast. Additionally, they consult 

 

2 Probabilistic volumetric forecasts provide a range of possible runoff volumes (cumulative from April 1 - July 31) 
with the probability that they will be equaled or exceeded using historical meteorological sequences (in this case, 
1981 to present) with hydrologic models of the current system states – this is the ESP methodology. 
3 Deterministic ensemble forecasts provide the traces for each hydrologic simulation.  
4 https://www.wcc.nrcs.usda.gov/snow/ 

https://www.wcc.nrcs.usda.gov/snow/
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NOAA CPC seasonal forecasts5 and SNODAS6, although they use these sources for situational awareness 

and do not incorporate them formally into the decision-making process. 

McPhee operation plans are updated every 3-4 days at minimum during the runoff season and may be 

changed several times a day depending on real-time conditions, new forecast information, the amount of 

runoff, and whether there is an actively managed release from the reservoir into the river. 

In addition to official forecast information, oper-

ators, DWCD board members, and water users 

in the agricultural and recreation sectors are at-

tuned to seasonal precipitation cycles, and many 

report ground-truthing SNOTEL snowpack infor-

mation and CBRFC forecasts by driving or back-

country skiing into the mountains. Multiple peo-

ple reported on using a rock visible on the mountain above the DWCD office to estimate the depth of 

snow. Both water managers and water users in the agricultural and recreational sectors explained that 

experiential understanding of the snow and water in the Dolores River Basin is an important strategy for 

optimal water management and water use. 

The DWCD board and reservoir operators communicate water supply forecast information to irrigators 

and agricultural producers, utility managers, and to boaters and other land management agencies. The 

DWCD board meetings include briefings on water supply and discussions about whether there will be a 

full supply of water for the year, or whether there will be a shortage. 

A full supply to meet DWCD’s contractual obligations for agriculture, municipal, and ecological flows re-

quires about 150,000 AF of runoff each year. It takes a total of 266,000 AF to fulfill these obligations and 

fill the reservoir, which has a full-storage volume of 381,051 AF. This happens approximately one third of 

the time (one in three years). In years with high snowpack and plenty of water forecasted, the DWCD and 

the reservoir operators may decide to communicate the irrigation allocations in April or May. In years 

where there is low snowpack, and less water is forecast by the CBRFC, the DWCD may caution that they 

expect a short supply, but will hold off on making an official allocation decision until June, since it is not 

unusual for large amounts of snow to accumulate in the mountains in May (aka Miracle May, such as in 

2015). 

For irrigators in the FSA, a full supply is 22 inches of water per acre for the irrigation season (April or May 

thru mid-October). Irrigation water is pumped from the Great Cut pumping plant, delivered through a 

series of laterals and canals, and arrives at metered boxes at the individual farm level. In many years, the 

DWCD board decides on an irrigation cap for each irrigator, and if there is enough water, the board may 

increase the cap and institute “conservation pricing” on additional inches of water per acre that can be 

purchased over and above the allotted amount. 

 

5 https://www.cpc.ncep.noaa.gov/  
6 https://nsidc.org/data/G02158 

 

…VALIDATE SNOW CONDITIONS… A ROCK 

VISIBLE FROM THE OFFICE IS USED TO 

JUDGE THE SNOW DEPTH BASED ON HOW 

MUCH OF IT WAS VISIBLE. 

https://www.cpc.ncep.noaa.gov/
https://nsidc.org/data/G02158
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The DWCD reservoir operators prefer to use the P707 to make conservative allocation decisions earlier in 

the runoff season and then adjust to provide additional water over the course of the season when possi-

ble. The BOR uses the P50 for planning purposes, but the DWCD uses both the P50 and P70 because the 

CBRFC model is based on historical data using the ESP method and tends to skew a bit “wetter” than 

recent years. Experience has taught DWCD managers that, because of the importance of early season 

planting decisions for the agricultural sector, it is preferable to underestimate yearly streamflow and in-

crease allocations than it is to overestimate and decrease allocations as the year progresses. 

In years when there is more than sufficient water to meet irrigation allocations, there may also be a man-

aged release (or spill) to the downstream channel. Releases are made anticipatorily of the forecasted 

runoff volume – errors in the forecast can create conditions where water is spilled early but then full 

storage is not achieved. Hence, releases are made conservatively before filling in order to nearly ensure 

the reservoir will reach full storage. 

A Monitoring and Recommendation Committee pro-

vides input to help inform the release strategy and 

timing. If a raftable spill is expected (e.g., spills above 

1000cfs for 5 days), there is an additional Spill Com-

mittee comprised of DWCD members, boaters, wild-

life and public land managers, and other interested 

parties. The reservoir operators announce releases on 

their website, to local press, and regularly communi-

cate to their contacts in the recreation sector. There has been considerable effort by the boating commu-

nity, environmental advocates, and the DWCD personnel to collaborate and build trust. 

Overall, managing McPhee Reservoir and the water supplies is a constant balance between fulfilling the 

contractual obligations made by the Dolores River Project for provide irrigation and municipal water sup-

plies, but also to maintain sufficient water in the downstream channel to provide habitat for fish and 

maintain (or improve) the stream ecology, while also attempting to provide boatable flows for recrea-

tional users in years when there is enough water. 

Forecasts for runoff are indispensable for informing these decisions, but errors by both forecasters and 

managers have created a culture of conservative operations by DWCD and the downstream stakeholders. 

These conservative decisions result in sub-optimal use of the available resources limiting the potential 

economic value. Increased forecast skill has the potential to increase agricultural yields, increase boater 

days, and better maintenance releases for ecological benefit. 

 

 

7 “p-70” refers the 70% exceedance probability. 

 

DWCD usually “corrects” that based 

on their experience and uses the p-

70 because the CBRFC is usually a lit-

tle high; the p-70 is “safer” and 

more conservative. 
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Figure 5-2 - Decision making workflow for DWCD 
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5.2.1 Agricultural Decision-making for the UMU FRE and FSA: 

While the market prices for crops remains the primary driver of decisions for agricultural producers in the 

area, decisions are also dependent on the forecasted water deliveries. Decisions depend on the water 

supply allocated in any given year, but also on the antecedent conditions, such as soil moisture, that will 

impact how much water will be available and required for a specific crop mix. They also consider the 

amount of reservoir storage carryover when estimating what their water allocations for that year will be. 

If the reservoir filled the year before and there is a large amount of carryover, they may have a full supply 

even if run-off is projected to be very low (e.g., in early 2000s’). 

All of the producers with whom we spoke agreed that receiving additional water above the announcement 

later in the season was sometimes more frustrating than not receiving enough water relative to the an-

nouncement. While this may seem counter-intuitive, they explained that they make planting decisions 

based on the initial allocation announcements made by the DWCD, and that it was frustrating to end up 

with water at the end of the season that could have been used. For the FRE, the latest they could change 

planting decisions would be May 15, while the FSA producers reported it could be as late as the end of 

May or beginning of June. 

5.2.2 Strategies for years with additional water (above the allocation made in April, May, or June) 

The producers from the FSA reported that with a few extra inches in the fall, they would either not use it 

all, would water for their last cut of alfalfa (if they found out before they had stopped watering for too 

long, and if the extra amount was enough to produce another cut), or use it to increase the soil moisture 

heading into winter in order to create better planting conditions the following spring. 

Producers in the FSA reported that a 75% supply of water or less was really the point at which they would 

need to start making difficult decisions about how best to use their water. This translates to 16.5” in the 

FSA, and a reduction of 6,000 AF for the FRE (from 24,000 to 18,000 AF total, or an average of 28” per 

acre). 

5.2.3 Strategies for years with a short supply 

Depending on the current cropping mix, irrigators 

have several strategies for years in which they ex-

pect to not receive enough water for full cropping. 

One option is to concentrate water on certain crops 

and/or fields rather than spreading over all availa-

ble lands. Individual irrigators can choose where, 

when, and how to put the water on their land. This 

means that if a farmer has 100 acres of irrigable 

land determined by the project, a full water alloca-

tion would be 22” for each of those 100 acres. How-

ever, the individual can choose to pool their allocation and concentrate 11” of allocated water on 50 acres 

of fields for the same irrigated depth. This flexibility helps farmers in regular years concentrate water on 

more productive fields or profitable crops, maximizing their constrained production. 

Alternatively, irrigators may concentrate water on the first cut of alfalfa for all fields, and then only water 

the most productive fields. This allows the farmer to take advantage of any remaining moisture on the 

fields left from the winter. Regardless of allocation, the first cut of alfalfa yields the highest quality, and 

 

Producers in the FSA reported that a 

75% supply of water or less was really 

the point at which they would need 

to start making difficult decisions 

about how best to use their water. 



Impacts and Benefits from Improved Streamflow Forecasts NASA ROSES 

30 of 97 

highest volume of hay that farmers would like to utilize. This may mean concentrating water on newer 

stands (since productivity decreases with the age of the stand). Further, if the allocation was enough to 

get two cuttings from their alfalfa fields, they may choose to water all fields thru the second cut and then 

stop. One farmer reported that he could get 2 cuttings of alfalfa with 16” of water, and 1 cutting with 10”. 

These types of decisions were common in 2013, a recent extremely dry year. 

Farmers may also let old alfalfa stands die and hold off planting new stands. In this area, alfalfa stands are 

rotated approximately every six years. 

They could also alter the planting plan by replacing an older alfalfa stand with a crop that needs minimal 

irrigation (e.g., beans). 

Finally, the farmers may determine the best option is to let the fields fallow. If the farmer is rotating out 

alfalfa and has prepared the field to plant, they may opt to delay planting and fallow the land. 

However, there are still fixed costs for this option, including fees to DWCD for maintaining the operations 

and management (e.g., the FRE pays a base price of $83 per acre foot on the 24,000 allocation, whether 

or not the water is available for their use), and increased maintenance costs to farmers the following year 

for controlling weeds. 

5.2.4 DWCD strategies for a short: 

A “short” is a condition when forecasted yield is below the full allocated delivery, and downstream stake-

holders may receive either reduced or no water based on seniority of water rights and the magnitude of 

the short. 

DWCD will reduce allocations and alter 

the pricing mechanism (e.g., pricing = 

base price + unit price based on water 

used; they can adjust the base price 

down and the unit price up to encour-

age conservation, as one example). In 

some years where there is severe short-

age and very low productivity, DWCD 

reduces the price overall to give the 

producers a break, although in short 

years when DWCD doesn't have suffi-

cient water to sell, the short can be-

come a financial hardship for them as 

well – they have significant O&M costs 

for infrastructure maintenance and 

staffing. This can become especially im-

portant with several short years in a row (e.g., early 2000s) that cause budget shortfalls for DWCD over 

consecutive years. 

Another option is leasing excess municipal water to agricultural producers or leasing Class-A shares from 

MVIC (senior water rights holder) to the FSA users. 

Figure 5-3 - Dolores Project irrigated lands 
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Activities also include meetings and communications with agricultural producers (including post-cards, in-

person meetings, and phone calls) in order to negotiate with senior water rights holders (e.g., MVIC). This 

approach can avoid a call on water which trig-

gers legal limits; they prefer to negotiate 

among themselves. 

If the shortage is expected to be extreme, 

DWCD may pay for cloud seeding (e.g., West-

ern Weather Consultants) to increase precipi-

tation over the basin. 

5.3 HOW DOLORES STAKEHOLDERS BENEFIT FROM IMPROVED FORECASTS 
We prepared an online scenarios game for the Dolores River and McPhee Reservoir operators; however, 

the participants preferred an in-person conversation to the scenario game, so we adjusted methods for 

data collection. Instead, we provided reservoir operators at McPhee with the improved RTI forecasts and 

the CBRFC reforecasts and interviewed them about the decisions they would make regarding allocations 

for irrigation and for managed releases/spills based on these two sets of information. We provided the 

numerical values (Table 5-1) and a graph of the ESP forecasts including the 10%, 30%, 50%, 70%, and 90% 

exceedance probabilities (see example year in Figure 5-5). We did not provide information about the car-

ryover in the reservoir from the previous year in order to focus the decision solely on the forecasts. 

 

Figure 5-4 - Numerical values for the April thru July streamflow forecast and the observed July 1 runoff volume for the Dolores 
River, 2009 

 

…VALIDATE SNOW CONDITIONS… A ROCK 

VISIBLE FROM THE OFFICE IS USED TO 

JUDGE THE SNOW DEPTH BASED ON HOW 

MUCH OF IT WAS VISIBLE. 



Impacts and Benefits from Improved Streamflow Forecasts NASA ROSES 

32 of 97 

Due to the time-consuming nature of this method and personnel changes at DWCD, we were only able to 

discuss two years with one reservoir operator: 2008—a year with high snowpack and a managed spill 

lasting nearly 3 months; and 2009, with more average snowpack. 

Table 5-1 - Numerical values for the April thru July streamflow forecast and the observed July 1 runoff for the Dolores River, 2009 

Monthly stream-
flow forecasts for 
2009 (in kaf) 

    

Month ESP CBRFC reforecast RTI forecast July 1 observed flow 

March P10 386.8459 392.9477  

 P30 325.5058 334.9278  

 P50 288.8208 299.8447  

 P70 256.2701 268.4368  

 P90 215.6348 228.801  

April P10 298.7435 312.8652  

 P30 255.8774 275.1927  

 P50 229.8494 251.7939  

 P70 206.469 230.3846  

 P90 176.8432 202.6437  

May P10 256.7216 254.3915  

 P30 239.3783 243.478  

 P50 228.0579 236.1951  

 P70 217.2729 229.13  

 P90 202.5946 219.3003  

June P10 262.1954 259.1765  

 P30 257.7311 257.6251  

 P50 254.6838 256.5561  

 P70 251.6725 255.4915  

 P90 247.3874 253.9621  

July 1 Observed    242.8025 
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Figure 5-5 - The graphs of the CBRFC (top) and RTI (bottom) ESP forecasts showing the forecasts from January 1 to July 1 for April 
thru July runoff of the Dolores River 

5.3.1 Elicited Impact of improved forecast in 2009 

Would an improved RTI forecast for April-July runoff show enough difference to impact reservoir operat-

ing decisions for irrigation allocation and/or managed releases (i.e. boatable spills)? The year 2009 is a 
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good test case, since the RTI forecasts on April 1 and May 1 were closer to the actual runoff than the 

CBRFC reforecasts. This is the period when DWCD is making decisions about how much irrigation water 

they will provide and the probability of having a managed release (Figure 5-4). We asked a key decision-

maker at DWCD to make allocation and release decisions using the 1st of the month CBRFC reforecast and 

the RTI forecasts to assess how decisions may be impacted. 

Based on the P50 and P70 volumes of the two forecast sets, the reservoir operator indicated that he would 

make different decisions regarding the probability of a full supply and a raftable spill based on the differ-

ent RTI and CBRFC numbers. Considering the March 1 and April 1 forecasts, and not having information 

about the carryover in the reservoir, he indicated that with the CBRFC forecast, he would not feel com-

fortable guaranteeing a full supply for irrigation and would not expect a managed release. However, he 

indicated that he would communicate a full supply to the 

irrigators with the RTI forecast but would not expect a 

managed release; they would likely follow a fill-and-spill 

scenario. 

This decision was based both on the absolute numbers 

and the amount of downward change between the 

March 1 and April 1 forecasts. He further indicated that 

ideally forecasts would be consistent between months, 

indicating a better, more reliable forecast. When DWCD 

sees large swings up or down, it makes them less feel less 

secure about decisions. It wasn’t until the June 1 forecast that the numbers between the RTI and CBRFC 

forecasts were close enough to not make a difference in operational decisions. 

5.3.2 Elicited impact of missed forecast on the FRE and FSA, “Miracle May in 2015” 

The official March 1 CBRFC forecast was for 230 kaf for the total April thru July runoff (p50) which would 

have provided a full supply of irrigation water; however, the official forecast on April 1 was revised down 

to 145 kaf, and fell to 110 kaf for the May 1 official forecast (Figure 5-6). 

In April, the DWCD cautioned farmers in the FRE and FSA to expect a short supply, and communicated an 

estimated allocation of 10” of water per acre – much less than the full allocation of 22” – and the FRE 

allocation was shorted to 11,220 AF instead of the 24,000 AF full allocation. The FRE changed their planting 

plan accordingly and increased fallowed acres from 429 acres in mid-March, to 1389 acres in 18 fields at 

the beginning of April, to 2349 acres fallowed in 32 fields in mid-May. This included forgoing planned 

plantings of 9 fields of corn and allowing some winter wheat and older stands of alfalfa to die. 

However, a “Miracle May” storm brought record-breaking snows that resulted in the reservoir having 

enough water to provide a full supply. The FRE makes most of its planting decisions prior to May 15, 

however, and so they were unable to realize gains from the additional unexpected water supply. At the 

end of the irrigation season, the FRE had used 21414 af of its allocated 24,000 af. The FSA also used a 

lower amount of water than what ended up being available due to early planning around an expected 

short supply based on the March, April, and May forecasts. 

Data using RTI’s forecasts are not available after 2012, so it is unclear to what extent a slight improvement 

in forecast quality may have aided agricultural decision making and the ability to take advantage of late-

season changes to water supply forecasts. 

 

FRE makes most of its planting deci-

sions prior to May 15, however, and 

were unable to realize gains from 

the additional unexpected water 

supply 



Impacts and Benefits from Improved Streamflow Forecasts NASA ROSES 

35 of 97 

 

Figure 5-6 - Progression of water supply volume forecasts during "Miracle May" of 2015 (source: CBRFC) 

5.3.3 Elicited Impact of Forecasts on Recreational Rafting 

Based on conversations with rafting stakeholders, the timing of information about raftable spills is key for 

boaters. Boaters reported that increasing the lead time for notification of managed releases would in-

crease the number of days and people who recreate on the Dolores River. With one to three days’ notice 

of a managed release, it is mostly only local rafters from Dolores, Cortez, Durango, and the surrounding 

areas. With 3-6 days’ notice of a release, boaters will come from 3-4 hours away, including from northern 

New Mexico, eastern Utah, and the western slope of Colorado and surrounding mountain towns. With a 

week or more notice of a release, boaters will come from as far away as the Denver and the front range 

of Colorado, Salt Lake City, and Las Vegas. With 3-4 weeks’ notice or more, there will be boaters from 

across the country, including many commercial and private boaters. 

Commercial outfitters have significant costs and risks associated with running trips on the Dolores. They 

begin booking spring and summer rafting trips as early as February and March, long before detailed infor-

mation about specific dates for any managed release are available. However, they use their own expertise 

and experience of snowpack and runoff conditions to estimate the magnitude and timing of raftable flows 

on regional rivers. One outfitter reported that in 2019 that he began advertising potential trips on the 

Dolores to his clients in early March due to the high confidence in the forecasted spill. Rafting companies 

also need to ensure that they have enough trained guides with experience on the Dolores to safely run 

trips and move equipment between rivers – poor forecasts may result in significant investment losses for 

these smaller rafting companies. 
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Figure 5-7 - Snaggletooth Rapid, Dolores River, June 2019. (Photo credit: Brian Jokoby]) 

Rafting outfitters reported that it was considered very risky to run trips on the Dolores River because they 

can’t rely on boatable flows with sufficient warning to plan, advertise, and mobilize. As a result, many 

outfitters stopped running trips on the Dolores River, and moved to the Animas, San Miguel, Arkansas, or 

other rivers with more reliable raftable flows. However, the Dolores remains a very attractive river to 

rafting enthusiasts due both to its unique beauty and the infrequency of the opportunity to experience it. 

To reduce risk, commercial outfitters report that they do not guarantee a particular river and reserve the 

right to move clients to another river with more favorable conditions. 

In 2019, due to erratic streamflows and a cool, wet spring that impacted both the rate of runoff and agri-

cultural demand, the releases on the Dolores started and stopped several times, making rafting difficult 

even though runoff was well-above average. 

Rafting the Dolores in 2019: Erratic Runoff and Streamflow 

The 2019 runoff season highlights the importance of both the April-July runoff forecasts and the 10-15 

day weather forecasts on reservoir operations, particularly as it pertains to scheduling and managing re-

leases. 

In 2019, record-high snowpack in March-April meant that the DWCD and boaters knew there would be 

managed releases - the unknown was when spills would start and how long they would occur. 

On March 20, 2019, the DWCD reported that record high snowfall in the mountains made the likelihood 

of a managed release lasting 2-4 weeks and starting in mid- to late May over 50% (DWCD March 20, 2019). 

On April 23, DWCD pushed the expected release start to late May or early June (DWCD, April 23, 2019). 

On May 3, they forecast the spill to begin on Memorial Day (DWCD, May 3, 2019). However, a cool, wet 
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spring and a series of cold spring storm systems in May meant that peak runoff was almost a month late 

(peaking mid-June, well after the expected Memorial Day trips). 

These meteorological conditions caused decreased irrigation demand from farmers who had to delay 

planting due to the cool, wet weather, resulting in erratic spills, starting and stopping several times in May 

and June, as the reservoir operators tried to balance inflows, outflows, and downstream demands. Start-

ing and stopping of flows is challenging for rafters who prefer relatively steady or gradually varied condi-

tions. Stoppage of flows can result in stranding of rafters downstream in remote locations with limited 

egress. 

Reservoir operators are typically accustomed to three inflow peaks during the runoff season, with peak 

runoff around the end of May or beginning of June (Figure 5-9); however, in 2019, the runoff didn’t peak 

until nearly three weeks later than usual and operators had to manage multiple peaks in runoff  

(Figure 5-8). 

 

Figure 5-8 - McPhee reservoir operating plan, April 1-July 31, 2019. Courtesy of DWCD 
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Figure 5-9 - McPhee reservoir operating plan, April 1-June 30, 2017. Courtesy of DWCD. 

For boaters and rafting outfitters, erratic flows can be extremely difficult either impacting trips underway 

or can deter boating groups from even using the river entirely. During 2019, some scheduled trips on the 

Dolores had to be cancelled or moved to other rivers. 

Even in a high water year with CBRFC April-July runoff forecasts of sufficient water to provide a full delivery 

supply, fill the reservoir to ensure carryover for the following year, and provide for boatable flows, there 

is still a large amount of uncertainty around the ultimate realized yield volume and timing. Increased skill 

in forecasts can help the DWCD reservoir operators maintain safe water levels, increase chances for 

steady releases at desirable boating flow rates, and improve the confidence from the recreational boating 

community to rely on the river for commercial trips or general use.  
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6 VALUE OF FORECAST QUALITY USING OPTIMIZATION METHODS 

Optimization is used widely in the planning of reservoir operations and management [9] but is more lim-

ited in the real-time applications due to the complexity and computational burden. The advantage of op-

timization approaches, relative to rule-based methods, is that operation of the system becomes an emer-

gent outcome of optimization rather than another required input (e.g. deterministic rule-based approach 

compared to optimization that drives decisions). Further, assuming the objective functions do not change, 

the optimization approach provides a consistent and objective method of prescribing operations in re-

sponse to current conditions and forecasted streamflow. 

In addition, some optimization methods can explicitly manage probabilistic forecasts in the form of 

streamflow forecast ensembles. When forecast quality improves, optimization methods can then provide 

a clear and consistent means of evaluating the effects of these improvements on optimal operating policy, 

and hence, a clear means of identifying the potential value from improved stream forecast quality. 

A challenge with using optimization methods to make a single decision is the requirement to either have 

a single objective function, or to use multi-objective methods that apply weights and preferences to dif-

ferent objectives. Real world applications are extremely complex and include operational decisions that 

are driven by economic, social, and environmental factors, which may be challenging to fully represent 

within a numerical framework. As such, optimization methods may require gross simplifications of very 

complex human-driven decision-making processes. 

This section discusses a study conducted by comparing variable forecast qualities based on historical en-

semble members in a stepwise no-recourse optimization process. Historical ensemble members are mod-

ified to show improved forecasts, new optimization runs are completed, and the effects are evaluated to 

elicit the potential benefits of improved forecast quality. 

6.1 SAMPLING STOCHASTIC DYNAMIC PROGRAMMING 
There are several methods for utilizing ensemble streamflow forecasts in the decision-making process 

[10], but only a few explicitly use each ensemble member to inform the decision. One such method is 

called Sampling Stochastic Dynamic Programming (SSDP) [11]. Although very similar to the generalized 

deterministic approach of dynamic programming (DP) [12], it utilizes and optimizes over the expectation 

for each of the traces across the decision horizon, rather than through transition probabilities with meth-

ods like Stochastic Dynamic Programing (SDP) [13] [14]. 

The SSDP algorithm is computationally intensive and difficult to implement. To address these challenges 

through the creation of a ‘generalized’ algorithm for implementation of SSDP, RTI developed a program-

ming system called RTI-ROSE, or RTI Reservoir Optimization with Streamflow Ensembles [15]. This applica-

tion is intended to allow the rapid implementation of the SSDP algorithm to inform optimal decisions given 

a probabilistic streamflow ensemble. 

Optimization is conducted over a single time horizon with multiple members indicating optimal decisions 

over the period, but over time, new forecasts are produced, and actual reservoir inflows and outflows are 

realized. Thus, to use this in an operational approach, perfect foresight is not available and optimization 

must occur in a stepwise manner – optimization is completed for the current timestep, decisions are 

made, realized inflow occurs positioning the reservoir at a new storage, and new forecasts are received 
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which are again optimized over the horizon. This moving optimization window mimics how the process 

would be implemented in real-time systems and provides an indication of the ‘best’ decisions that can be 

made with probabilistic forecasts. 

The truly optimal path is when the reservoir is optimized with perfect foresight. This condition can also be 

analyzed with SSDP but only using a single trace (the historical realized inflow), which simplifies to the 

deterministic DP method. This condition represents the maximum potential utility that can be realized by 

reservoir optimization for the given objectives. 

When comparing the optimization of realized inflow against probabilistic inflow, we can then assess the 

potential benefits from better forecast quality – i.e., can better decisions be made with reduced uncer-

tainty? Through optimization methods, subjective decisions and bias are removed, creating a platform for 

consistent results based on the inflow ensembles. 

For purposes of this study, we focused on the McPhee Reservoir. The Dolores system is relatively straight-

forward, which eases the process of rule generation for optimization methods. There is a single reservoir 

with mostly unregulated inflows, and historical documentation on the project water balance is available 

from the USBR. In contrast, the Denver Water system includes multiple coordinated reservoirs, and its 

operations are based on longer-term climate projections, carry-over storage volumes, risk tolerance, fore-

casted supply demands, and many other factors, which make the system challenging to model in a manner 

representative of their actual target process. Although it is possible to model the DW system using an 

optimization approach, it would require several simplifications to maintain a tractable approach [16]. 

The objective function for McPhee Reservoir, as best elicited from DWCD staff and operators, includes 

the following main components: 

1. Fill – a linear objective of filling the reservoir up to the maximum normal storage 

2. Boat – a relationship relating higher flow releases to desirable boating conditions 

3. Low Flow Penalty (Pen1) – flows should not be greater than the minimum flow requirement for 

downstream environmental benefits 

4. High Flow Penalty (Pen2) – flows should not be greater than maximum allowable release to pre-

serve safe non-flooding downstream conditions 

5. High Storage Penalty (Pen3) – storage should not be greater than maximum normal to maintain 

acceptable dam safety conditions 

As such, the generalized objective function for this problem can be defined as: 

max⁡(𝑂𝑏𝑗) =∑𝜔1
𝑡 × 𝐹𝑖𝑙𝑙𝑡 +𝜔2

𝑡 × 𝐵𝑜𝑎𝑡𝑡 − 𝑃𝑒𝑛1
𝑡 − 𝑃𝑒𝑛2

𝑡 − 𝑃𝑒𝑛3
𝑡

𝑇

𝑡=1

 

where 𝜔𝑖  are the objective function weights, and 𝑃𝑒𝑛 are the respective penalty functions subtracted 

from the objective, for each timestep 𝑡. Through discussions with DWCD, it was determined that 𝜔1 ≫

𝜔2. 
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6.2 SYNTHETIC ENSEMBLE GENERATION 
To test how optimal decisions vary given probabilistic information, we developed a set of controlled vari-

ations on historical ensemble members. For each simulation, the ensemble was adjusted using two pa-

rameters for dispersion and bias. Dispersion is the measure of scatter or variance between the ensemble 

members, whereas bias is the shift of members from the historically observed value. To maintain a trac-

table process for ensemble modification, simplified methods were employed to create a consistent ap-

proach to ensemble adjustment. In general, modifications were made with respect to the median of the 

ensemble members, and the historical reanalysis inflow (based on Reclamation records). 

Dispersion Adjustment – the differences of ensemble members to the median can be reduced as a 

percentage. 

100% - no modification, original dispersion from median of ensemble members 

50% - traces are shifted by 50% of the difference from the median of ensemble members 

0% - ensemble members would have no variance from the ensemble median 

Bias Adjustment – using the median of the ensemble members, all members are adjusted as a per-

centage of the difference from median to the verified trace. 

100% - no modification, original bias 

50% - traces are shifted by 50% of this difference 

0% - median of traces would equal the historical inflow 

As seen in Figure 6-1, a gridded approach for a single ensemble forecast (April 1, 1997) shows the effects 

on adjusting bias and dispersion using this method, but adjustments are not shifted unrealistically to 0% 

on either Bias or Dispersion – this would be an extreme expectation from a forecast product. Instead, for 

each metric, a set of [50%, 75%, and 100%] was utilized, creating nine unique replicates of varying skill. In 

this case, bottom right of Figure 6-1 represents the original ensemble members at 100% for both Bias and 

Dispersion. Further, in each graph, the black-dashed line represents the actual observed reanalysis inflow 

for this streamflow forecast ensemble. 
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Figure 6-1 - Sample synthetic ESP modification of bias and dispersion, April 1, 1997, observed inflow (dashed-black line) 

Using the SSDP algorithm, implemented through RTI-ROSE, stepwise optimizations are conducted forward 

in time. At each time step, new forecast ensembles are generated (using CBRFC reanalysis forecasts) and 

new reservoir decisions are made. Once a decision is made, the actual inflow, diversions, evaporation are 

realized with the given target storage, and a new storage level is achieved. At this time, a new forecast is 

received, and the process is repeated – in this manner, no-recourse decisions are made on a stepwise 

basis using probabilistic forecast information. 

At the other extreme is a single-trace perfect forecast at the start of the runoff season. Under this condi-

tion, with the given objective functions, theoretically no better decisions may be made for positioning 

reservoir storage and making reservoir releases downstream. 

6.3 IMPACTS AND BENEFITS OF VARIABLE FORECAST QUALITY 
Benefits of improved forecasts, measured by utilizing ensembles of varying skill, is measured by direct 

responses of the system, including storage levels, storage timing, and reservoir releases. With improved 

forecasts, reservoir operators should theoretically be able to better manage storage and releases, thus 

improving water security and providing other potential economic benefits. 
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To test the optimization system and extract these performance metrics using the RTI-ROSE SSDP tool, a 

series of years were run independently [1991, 1997, 1999, 2003, 2006, 2007, 2008], where each year was 

initiated at the same storage levels as historically observed. A summary of available years is in Table 6-1, 

where each year has been categorized into Low, Average, or High runoff year based on total annual yield. 

A subset of years was selected from the period of record to assess a range of historical conditions with 

the same starting conditions, allowing the optimization method to be compared against historical perfor-

mance of the reservoir. 

Table 6-1 - Historical McPhee Reservoir Inflow Volumes; years categorized by 1/3 quantile groups [Low, Avg, High] 

Date 
Annual Yield 

(AF) 
Hydrologic 

Regime Date 
Annual Yield 

(AF) 
Hydrologic 

Regime 

1984 293723.9076 High 2002 37359.47 Low 

1985 308369.4509 High 2003 99411.7 Low 

1986 309126.9547 High 2004 140120.2 Avg 

1987 277421.7048 High 2005 252993.28 High 

1988 132291.4632 Avg 2006 116827.12 Low 

1989 132048.8529 Avg 2007 149953.23 Avg 

1990 82333.25 Low 2008 222256.09 High 

1991 144975.55 Avg 2009 149419.3153 Avg 

1992 176693.33 Avg 2010 151340.635 Avg 

1993 302309.9 High 2011 169277.9162 Avg 

1994 147702.88 Avg 2012 83466.32788 Low 

1995 283948.51 High 2013 78679.49428 Low 

1996 105182.32 Low 2014 116799.5593 Low 

1997 306998.97 High 2015 140803.7454 Avg 

1998 193996.49 High 2016 155069.8198 Avg 

1999 209426.1036 High 2017 225181.2527 High 

2000 124786.58 Low 2018 38591.78232 Low 

2001 128444.71 Low 2019 250052.2619 High 

 

An example is shown in Figure 6-2 for the year 2007 using 1-week intervals for optimization (i.e., no-re-

course decisions made weekly with new forecasts at each timestep). Each trace represents different fore-

cast skill, in addition to the black dashed line which represents the perfect forecast and the gray dash-dot 

line which represents historical releases. For this year, we can see the top ensemble operations have the 

lowest dispersion regardless of bias levels. 
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Figure 6-2 - One-step recursive optimization using probabilistic forecasts of varying quality – 2007 

 

Figure 6-3 - One-step recursive optimization using probabilistic forecasts of varying quality - 2008 
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A similar assessment is shown in Figure 6-3 during a higher flow year. All the forecasts and ensemble 

members produce earlier peak storage levels, whereas historical releases resulted in full pool later in the 

season, when the optimal traces had already begun to decline. In this year, the perfect foresight maintains 

the most storage while maintaining the fixed demand requirements. 

In general across all years assessed, perfect foresight allows for greater total peak storage increasing de-

liveries and minimizing the probability of water delivery shortages. Similarly, in most years, the perfect 

foresight performance is similar to the historical performance, which exceeds the SSDP optimization using 

the probabilistic streamflow ensemble forecasts. This indicates operators are either able to weight en-

semble members, or utilize supplemental information beyond the forecast ensembles in support of their 

decision-making process. 

Using each of the years, we then assess the output across different forecast skills for the core performance 

metrics. Storage metrics are related to the first component of the objective function, whereas preferred 

release profiles are related to the boating objective. 

• Maximum reservoir storage (Table 6-2) 

Mean June storage ( 

• Table 6-3) 

• Mean June outflow (Table 6-4) 

Table 6-2 - Annual Maximum Storage (AF) with Variable Forecast Skill 

Year Bias 
Disp 

50 75 100 Perfect 
Forecast 

Hydrologic 
Regime 

1991 

50 333333.3 323092 299882.7 

370000 Avg 75 339758.7 323092 306758.7 

100 339758.7 326425.4 306758.7 

1997 

50 380000 380000 380000 

380000 High 75 380000 380000 380000 

100 380000 380000 380000 

1999 

50 380000 376666.7 380000 

380000 High 75 380000 380000 376666.7 

100 380000 380000 376666.7 

2003 

50 271000 266500 257500 

237750 Low 75 266500 266500 257500 

100 283333.3 275500 257500 

2006 

50 323333.3 316666.7 310000 

326667 Low 75 330000 320000 313333.3 

100 323333.3 313333.3 306666.7 

2007 

50 370000 370000 356666.7 

380000 Avg 75 366666.7 363333.3 363333.3 

100 370000 363333.3 356666.7 

2008 

50 380000 376666.7 380000 

380000 High 75 376666.7 376666.7 380000 

100 380000 380000 380000 
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Table 6-3 - Mean June Storage (AF) with Variable Forecast Skill 

Year Bias 
Disp 

50 75 100 Perfect 
Forecast 

Hydrologic 
Regime 

1991 

50 325234.3 314519.4 290245.1 

358000.0 Avg 75 331852.7 314886.9 296953.6 

100 332886.9 318220.3 296953.6 

1997 

50 378666.7 374666.7 373333.3 

376000.0 High 75 378666.7 376000 373333.3 

100 378666.7 374000 374000 

1999 

50 370669 368169 368169 

376666.6 High 75 370669 369002.4 364835.7 

100 370669 369002.4 364835.7 

2003 

50 261717.5 257217.5 246048.7 

229950.0 Low 75 257217.5 257217.5 250548.7 

100 274750.9 266217.5 248217.5 

2006 

50 312620.3 302620.3 291064.9 

320833.3 Low 75 319287 305953.7 294377.4 

100 312620.3 299287 287752.4 

2007 

50 364082.6 356582.6 339916 

378333.3 Avg 75 360749.3 349916 346582.6 

100 364082.6 349916 339916 

2008 

50 375333.3 372666.7 374666.7 

379333.3 High 75 374666.7 374666.7 374666.7 

100 375333.3 374666.7 372000 

 

During high flow years, the benefits from improved forecasts are marginalized with respect to probability 

of filling (e.g., 1997) –improved forecasts in high flow years do not increase the probability of full storage. 

This condition is the exception to the rule, though, as most years show significant improvements in storage 

(both annual maximum and June mean) with improved skill forecasts. 

Table 6-3 highlights the mean storage for June – although reduced dispersion in the ensemble does help 

improve some of the operations, it is clear that reduced bias in the ensemble has the greatest effect on 

improved reservoir operations. This result is demonstrated consistently across all the test years and is 

independent of the hydrologic regime. 

Table 6-4 shows the outflows, but it is more difficult to use lower or higher flows to infer the benefit from 

improved forecast skill. In years such as 1997, there is an increase of discharge with increased forecast 

skill, compared to 1999, where there is a reduction in mean discharge with increased skill – this opposite 

response is not intuitive. The objective function is highly weighted on storage benefits relative to release 

benefits, thus inferring the significance of this switching is challenging. Of note is the consistent gradient 

of differences between forecast skill sets, which is much more significant along the axis of bias compared 

to the axis of dispersion changes. 
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Table 6-4 - Mean June Outflow (AF/week) with Variable Forecast Skill 

Year Bias 
Disp 

50 75 100 Perfect 
Forecast 

Hydrologic 
Regime 

1991 

50 6589.2 6048.1 6372 

2218.7 Avg 75 6541 5680.5 6413.9 

100 5013.9 5680.5 6413.9 

1997 

50 23651.2 19651.2 20317.9 

34454.5 High 75 23651.2 20317.9 20317.9 

100 23651.2 22317.9 20984.5 

1999 

50 10347.1 11180.5 12847.1 

17510.5 High 75 10347.1 10347.1 12013.8 

100 10347.1 10347.1 12013.8 

2003 

50 4807.6 4807.6 3007.6 

2319.1 Low 75 4807.6 4807.6 3007.6 

100 4574.3 4807.6 3907.6 

2006 

50 2091.3 2091.3 2841.3 

2200.9 Low 75 2091.3 2091.3 2862.1 

100 2091.3 2070.4 2820.4 

2007 

50 5852.1 6685.5 6685.5 

3117.6 Avg 75 5018.8 6685.5 5852.1 

100 5018.8 5852.1 5852.1 

2008 

50 13035.9 13702.5 13035.9 

18567.8 High 75 13702.5 13035.9 13035.9 

100 13035.9 13035.9 14369.2 

 

6.4 DISCUSSION OF BENEFITS FROM IMPROVED FORECASTS 
Through reductions in both bias and dispersion, the optimization model generally (but not always) shows 

improvements in the reservoir operations and decision-making process relative to the ‘best’ ensemble 

forecast. The term “Best”, in the language of the optimization algorithm, is considered a weighted com-

bination of both storage levels in addition to flow release rates. In some cases, storage may be moderated 

at lower levels indicating pre-full reservoir early spill releases – a demonstrated form of forecast informed 

reservoir operations (FIRO). 

Even through testing a matrix of improved forecast scenarios, which increases the utility of operations, 

the skill of these scenarios do not match that of a perfect forecast (i.e. a theoretical B0-D0 single trace 

forecast), nor that of historical operations. In the perfect forecast case, the storage and release schedule 

is superior, with the highest potential utility. Interestingly, in many years the historical operations are near 

this ‘optimal’ perfect forecast profile, and well above any of the ensemble traces. This is not the result of 

iteratively developing rules to match historical operations, but rather signifies the influence of information 

beyond the ensemble streamflow forecast in guiding operational policy. This includes weather forecasts, 

interpretation of SNOTEL stations with DWCD snow surveys and visual observations, and the human ele-

ment of understanding how the system may respond. This information is invaluable in determining reser-

voir positioning and release schedules and is not easily integrated into any optimization algorithm. 
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There is significant benefit in operations from improved forecast skill between the scenarios tested, but a 

more fundamental question should be asked around the realistic potential to reach even these levels of 

skill. Is it realistic to expect a 50% reduction in bias? Perfect forecast is clearly impossible, so any assess-

ments of potential value from improved forecast should be centered in realistic regions of forecast skill 

improvement. 

In principle, the RTI-ROSE optimization framework could also be used to assess the economic value of 

improved forecast information; however, doing so requires – at a minimum – specifying functions that 

translate reservoir storage levels and releases into economic values for all the main stakeholder benefi-

ciaries. For example, total agricultural profits for irrigators could be expressed as a function of stored 

water, total benefits to rafters could be expressed as a function of downstream flows, and flood damages 

(negative benefits) to downstream residents could also be estimated as a function of flows. These values 

could be then be added together to estimate total benefits, which could then be compared for different 

forecast scenarios. 

In practice, however, there are several challenges with implementing this approach (even setting aside 

the empirical challenges of estimating these stakeholder benefit functions). First, it assumes that dam 

operations are guided by an interest in maximizing the sum of economic benefits to all stakeholders. If 

operations are driven by other objectives, then an optimization model that maximizes the sum of benefits 

cannot be expected to simulate actual operational decisions. However, it may be interpreted as an ap-

proximation or as a benchmark for decisions. Moreover, the benefit functions by themselves may be use-

ful for evaluating the economic implications and outcomes of other optimization or decision processes. 

Second, this approach does not account for how forecasts may affect stakeholders’ decisions and benefits 

with respect to water use. For example, farm profits may not only depend on the amount of water they 

receive, but also on their planting decisions that are based on water forecasts. Benefits to rafters may not 

depend only on downstream flows, but also on trip planning decisions that were previously made based 

on forecasts. In other words, a full assessment of the value of forecast information requires a modeling 

framework that also accounts for the optimization decisions made by these stakeholders. 

Metrics of improvement defining the “Best” results are aligned to probability of filling the reservoir, fill 

level, and release profiles. There is additional value to other stakeholders not included in the optimization 

framework that could also redefine what is considered best – how would changes in bias or dispersion 

improve farming decisions? What is the economic value for the rafting community? 

We need to consider benefits of improved forecasts conditioned on the stakeholder and end-user. Im-

proved long-range forecasts are key for reservoir managers to plan allocations and delivery shortages 

during a drought impacting farmers production, but there is no benefit for dam safety engineers or recre-

ational rafters during this condition. Conversely, rafters greatly benefit from improved forecast skill and 

lead-time during years in which there is excess flow, bringing potentially significant increases in revenue 

to local businesses. The benefits change based on the hydrologic regime. Some of these questions will be 

explored in the following Chapter 7. 

The benefit from the use of an optimization tool may only be realized when a decision needs to be made; 

under drought conditions, demands through diversions are met as agreed to in compacts, but there are 

no decisions about when or how much to spill such as under full pool conditions. As such, this comparison 

of benefits from improved forecasts focuses on higher yield years when a spill may be expected. 
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In moving forward with improved forecasts, this assessment shows that 

• the best improvements in operations are realized with reduced ensemble streamflow bias rather 

than dispersion in the ensemble set; 

• the value of improved forecasts varies between hydrologic regimes; 

• the determination of the ‘value’ is conditioned on the stakeholder group. 

These factors make it challenging to effectively implement a single objective or weighted multi-objective 

optimization model into practical operations. If maximizing hydropower production was the only objec-

tive, then assessment of optimal operations and the increases in value would be relatively easy. For sys-

tems with multiple stakeholders, multiple objectives, and uncertainty in both inflows and demands, op-

erations can be challenging requiring human knowledge and capacity to be infused in the decision-making 

process. In this case, even with probabilistic information, the human operations including variables be-

yond the ensemble members can outperform optimization methods. Significant increases in the value of 

improved forecasts can be realized by focusing on decreased bias, but also assimilating multiple data 

sources into the decision-making process. 
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7 ECONOMIC VALUE OF IMPROVED FORECAST SKILL 

7.1 VALUE OF IMPROVED FORECASTS FOR DWCD PROJECT IRRIGATORS 
As discussed in Chapter 5, each year project farmers must make early season planting and other planning 

decisions (i.e., during winter and spring months) before actual water supplies and final water allocations 

by the project are known with certainty. To address this uncertainty, they can mainly rely on water supply 

and allocation predictions from two sources. First, the DWCD makes monthly announcements regarding 

their expected water allocations (in inches per acre) for full-service project farmers. As previously de-

scribed, these predictions are based on several data sources and reports, many of which are available on 

the CBRFC public website. Key among these data sources are the daily CBRFC April-July water supply fore-

casts for McPhee reservoir. Second, farmers can make direct use of the publicly available CBRFC forecasts 

and other data sources. Therefore, regardless of the direct information source used by farmers, the CBRFC 

water supply forecasts are a key underlying source of data. 

Given the potentially important role of CBRFC streamflow and water supply forecasts in the project farm-

ers’ decisions, one way to assess their economic value is to conduct a “revealed preference” analysis. That 

is, we can analyze how farmers’ observed decisions and alfalfa yields have varied with respect to changes 

in forecasts over multiple years, and we can then use this estimated relationship to infer the value pro-

vided by forecasts. This is the approach we describe in this section, with additional details about the meth-

ods, data, and results provided in Appendix A. 

Our analysis relies on two main sources of data. First, we acquired 16 years (2002-2017) of crop report 

data for full-service farmers in the DWCD project. These data include farm-level and field-level infor-

mation for over 100 farms and 28,000 project-allocated acres. They include reports of the number of acres 

allocated by the project for irrigation, the actual number of acres irrigated, and total annual output by 

crop-type. For the entire period 2002-2017, the data include information on the general type of commod-

ity being produced (e.g., hay, beans, etc.), but more detailed data regarding the specific type of commod-

ity (e.g. alfalfa hay) are only available from 2006 to 2017. 

Second, we acquired data on actual and forecasted water inflows and storage levels for McPhee reservoir 

for the corresponding years. These data are summarized in Table 7-1. The first main indicator of actual 

water availability in each year is the volume of water stored in the reservoir at the beginning the year (i.e., 

carried over from the previous year). From 2002 to 2017, the volume varied from as little as 5 KAF at the 

beginning of 2003 to as much as 147 KAF in 2006, with an overall average of 86 KAF. The second main 

indicator is the total accumulated inflow to the reservoir from April 1 to July 31 each year. These inflow 

volumes ranged from a minimum of 45 KAF in 2002 to a maximum of 423 KAF in 2005, with an average of 

218 KAF. Over a longer historical period extending back to 1981, the average observed annual inflow has 

been closer to 300 KAF. 

For forecast data, we used CBRFC projections of total inflow volume to the reservoir from April to July. In 

particular, we selected the “50% exceedance probability” (P50) from the ensemble forecasts published 

on the first day of the months of January, February, March, and April. The last four columns of Table 7-1 

report the forecast errors for each date and year. These errors are calculated as the difference between 

the forecast and the observed accumulated inflow volume for the year in question. Over the 2002-2017 

period, there are both positive errors – i.e. over-predictions of inflows – and negative errors, but positive 
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are more common. On average, the January, February, and March forecasts overpredicted actual inflows 

by 50 to 60 KAF, and the April forecast overpredicted by 21 KAF. 

Table 7-1 - Summary Statistics for McPhee Reservoir Inflows and Inflow Forecasts 2002-2017 

  

Reservoir carryo-
ver 

Total April-July In-
flow 

Reservoir Inflow Forecast 
(KAF) 

  Forecast Error (KAF) 

Year (KAF) (KAF) 
1-

Jan 
1-

Feb 
1-

Mar 
1-

Apr 
  

1-
Jan 

1-
Feb 

1-
Mar 

1-
Apr 

2002 54 45 199 157 120 108  154 112 75 63 

2003 5 146 240 191 206 201  94 44 60 55 

2004 22 200 258 263 277 208  58 63 78 9 

2005 55 423 262 337 358 364  -162 -86 -65 -59 

2006 147 145 210 197 154 192  64 52 9 46 

2007 119 205 292 252 246 205  88 47 41 0 

2008 136 375 326 434 521 464  -49 60 146 89 

2009 133 255 326 304 289 230  71 49 34 -25 

2010 107 247 235 247 247 247  -12 0 0 0 

2011 125 267 316 275 252 195  49 8 -15 -72 

2012 142 111 248 249 243 174  137 138 132 63 

2013 43 87 160 170 148 122  73 83 61 35 

2014 22 173 316 287 281 268  143 114 108 95 

2015 34 226 282 263 268 197  56 37 42 -29 

2016 91 241 350 386 292 241  109 145 51 0 

2017 143 346 269 444 473 411   -77 98 127 65 

Aver-
age 

86 218 268 278 273 239  50 60 55 21 

Min 5 45 160 157 120 108  -162 -86 -65 -72 

Max 147 423 350 444 521 464  154 145 146 95 

% >0               75% 88% 81% 56% 

 

To estimate the value of improved forecast information, we focus on mainly on alfalfa production by full-

service farmers. Focusing on a single crop makes it easier to compare production levels across years (in 

tons), and alfalfa accounted for 62 percent of all crop acreage under production over the period 2006 to 

2017. One limitation of focusing only on alfalfa is that data for this specific crop were not available for 

years before 2006. Therefore, we conducted a parallel analysis of all hay production from 2002 to 2017, 

with results reported in Appendix A. 

Using these data, we began by analyzing whether there is evidence that water supply forecasts have an 

effect on irrigation decisions for alfalfa producers. Although the dataset provides limited detail about the 

specific amount and timing of irrigation during the growing season, it does provide estimates of the num-

ber of acres selected for irrigation each year. Therefore, using regression analysis, we examined whether 

differences in CBRFC water supply forecasts across multiple years have a statistically significant effect on 

the number of irrigated acres (as a percentage of the number of acres allocated by the project for irriga-

tion). For the most part, we found that the inflow forecasts had positive and statistically significant effects 
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on the percent of project-allocated acres that were irrigated each year.8 The size of these effects varied 

across forecast dates, ranging from a 4.6 percentage point effect per 100 KAF increase for the January 

forecast to less than 1 percentage point for the March forecast. Although the earlier forecasts are gener-

ally less accurate, their larger effect on irrigated acreage may be due to planting and other planning deci-

sions that must be made early in the year. 

Given this evidence regarding the effects of forecasts on at least one key type of irrigation decision, we 

then analyzed whether there is evidence that water supply forecasts – and more specifically errors in 

these forecasts – affect the production levels and revenues achieved by alfalfa farmers. Our underlying 

hypothesis is that with perfect forecasts of water supplies (i.e., zero forecast error), farmers should in 

principle make optimal irrigation decisions that maximize production and revenue. Therefore, for any 

given level water supply and allocation that is actually realized in a year, any divergence from a perfect 

forecast --whether it be a positive (over-forecast) or negative (under-forecast) error-- is expected to have 

a negative effect on observed production levels (relative to production with a perfect forecast). 

Again using regression analysis, we estimated a model of field-level annual alfalfa production as a function 

of (1) indicators of actual water supply levels to McPhee reservoir for the year, and (2) observed forecast 

errors for the period of record. As expected, we found that the actual water supply indicators – stored 

water carried over from the previous year and total observed April-July inflows to the reservoir – had 

positive and significant effects on production levels. 

In addition, we found evidence that, controlling for these actual supply indicators, forecast errors – i.e., 

the absolute values of the difference between actual and forecasted inflows – had mostly negative and 

statistically significant negative effects on production. In particular, for the positive errors (i.e., over-fore-

casts), the size of the significant coefficient estimates suggests that each 10 KAF increase in the over-

forecast decreases output by 3-4%. The size of the under-forecasts is also found to have negative and 

statistically significant effects on production for the regressions using the January and April forecasts. 

These regressions are useful for analyzing the benefits of improved forecast information because, for any 

specified level of actual water supply indicators, they allow us to simulate what expected alfalfa produc-

tion levels would be with smaller forecast errors. Moreover, with an estimate of the per-ton price of al-

falfa, we can also estimate the effect of forecast errors on alfalfa revenues. 

Over the 2006-2017 study period, annual al-

falfa production in the study area has aver-

aged 60,146 tons per year. Assuming a price 

of $225 per ton, for a typical year, this trans-

lates to roughly $13.5 million in revenue per 

year. As shown in Table 7-1, the average 

March 1 forecast error for April-July inflows 

has been positive (over-forecast) at 55 KAF. With the regression results, we can estimate the value of 

improved forecast information by estimating the expected increase in alfalfa revenue associated with a 

specific decrease in forecast error. 

 

8 One exception was the effect of the February 1 forecast, which was not significant. 

 

THE AVERAGE MARCH 1 FORECAST ERROR FOR 

APRIL-JULY INFLOWS HAS BEEN POSITIVE (OVER-

FORECAST) AT 55 KAF 
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For example: 

1. The value of a perfect forecast relative a 55 KAF over-forecast, which would imply reducing the 

over-forecast from 55 KAF to zero, is expected to increase by annual alfalfa production by 24 per-

cent (i.e. 14,400 tons), which translates to value equal to an increase in annual revenue of $3.2M 

2. For an improved (but not perfect) forecast – e.g., reducing the 55 KAF over-forecast by 25 percent 

(13.75 KAF) – revenues are expected to increase by 5.5 percent, which translates to an annual 

value of $746,000. 

Further details of this assessment may be found in Appendix A. 

7.2 INFERRING ECONOMIC VALUE FOR BOATING RELEASES ON THE LOWER DOLORES RIVER 
In this section, we use economic benefit transfer methods [17] to infer the economic value of water re-

leases from McPhee reservoir for whitewater boating on the Dolores river downstream from McPhee 

reservoir. To this end we estimate boater user-days from data contained in Bureau of Land Management 

(BLM) recreational site activity reports for the Dolores River Special Recreational Management Area 

(SRMA). With an estimate of boater user-days resulting from a rafting water release, we then transfer 

consumer surplus estimates for a whitewater boating day from a national recreational value database and 

relate releases, and economic values, to McPhee management and improved instream flow forecasts. 

Whitewater Boating the Dolores River Below McPhee 

The Dolores Water Conservancy District (DWCD) operates the Dolores Project with the McPhee dam and 

reservoir serving as the project’s primary storage feature. The Dolores river provides project water for 

irrigation, municipal/industrial use, recreation, fish/wildlife, and hydroelectric power. While DWCD oper-

ators have a contractual obligation to provide water for irrigation and municipal/industrial uses, they also 

must manage flows to maintain wildlife downstream from McPhee Reservoir in the Dolores River. 

In years when there is sufficient expected water storage, DWCD operators release water for whitewater 

rafting and kayaking. These rafting releases are closely followed by the whitewater boating community 

on account of the river’s challenge and the area’s spectacular beauty. Boaters have limited access and 

takeout points where most boaters or on multi-day trips, camping along their journey down the Dolores 

River. Bradfield boat launch is the first lower Dolores access point from which one can take a one-day trip 

to Mountain Sheep Point boat launch (19-mile trip) or continue on to Slick Rock, a 47-mile trip from Brad-

field. The 47-mile Bradfield to Slick Rock stretch of the river winds through the Ponderosa Gorge with Class 

IV and Class V rapids during the peak of McPhee releases. Beyond Slick Rock, boaters float 50 miles to 

Bedrock, passing Gypsum Valley boat launch (14 miles from Slick Rock). Downstream from Bedrock, the 

Dolores crosses Paradox Valley with the next access out point along the Dolores at Gateway. The San 

Miguel river flows into the Dolores along this section of the river. With the inflow of the San Miguel, 

boating on the Dolores is less dependent on water released from McPhee. The BLM classifies the Dolores 

from McPhee to Bedrock as the Dolores River Special Recreational Management Area (SRMA). For this 

reason, we limit our analysis to whitewater boating in the Dolores SRMA. 
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Whitewater Boating Visitor Days Resulting from McPhee Releases 

Ideally, we would like to know the number of boating days that result from a typical spill. Our project team 

obtained BLM reports that contained estimates of site visits and visitor days for six recreation sites that 

they manage in the Dolores SRMA. The six sites are Bradfield recreation site (boat launch), dispersed use 

in the Dolores SRMA, Gypsum Valley boat launch, Dolores River Overlook (picnic overlook above the can-

yon), Mountain Sheep Point recreation site, and Box Elder campground. We assume that dispersed use is 

non- boating use of the area and therefore not relevant. We also ignore the Dolores River Overlook since 

this is a picnic area high above the river. Box Elder campground data is not reported for most years and 

we did not consider it in the analysis. The remaining sites all provide boating access and allow some infer-

ence for boating days. The main boating access points in the Dolores SRMA are 

Bradfield recreation (mile 0), 

Mountain Sheep Point (mile 19), 

Slick Rock boat launch (mile 47), 

Gypsum Valley boat launch (mile 61), and 

Bedrock boat launch (mile 97). 

The BLM reports cover the first, second, and the fourth sites. Additionally, we obtained data from the 

Colorado River Outfitters Association (CROA)9. CROA provided boater user day counts by year for trips 

taken with commercial outfitters for 2001 to 2018. Though commercial trips should be covered in the BLM 

data, we use the CROA data as a cross check. The full panel of data from the two sources spans 2001 to 

2018 and the BLM data additionally includes 2019. 

According to McPhee managers, the typical rafting spill lasts 14 days that include two days ramp up and 

2 days ramp down. Managers target minimum flows of at least 800 cfs. Using McPhee release data, we 

counted the number of days in each year when release flows exceeded 800 cfs and classify these days the 

number of whitewater “boatable” days in a year. Only eight of the nineteen years had boatable days: 2008 

(73), 2017 (62), 2005 (41), 2019 (35), 2011 (20), 2009 (15), and 2016 (7). 

The boater day counts provided by CROA make sense when contrasted with our boatable day counts. 

Across the years for which we have data, all the big CROA user day counts are found in our years with 

non-zero boatable days. CROA reported user days for these spill years ranged from 74 to 936. Five of the 

seven counts in these spill years exceeded 500. It would be ideal if we had counts for both commercial 

and private trips but unfortunately, we do not have this and so we infer the impact of spills on site visitor 

days in a year and then translate those site visitor days into boating user days. It is important to note that 

the BLM data is more of a rough guess at site visits and visitor days. There are quite a few entries in the 

reports that appear to be copied from year to year. Later years, post 2007, do not have this pattern and 

we rely on these later years in deducing boater user days. 

Bradfield Recreation site is a logical first site to consider since it is the first boater access point on the 

lower Dolores. 2019, 2017, and 2016 all had spills. The average number of site visitor days at Bradfield in 

 

9 http://www.croa.org/wp-content/uploads/2019/05/2018-Commercial-Rafting-Use-Report-1988-2018.pdf 

http://www.croa.org/wp-content/uploads/2019/05/2018-Commercial-Rafting-Use-Report-1988-2018.pdf
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non-spill years post 2007 was 6778.8. The respective increase above this average in BLM visitor day esti-

mates for 2019, 2017, and 2016 were 4447, 6156, and 3945. If we divide each of these increases by the 

number of spill days that year, we obtain estimates of visitor day increases from the spill per spill day to 

get 127, 99, and 563. Using the middle estimate from 2019, we would predict 1271 (127x10 days) more 

site visitor days (i.e., launches) at Bradfield per ten-day spill. Using 2016, the increase is significantly more 

at 5636 which does not seem reasonable given what see in the data and so we will use the 1271 visitor 

day increase for the analysis. 

Next, we translate this estimated number of launches per 10-day spill into a total number of boating days 

per spill for those putting in at Bradfield. Boating from Bradfield to Mountain Sheep Point takes a day 

while boating from Bradfield to Slick Rock takes two to three days and boating from Bradfield to Bedrock 

takes four to six days. Assuming a third of Bradfield boaters exit Mountain Sheep Point (1 day), a third exit 

Slick Rock (3 days), and a third exit Bedrock (6 days) we estimate a total of 4,235 boater days for the 10-

day spill. Shifting boaters away from the longer trips to shorter trips will obviously lower the estimated 

boater user days. 

Using the same approach, we then estimate the number of boater days for those putting in at Gypsum. 

The average site visitor days at Gypsum in post 2007 non-spill years was 1167. For 2019, 2017, 2016, the 

increases in site visitor days were therefore respectively 776, 1758, 340. Scaling by days we get 22, 28, 

and 48. Gypsum is both an entry and exit point. To make inference about additional boater user days one 

has to assume the proportion of new visitor days that are entering. For example, using the middle 2017 

number, 28, and assuming two thirds of the new users are entering and taking a two-day trip to Slick Rock 

results in 378 additional boater user days for a 10-day spill. Assuming everyone goes all the way to Bedrock 

for a 5-day trip we get 945 additional boater user days for a 10-day spill. For the purposes of our analysis, 

we assume half of those entering the water at Gypsum boat launch paddle to Slick Rock and half go all the 

way to Bedrock, resulting in 662 additional boater user days for a 10-day spill. 

To estimate boater days from the Mountain Sheep Point, we must address an unusual feature in the data. 

Whereas from 2001 to 2012 the average of annual visitor day estimates is 15,757 with a range from 12,416 

to 18,106, from 2013 to 2019 the average is 6108 with a range from 3546 to 9505. For this reason, we 

only consider the years 2013 to 2019. For these years the average of visitor days for non-spill years is 

4258. For 2019, 2017, and 2016 increases above this average are respectively 3496, 4310, and 5147. Scal-

ing by days we get 99.9, 69.5, and 735.2. Like Gypsum, Mountain Sheep Point is both an entry and exit 

point. Assuming two-thirds enter and go 2 days to Slick Rock using the middle 2019 number, 99.9, adds 

1332 additional boater user days. Alternatively, assuming the same boaters go all the way to Bedrock in 5 

days adds 3329 boater user days. Therefore, assuming half the boaters entering at Mountain Sheep Point 

take the 2-day trip and half take the 5-day trip we get an additional 2331 boater user days for a 10-day 

spill. 
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Table 7-2 - Estimated Number of Boater Days per 10-Day Spill 

Launch Site Boater Days 

Bradfield 4,235 

Gypsum 662 

Mountain Sheep Point 2,331 

TOTAL 7,228 

Whitewater Boater Consumer Surplus for 10-Day Spill 

When economists refer to the economic value as a whitewater boating day or trip, they are referring to 

consumer surplus for that day or trip. Consumer surplus is a user’s total value for the trip less the cost of 

the trip. Consumer surplus is a monetary measure of the net benefit or net value for the trip or recreation 

day. There is a rich literature on the economic value of recreational activities including fishing, hunting, 

hiking, camping, bird watching, whale watching, and whitewater boating. 

In 2016, the USDA Forest Service and the US Environmental Protection Agency funded an effort to create 

a recreational value database. Oregon State University Professor Randall Rosenberg [18] led this effort 

and the database is publicly available10. These agencies desired such a database so that values for user 

days could easily be incorporated into economic analyses. The database contains over 3000 user day value 

estimates for a wide range of activities. In particular, the database contains thirty-four per day value esti-

mates for whitewater boating in the western US. 

For benefits transfer, we seek values from studies that are the closest match to whitewater boating on 

the lower Dolores. In 1987, Bishop et. al published a study that estimated consumer surplus for white-

water boating in the Grand Canyon. The study was part of a large federally funded effort to consider 

changing flows in the Grand Canyon to improve river ecology and river recreation. Like the lower Dolores, 

floating the Colorado river through the Grand Canyon involves multi-day trips through scenic river canyon. 

The recreational database contains 12 boater user day value estimates from the study. The 12 estimates 

range from $124 to $426 (2020 inflation adjusted). The wide range of estimates stems from the value for 

different flow levels. For our purposes we will use the minimum, $124, and the average of the 12 esti-

mates, $278, and the maximum, $426, to create a plausible range of estimates of the value for a 10-day 

spill. 

Total Inferred Boater User Days - 7228 

Total Economic Value Using Minimum - $896,272 

Total Economics Value Using Average - $2,009,384 

Total Economic Value Using Maximum - $3,079,128 

 

10 http://recvaluation.forestry.oregonstate.edu/ 

http://recvaluation.forestry.oregonstate.edu/
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Our analysis suggests that the economic value generated by a 10-day spill falls in the range of $1M to 

$2M, giving us a rough idea of the potential benefits associated with a spill. 

Inferring Economic Value for Improved Instream Flow Forecasts 

DWCD operators’ top priorities are to meet the project’s contractual obligations to agricultural users, mu-

nicipal/industrial users, and obligations to maintain lower Dolores river flows for fish populations and river 

ecology. It is only in years with anticipated yields greater than storage capacity that high flows for white-

water boating spills even potentially occur. The management problem is dynamic since reservoir storage 

facilitates carryover from one year to the next. 

To illustrate one way that things can go wrong, in 2017 there were two whitewater boating spills, one in 

early May and another in early June. Boaters were happy. Unfortunately, the end of 2017 season flows 

were down and 2018 was a dry year leading to a short in 2018 early allotment announcement that kept 

deepening through the season. It was a tough year for producers who pointed to the previous year’s spills, 

especially the spill in June, that could have been carried over into 2018. With perfect foresight, producers 

could have done considerably better in 2018. 

The dynamic complexity of the problem naturally leads to a very conservative management approach to 

spills. Operators would like to wait as long as possible to make a decision about a spill as more precise 

forecast information comes in with the passage of time, while boaters would like plenty of advance notice 

in order to plan multi-week trips. While snow data assimilation methods are genuinely valuable in as-

sessing the state of snowpack at any point in time, the forecast uncertainty that appears to matter the 

most for McPhee operators in relation to spills are seasonal weather forecasts, particularly those with 

long forecast windows. Ken Curtis, the DWCD manager, noted that while runoff accounts for around 80% 

of annual flows on average, weather variability over the season implies considerable volatility of realized 

flows for the remaining 20%. More precise long window weather forecasts would improve management 

in general but would likely have a major impact on whitewater boating spills. 

Conservative management suggests that better weather forecasts could lead to more spills which provide 

an economic benefit of $1M to $2M for an additional 10-day spill. But this side of the benefits ledger is 

only realized in wet years. From the time the project was completed, spills occurred about 68% of the 

years. Thus, the probability that an improved forecast would matter regarding spill is modest. Additionally, 

we need to think about how the improvement translates into a change in the number of spill days. Even 

if the change were significant, the probability weighting suggests that expected benefits for a given year 

would be below $500,000. 

There is another sider to the ledger that relates to the 2017 - 2018 example. A better long window weather 

forecast might have led to fewer spill days in 2017. The benefit there would be a greater carryover that 

would have led to increased 2018 agricultural production. Again, the expected value across years for this 

kind of benefit is modest but for the given year the benefit could be quite large.  
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8 CONCLUSIONS 

Streamflow forecasts are essential for water managers planning reservoir operations and allocating lim-

ited storage volumes, for farmers scheduling their planting plan, and for recreational users planning boat-

ing trips, amongst other stakeholders. The question is not whether forecasts are of value, but instead 

what is their marginal value for improvements in forecast quality? 

Through several different approaches, we elicited this information – first we applied a gaming approach 

where system operators at DW were provided with of varying skill levels, and we evaluated how this var-

iation changed potential benefits. Second, we engaged with DWCD using a qualitative approach to assess 

how decisions are made, how decisions would change with different information, and how those changes 

would impact a range of stakeholders. Finally, we created an optimization system to evaluate quantita-

tively how decisions change using variable probabilistic forecast quality. With this information, we can 

move towards estimating the incremental improvements in economic value from improved forecast skill. 

Through the stakeholder elicitation process, our team discovered a few differences between methods 

with opportunities to improve the effectiveness of each. Again, the gaming approach (Table 8-1) was used 

with DW, whereas a more qualitative approach was used with DWCD (Table 8-2). 

Table 8-1 - Tradeoffs of the scenarios “gaming” approach 

Pros Cons 

Provides comparable decisions made for same year 
with different forecast info (higher # of scenarios) 

Time intensive for build out and for players 

Test sensitivity and thresh-holds for change vis-a-vis 
decision-making 

Monthly timesteps required to make the game 
tractable, but operators changing operations 
weekly / daily in reality 

Test the sensitivity or thresholds for decision-mak-
ing by artificially perturbing or creating the synthetic 
forecasts. Can ID what the change/improvement 
would have to be in order to effect a change or im-
prove the decision-making outcome(s) 

needs to be simplified to the point that it does 
not capture the vast majority of the complexity 
of the decision-making process 

Focus on the artificial/synthetic scenarios with the 
10% and 30% improvements 

Does not include non-numeric information in 
the decision-making process 

 

Table 8-2 - Tradeoffs for Qualitative approach 

Pros Cons 

See value in improving confidence of decision even 
if it doesn’t move the metrics from decisions 

Time intensive (either by phone or in person) 

Captures the nuances of how decisions are made, 
more accurate reflection of decision-making process 
and space 

Difficult to test synthetic improvements through 
dialogue or hypothetical approach 

Can ID value of the smaller improvements that will 
up confidence, but which might not be enough to 
change key performance metrics 
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Improvements in forecasts may not be sufficient to improve decision-making and/or maximize manage-

ment goals for several reasons: 

• The science may not be able to provide forecasts that are improved enough to impact decisions. While 
a 2% improvement in uncertainty may be feasible and desirable from a scientific or engineering per-
spective, it is likely to be insufficient for a water manager to realize improvements in management 
decisions. 

• Reservoir operators may prefer to manage conservatively, and this conservative bias may offset fore-
cast improvements. This is especially true in areas such as the DWCD where the 30-year average run-
off is greater than the 30-year mean forecast. Conservative management practices may also help res-
ervoir managers keep their jobs by preventing situations in which water deliveries must be reduced 
over the course of the recreation or planting season. 

• Legal mandates and contextual parameters can constrain decision-making flexibility and may out-
weigh any improvements in forecast information. For example, existing water rights laws, ongoing 
processes of re-negotiating the Colorado Compact and management of the Colorado River basin, or 
potential future conservation efforts related to the Endangered Species Act or National Conservation 
Areas may shift management priorities or targets and negate any additional benefits that could be 
realized from improved forecast information. 

Even with an abundance of information collected around both the water resources management stake-

holders and downstream end-users using the elicitation approaches, we were further challenged with 

creating a fully defined ‘value’, which is not always direct or quantitative. Value may come in the form of 

trust, may include social benefits for tribal rituals, or can be improved public safety on the rivers. Similarly, 

it was challenging to determine whether improved forecasts would affect the decision-making process. 

Improvements in seasonal volumetric forecasts would have a greater impact on recreational users if there 

were also improvements in the 10-15-day weather forecasts. Improved understanding of both timing and 

volume of near-term runoff could potentially increase the number of years with boatable flows if this 

information allowed the DWCD to reduce the number of years that they followed a “fill and spill” strategy 

and could instead concentrate managed releases into a 5+ day managed release while still filling. 

There is limited environmental benefit to improved forecasts because no additional water is allocated. 

Improvements in weather and volumetric forecasts might allow for better management of the Fish Pool, 

especially as it pertains to releasing water from the dam to improve stream habitat and/or to keep stream 

temperatures low to coincide with fish spawning and life cycles. 

There are additional social benefits to improved forecast information, particularly as it pertains to estab-

lishing and maintaining trust between information providers and information users. One of the keys to 

producing useful information is trust between information providers and users – trust that the infor-

mation provided is accurate and trust that important information will be communicated. 

DWCD and DW trust the CBRFC to provide information both in the form of official forecast information as 

well as in more tailored briefs and phone call discussions with forecasters specializing in each particular 

region or watershed. Trust is vital to meeting contractual obligations for water delivery as well as to main-

taining good relationships with water users in the agricultural and recreational communities and facilitat-

ing ongoing cooperation between these groups. Downstream end-users rely heavily on water managers 
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for information on spills, and it has taken years to build up good working relationships between all levels 

of stakeholder groups. 

More quantitative measures of the impact of improved forecasts can be estimated using optimization 

methods. The benefit of this approach is that marginal differences in forecast skill can be elicited precisely 

compared to subjective or qualitative approaches – responses of optimization systems use the infor-

mation provided resulting in consistent and measurable output. This assessment utilized a Sampling SSDP 

approach, which can explicitly utilize all forecast ensemble members in the optimization process. 

By using a controlled modification of ensemble streamflow forecast bias and dispersion, the direct effects 

on altered forecast decisions can be determined with the optimization model. The approach determined 

that improvements of bias were consistently more valuable than reductions in dispersion. Further, perfect 

foresight in the optimization model produced results consistently near historical performance, indicating 

that in actual operations, information beyond the ensemble streamflow members (e.g., remotely sensed 

products, snow stations, weather forecasts, etc.) are utilized. Mimicking the decision-making process in 

an optimization paradigm is extremely challenging with a range of stakeholders, objectives, and data uti-

lized to inform the operators. 

A quantified marginal benefit from improved forecasts with qualitative and quantitative interpretations 

of value make direct inference a challenge, but it is clear that higher skill forecasts do produce measurable 

gains in value for water managers and downstream end-users alike. Continued use of NASA remotely 

sensed products add value directly through the data assimilation process of forecasting models, or 

through improved weather forecasts, and indirectly through subjective integration by decision-makers. 

Without this information, poorer decisions would limit the potential value gained through proper man-

agement our limited water resources for social, environmental, and economic gain. 
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A.1 CONCEPTUAL MODEL 
To explain and model the behavior of DWCD farmers, we begin by assuming a simple water production 

(yield response) relationship for alfalfa: 

 𝑦 = 𝑓(𝑤) (1) 

where 

 y = annual alfalfa yield per acre (in tons/acre/year) 

 w = annual water input per acre (in inches/acre/year) 

Importantly, this relationship is assumed to be non-linear, such that the marginal product of water de-

clines and either equals or approaches zero beyond some water input level. 

As an example, we can assume the following functional form: 

 𝑦 = 𝑎 − (
𝑏

𝑤
) (2) 

In this case, as shown in Figure A.1, the marginal product of water is continually declining (concave) and 

the parameter a represents the maximum yield per acre. For added simplicity, all water inputs are as-

sumed to come from irrigation. 

 

Figure A.1. Example yield-response function for alfalfa production 
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Each year (t), DWCD project farmers receive a water allocation from the district. For each farmer i, this 

allocation (Wit) depends on (1) the number of acres allocated by the project to the farmer for irrigation 

and (2) the per-acre water allocation delivered to each farmer. This per-acre allocation depends on avail-

able water supplies for the year, which are primarily composed of water supplies carried over in the res-

ervoir from the previous year and inflows during the year to the reservoir. 

 𝑊𝑖𝑡 = 𝑤̅𝑡(𝐶𝑡, 𝑆𝑡) ∗ 𝐴𝑖𝑡  (3) 

where 

 Wit = total water allocation for farmer i in year t (in acre-feet) 

 𝑤̅𝑡 = per-acre water allocation for all project farmers in year t (in inches/acre) 

𝐶𝑡  = water stored in the reservoir at the beginning of the year (January) – i.e., carry-over from 

the previous year (thousands of acre-feet [KAF]) 

𝑆𝑡  = cumulative April-July stream inflows to McPhee Reservoir (thousands of acre-feet [KAF]) 

Ait = total number of project allocated acres held by farmer i in year t 

The per-acre water allocation in each year, 𝑤̅𝑡, is the same for each project acre. Although this allocation 

𝑤̅𝑡 is determined by the district each year, farmers do not necessarily apply this exact amount to each 

acre of their land. In some cases, they may only irrigate a fraction of their project acres, and in other cases 

they may distribute the water to more acres than are allocated by the project. 

Therefore, a key early season decision for producers each year is how many acres to plant and irrigate. To 

model this decision, we begin by assuming that there is no uncertainty regarding water availability for 

irrigation at the time of the decision. In this case, the farmer is assumed to select the number of acres to 

irrigate (Iit) to maximize total production (Yit), given their known water allocation (Wit) and the yield-re-

sponse relationship f(w).11 

In other words, their objective function is: 

 max
𝐼𝑖𝑡

⁡𝑌𝑖𝑡 = 𝑓 (
𝑊𝑖𝑡

𝐼𝑖𝑡
⁄ ) ∗ 𝐼𝑖𝑡 (4) 

For illustration, if we assume the simple yield-response functional form in equation (2), then total alfalfa 

production for farm i can be expressed as: 

 𝑌𝑖𝑡 = (𝑎 − 𝑏 ∗ (
𝐼𝑖𝑡

𝑊𝑖𝑡
⁄ )) ∗ 𝐼𝑖𝑡 (5) 

A graphical representation of this production function is shown Figure A.2. Each curve shown in the graph 

corresponds with a different water allocation level (W), which is assumed to be exogenous to the farmer’s 

production decision. For each water allocation W, alfalfa production Y initially increases with the number 

 

11 The fundamentals conclusions from the model do not change if we instead assume that the farmer’s objective is 
to maximize revenues or profits, by including a known output price per unit and a simple cost structure. 
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of irrigated acres (I) and then decreases, such that maximum production is achieved at the turning point. 

For this functional form, alfalfa production is maximized when: 

 𝐼𝑖𝑡
∗ (𝑊𝑖𝑡) =

𝑎𝑊𝑖𝑡

2𝑏
 (6) 

In other words, I*it is the optimal number of acres to irrigate for farm i in year t, given their total water 

allocation for the year (Wit). With perfect information about this water allocation, we expect producers to 

select this number of acres. 

 

Figure A.2. Representation of alfalfa production in relation to water and land inputs 

 

Similarly, the optimal level of production for farm i in year t can be expressed as the output that corre-
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∗  (7) 
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As shown in Figure A.2, we expect that both the optimal level of irrigated acres (I*) and the corresponding 

levels of production Y* (i.e., the points along the dashed line) to increase with the level of total allocated 

water W. Moreover, for any given level of W, both increases and decreases in irrigated acres relative to 

I* will result in lower levels of production than Y*. 
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In practice, alfalfa producers must make decisions about the number of acres to irrigate and cultivate 

before their final annual water allocation is known. Instead, they must rely on expectations of water allo-

cation 𝑤̃𝑡, which are based, at least in part, on (1) CBRFC streamflow forecasts 𝑆̃𝑡 for inflows to McPhee 

Reservoir and (2) observed water levels in the reservoir that have been carried over from the previous 

year. More formally, this can be expressed as follows: 

 𝑊̃𝑖𝑡 = 𝑤̃𝑡(𝑆̃𝑡, 𝐶𝑡)/12 ∗ 𝐴𝑖𝑡 (9) 

where 

  𝑊̃𝑖𝑡   = predicted total water allocation for farmer i in year t (in acre-feet) 

𝑤̃𝑡(𝑆̃𝑡, 𝐶𝑡)= predicted per-acre water allocation for all project farmers in year t (in inches/acre), 

as function of the streamflow forecast 

𝑆̃𝑡  = CBRFC forecast of cumulative (April-July) stream inflows to McPhee Reservoir (thousands of 

acre-feet [KAF]) 

Therefore, when water allocation is not known with certainty, we assume that farmers will select the 

number of acres to irrigate by replacing Wit with 𝑊̃𝑖𝑡 in equation (6). Assuming the example yield-response 

functional form, this means: 

 𝐼𝑖𝑡
∗ (𝑊̃𝑖𝑡) =

𝑎𝑊̃𝑖𝑡

2𝑏
 (10) 

In other words, with imperfect information about water allocation for the year, we expect producers to 

select this number of acres (𝐼𝑖𝑡
∗ ). Combining equations (3) and (10), we can express the percent of a farm’s 

project acres that are irrigated as: 

 
𝐼𝑖𝑡
∗

𝐴𝑖𝑡
=

𝑎∗𝑤̃𝑡(𝐹𝑡,𝐶𝑡)/12

2𝑏
∗ 100 (11) 

With imperfect information, actual production levels depend on both the predicted water allocation (be-

cause this determines the selection of irrigated acreage) and actual water allocation. 

 𝑌̃𝑖𝑡
∗(𝑊𝑖𝑡 , 𝑊̃𝑖𝑡) = 𝑓 (

𝑊𝑖𝑡

𝐼𝑖𝑡
∗ (𝑊̃𝑖𝑡)

⁄ ) ∗ 𝐼𝑖𝑡
∗ (𝑊̃𝑖𝑡) (12) 

Importantly, this decision model implies that both over-predictions (𝑊̃𝑖𝑡 > 𝑊𝑖𝑡) and under-predictions 

(𝑊̃𝑖𝑡 < 𝑊𝑖𝑡) of water allocation will result in lower levels of alfalfa production, compared to a situation 

with perfect information (i.e., perfect forecasts). This result can be seen in Figure 2, where for any given 

level of actual water allocation (W), any change in the number of irrigated acres away from the optimal 

level (peak of the curve) will reduce production levels by moving down the curve to the left or right. 

To examine how over- or under-predictions due to imperfect information affect actual production levels, 

we can decompose actual production with imperfect information as follows: 

 𝑌̃𝑖𝑡
∗(𝑊𝑖𝑡 , 𝑊̃𝑖𝑡) = 𝑌𝑖𝑡

∗(𝑊𝑖𝑡) − [𝑌𝑖𝑡
∗(𝑊𝑖𝑡) − 𝑌̃𝑖𝑡

∗(𝑊𝑖𝑡, 𝑊̃𝑖𝑡)] (13) 

The first component on the right-hand side of the equation is optimal production with perfect infor-

mation. When combined with equation (3), this component is ultimately a function of carry-over storage 
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(Ct), actual inflow volumes (St), and the number of project acres (Ait). The second component is the differ-

ence in optimal production with and without perfect information. This component mainly depends on the 

difference between 𝑊̃𝑖𝑡 ⁡and⁡𝑊𝑖𝑡, which itself depends primarily on the difference between forecasted 

inflows (𝑆̃𝑡) and actual inflows to the reservoir (St). In other words, the second component depends on 

the size of the forecast error. 

Using this framework, we can also estimate the value of improved forecast information to alfalfa produc-

ers. For simplicity, we will assume that the value alfalfa producer i receives from her productive activities 

(Vit) can be measured by the annual revenue she receives from selling her output 

 𝑉𝑖𝑡 = 𝑃𝑡 ∗ 𝑌̃𝑖𝑡
∗(𝑊𝑖𝑡 , 𝑊̃𝑖𝑡) (14) 

where 

  𝑃𝑡   = price per unit of alfalfa produced (in $/ton) 

In this case, the value of perfect forecast information (VOPIit) can be expressed as the increase in value 

(revenue) received by going from an imperfect forecast (i.e., one with forecast error) to full knowledge of 

future inflows: 

 𝑉𝑂𝑃𝐼𝑖𝑡(𝑆𝑡, 𝑆̃𝑡) = 𝑃𝑡 ∗ [𝑌𝑖𝑡
∗(𝑊𝑖𝑡[𝑆𝑡]) − 𝑌̃𝑖𝑡

∗(𝑊𝑖𝑡[𝑆𝑡], 𝑊̃𝑖𝑡[𝑆̃𝑡])] (15) 

Similarly, the value of improved forecast information (VOFIit) can be expressed as the increase in value 

(revenue) received by going from one imperfect forecast (𝑆̃̃𝑡) to a better, but still imperfect, forecast (𝑆̃𝑡) 

-- i.e., one with smaller but non-zero forecast error: 

 𝑉𝑂𝐹𝐼𝑖𝑡(𝑆𝑡, 𝑆̃𝑡, 𝑆̌̃𝑡) = 𝑃𝑡 ∗ [𝑌̃𝑖𝑡
∗(𝑊𝑖𝑡[𝑆𝑡], 𝑊̃𝑖𝑡[𝑆̃𝑡]) − 𝑌̃𝑖𝑡

∗ (𝑊𝑖𝑡[𝑆𝑡], 𝑊̃𝑖𝑡 [𝑆̃̃𝑡])] (16) 

Importantly, both value of information expressions shown above depend, not only on the forecast infor-

mation, but also on the actual state of the world they are predicting (in this case, the actual inflow volume 

St). 

A.2 DATA 

A.2.1 Farm Production and Irrigation Data 

Data for this analysis were acquired from the DWCD, based on annual crop production reports, which are 

required by the Bureau of Reclamation for irrigators using project water. The DWCD provided anonymized 

reports for the period 2002 to 2017. These data are organized by owner and box (a subdivision of an 

owner’s lot), and they include information on irrigation allotments and use, planting/grazing decisions, 

and a variety of metrics for production. 

Over the 16-year period, the dataset contains water use data for 134 distinct owners (i.e., farm ID); how-

ever, on a yearly basis, an average of 92 distinct owners are represented in the data. An average of roughly 

28,000 acres per year is allocated for irrigation to these farms by the project. Starting in 2006, the data 

contain more detailed information regarding the specific types of hay produced with project water. From 

2006 to 2017, hay production accounted for an average of 79 percent all crop acreage under production, 

and alfalfa accounted for 62 percent. 
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Given this dominant use of DWCD water, our analysis focuses on hay and alfalfa production. We focus 

specifically on alfalfa for years when data are available (2006-2017); however, to take advantage of the 

four additional years of data (and to evaluate the robustness of our findings), we also broaden the analysis 

to include all hay production from 2002 to 2017. Because the number of irrigated acres in each year is 

reported at the box level, and because each box in each year is associated with a single crop, we first 

selected all the boxes in each year associated with hay production (N=4,406). For 2006-2017, we further 

narrowed this selection to focus on those associated with alfalfa production (N=2,332). 

One of the limitations of the data in this form (at the box level) is that the number of acres allocated by 

the project to the farm (referred to as Ait in the conceptual model) – which is a key determinant the total 

water allocation to the farm (Wit) each year – is not reported at this level of disaggregation. Instead, the 

number of project-allocated acres is specified for groups of boxes within each farm, which we refer to as 

“box groups.” Given this data limitation, we grouped and aggregated all selected data to the box group 

level. Therefore, in the empirical analysis, the subscript i refers to box groups, rather than entire farms or 

individual boxes. 

Table A.1 summarizes the available data for box groups with hay production. The number of box groups 

varies by year, from a minimum of 91 in 2014 and 2015 to a maximum of 101 in 2007. Over the full period, 

117 distinct farm IDs are represented in the data.12 It is important to note that these data represent box 

groups where hay production occurred during the year, but not necessarily only hay production. There-

fore, there is a difference between the total number of acres irrigated in these box groups (i.e., for all 

crops) and the number of acres used for hay production. Across all years, the average number of project-

allocated acres per box group is 275.2 acres, average number of irrigated acres is 248.2 acres, and the 

average number of acres in hay production is 210.5 acres. It is also important to note that the data are 

not identified in a way that allows individual box groups to be tracked across years. As a result, the data 

cannot be treated or analyzed as a longitudinal panel of box groups. However, in each year, each box 

group is linked to a single farm ID, and these IDs can be tracked over time. 

Table A.2 summarizes the data for box groups with alfalfa production. The number of box groups in this 

case varies from a minimum of 70 in 2015 to a maximum of 85 in 2007. Although 85 distinct farm IDs are 

represented in the data across all year, the number of farms with alfalfa production declines from 69 in 

2006 to 54 in 2017. Across all years, the average number of project-allocated acres per box group is 315.2 

acres, the average number of irrigated acres is 287.9 acres, and the average number of acres in alfalfa 

production is 203.6 acres. 

 

12 Six outliers, defined as box groups with a number of irrigated acres that is more than double the number of allo-
cated acres, are removed from these data. 
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Table A.1. Summary Statistics for Box Groups with Hay Production (2002 – 2017) 

Year Variable N Mean Std. Dev. Min Max 

2002 All allocated acres 97 273.7 260.0 6.2 1,300.6  
All irrigated acres 97 217.1 216.7 6.2 852.5  
Hay production acres 97 201.5 201.6 6.2 809.0  
Hay produced (tons/yr) 97 389.5 396.3 1.8 1,751.0 

2003 All allocated acres 100 266.3 243.4 2.6 997.7  
All irrigated acres 100 236.0 227.1 2.6 958.3  
Hay production acres 100 199.5 201.5 2.6 958.3  
Hay produced (tons/yr) 100 616.4 697.1 7.7 3,453.5 

2004 All allocated acres 94 275.4 246.9 11.2 902.7  
All irrigated acres 94 249.0 228.2 0.0 910.0  
Hay production acres 93 197.4 187.3 7.0 831.3  
Hay produced (tons/yr) 94 731.2 806.2 0.0 4,123.3 

2005 All allocated acres 98 269.4 251.8 11.2 1,317.5  
All irrigated acres 98 245.2 232.6 7.0 1,206.4  
Hay production acres 98 205.4 204.8 7.0 925.4  
Hay produced (tons/yr) 98 727.5 868.7 0.0 4,150.7 

2006 All allocated acres 96 270.3 256.0 4.4 1,131.5  
All irrigated acres 96 251.3 243.1 5.0 1,127.0  
Hay production acres 96 228.8 221.2 3.0 907.0  
Hay produced (tons/yr) 96 877.1 961.4 1.2 4,549.0 

2007 All allocated acres 101 266.1 237.3 5.5 891.0  
All irrigated acres 101 246.0 224.2 3.0 805.0  
Hay production acres 101 212.0 197.4 3.0 770.0  
Hay produced (tons/yr) 101 793.4 835.9 0.0 3,676.0 

2008 All allocated acres 100 268.2 237.4 5.5 891.0  
All irrigated acres 100 247.9 224.5 3.0 805.0  
Hay production acres 100 213.6 197.7 3.0 770.0  
Hay produced (tons/yr) 100 799.9 837.0 0.0 3,676.0 

2009 All allocated acres 99 261.1 251.3 5.5 1,131.5  
All irrigated acres 99 245.3 239.6 5.0 1,080.0  
Hay production acres 99 209.6 207.5 3.0 932.0  
Hay produced (tons/yr) 99 842.5 948.0 7.4 4,320.0 

2010 All allocated acres 98 269.1 243.7 5.5 920.9  
All irrigated acres 98 254.8 234.0 5.0 932.0  
Hay production acres 98 212.2 192.8 3.0 867.0  
Hay produced (tons/yr) 98 850.6 884.5 12.0 4,530.6 

2011 All allocated acres 94 278.7 263.7 5.5 1,035.8  
All irrigated acres 94 263.1 245.4 5.5 1,000.0  
Hay production acres 94 215.0 210.6 3.0 891.0  
Hay produced (tons/yr) 94 844.2 961.6 0.0 4,659.8 

2012 All allocated acres 97 274.2 259.5 5.5 937.6  
All irrigated acres 97 253.6 246.4 1.5 1,012.0  
Hay production acres 96 226.4 221.2 1.5 932.0  
Hay produced (tons/yr) 96 862.1 1049.7 0.0 5,287.4 
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Year Variable N Mean Std. Dev. Min Max 

2013 All allocated acres 93 286.9 257.1 6.2 946.1  
All irrigated acres 93 222.6 219.0 0.0 941.7  
Hay production acres 92 193.8 196.2 6.2 871.7  
Hay produced (tons/yr) 93 263.6 295.9 0.0 1,537.9 

2014 All allocated acres 91 294.3 258.0 6.2 946.1  
All irrigated acres 91 272.1 246.2 6.2 1,061.0  
Hay production acres 91 228.0 220.5 6.2 928.7  
Hay produced (tons/yr) 91 665.7 780.3 1.3 3,890.1 

2015 All allocated acres 91 277.9 249.5 6.2 1,087.1  
All irrigated acres 91 246.0 224.1 6.2 1,060.0  
Hay production acres 91 204.6 192.3 6.2 853.0  
Hay produced (tons/yr) 91 776.3 930.7 0.0 4,247.5 

2016 All allocated acres 96 286.8 268.2 6.2 1,384.9  
All irrigated acres 96 255.7 239.6 6.2 1,260.0  
Hay production acres 96 206.5 211.0 6.2 1,260.0  
Hay produced (tons/yr) 95 834.7 1081.5 0.0 6,507.8 

2017 All allocated acres 93 289.2 265.3 6.2 1,384.9  
All irrigated acres 93 268.4 247.7 6.2 1,245.0  
Hay production acres 93 214.5 212.7 6.2 1,245.0  
Hay produced (tons/yr) 92 772.3 940.8 0.0 5,937.2 

 

Table A.2. Summary Statistics for Box Groups with Alfalfa Production (2006-2017) 

Year Variable N Mean Std. Dev. Min Max 

2006 All allocated acres 84 297.4 262.0 11.2 1,131.5  
All irrigated acres 84 278.1 248.0 7.0 1,127.0  
Alfalfa production acres 84 209.5 193.7 7.0 832.0  
Alfalfa produced (tons/yr) 84 844.0 920.5 22.5 4,286.5 

2007 All allocated acres 85 298.9 243.0 5.5 891.0  
All irrigated acres 85 277.3 229.3 3.0 805.0  
Alfalfa production acres 85 214.2 182.5 3.0 770.0  
Alfalfa produced (tons/yr) 85 826.9 804.4 0.0 3,676.0 

2008 All allocated acres 84 301.8 242.8 5.5 891.0  
All irrigated acres 84 280.0 229.3 3.0 805.0  
Alfalfa production acres 84 216.1 182.7 3.0 770.0  
Alfalfa produced (tons/yr) 84 835.1 805.1 0.0 3,676.0 

2009 All allocated acres 79 303.8 261.8 5.5 1,131.5  
All irrigated acres 79 286.5 249.0 5.0 1,080.0  
Alfalfa production acres 79 206.9 187.8 5.0 932.0  
Alfalfa produced (tons/yr) 79 862.0 898.8 7.4 4,320.0 

2010 All allocated acres 83 302.3 248.7 5.5 920.9  
All irrigated acres 83 287.6 238.2 5.0 932.0  
Alfalfa production acres 83 193.2 176.5 5.0 867.0  
Alfalfa produced (tons/yr) 83 807.7 843.8 14.4 4,530.6 
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Year Variable N Mean Std. Dev. Min Max 

2011 All allocated acres 75 327.7 273.2 5.5 1,035.8  
All irrigated acres 75 308.8 253.8 5.5 1,000.0  
Alfalfa production acres 75 207.5 197.2 5.5 773.0  
Alfalfa produced (tons/yr) 75 842.0 928.8 0.0 4,363.8 

2012 All allocated acres 77 322.6 268.2 5.5 937.6  
All irrigated acres 77 299.4 254.9 5.5 1,012.0  
Alfalfa production acres 77 207.3 208.9 5.5 886.9  
Alfalfa produced (tons/yr) 77 805.2 960.9 0.0 5,287.4 

2013 All allocated acres 79 319.9 262.5 6.2 946.1  
All irrigated acres 79 248.9 226.5 6.2 941.7  
Alfalfa production acres 79 181.9 190.8 6.2 871.7  
Alfalfa produced (tons/yr) 79 230.7 258.7 0.0 1,275.6 

2014 All allocated acres 76 329.3 264.6 6.2 946.1  
All irrigated acres 76 301.8 255.2 6.2 1,061.0  
Alfalfa production acres 76 197.8 216.1 6.2 928.7  
Alfalfa produced (tons/yr) 76 600.2 781.5 1.3 3,890.1 

2015 All allocated acres 70 324.0 255.0 6.2 1,087.1  
All irrigated acres 70 286.8 233.5 6.2 1,060.0  
Alfalfa production acres 70 195.7 193.2 6.2 853.0  
Alfalfa produced (tons/yr) 70 780.5 935.6 3.0 4,247.5 

2016 All allocated acres 74 333.3 279.9 6.2 1,384.9  
All irrigated acres 74 297.2 251.8 6.2 1,260.0  
Alfalfa production acres 74 198.9 207.4 6.2 1,190.0  
Alfalfa produced (tons/yr) 74 845.9 1039.0 0.0 6,303.0 

2017 All allocated acres 75 329.2 272.3 6.2 1,384.9  
All irrigated acres 75 307.5 253.6 6.2 1,245.0  
Alfalfa production acres 75 212.2 208.5 6.2 1,175.0  
Alfalfa produced (tons/yr) 75 817.7 957.3 0.0 5,791.6 

 

A.2.2 Hydrologic Data 

To analyze irrigation and production decisions for project farmers, we acquired two main types of hydro-

logic data for McPhee Reservoir. First, we acquired historical data from the DWCD on actual reservoir 

storage levels for the period of interest. Second, we acquired historical water supply forecast and ob-

served inflow data from the CBRFC. These data are summarized in Table A.3. 

The first main indicator of actual water availability in each year is the volume of water stored in the res-

ervoir at the beginning the year (i.e., carried over from the previous year). From 2002 to 2017, the volume 

varied from as little as 5 KAF at the beginning of 2003 to as much as 147 KAF in 2006, with an overall 

average of 86 KAF. The second main indicator is the total accumulated inflow to the reservoir from January 

1 to August 1 each year. These inflow volumes ranged from a minimum of 45 KAF in 2002 to a maximum 

of 423 KAF in 2005, with an average of 218 KAF. Over a longer historical period extending back to 1981, 

the average observed annual inflow has been closer to 300 KAF. 

For predicted water availability in each year, we use CBRC forecasts as the main indicators. For each year, 

we selected four forecasts of the total inflow volume to the reservoir from April to July. The four selected 
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forecasts are those published on the first day of the months of January, February, March, and April. More 

specifically, we used the “50% exceedance probability” (P50) forecasts from each date. As shown in Ta-

ble A.3, the average forecasts for the 16-year study period are similar across the four forecast dates, but 

they vary considerable from year to year. 

The last four columns of Table A.3 report the forecast errors for each date and year. These errors are 

calculated as the difference between the forecast and the observed accumulated inflow volume for the 

year in question. Over the study period, there are both positive errors – i.e. over-predictions of inflows – 

and negative errors, but positive are more common. On average, the January, February, and March fore-

casts overpredicted actual inflows by 50 to 60 KAF, and the April forecast overpredicted by 21 KAF. 

Table A.3. Summary Statistics for McPhee Reservoir Inflows and Inflow Forecasts 2002-2017 

 

Reservoir 
carryover 

Total April-
July Inflow 

Reservoir Inflow Forecast 
(KAF) 

 
Forecast Error (KAF) 

Year (KAF) (KAF) 1-Jan 1-Feb 1-Mar 1-Apr  1-Jan 1-Feb 1-Mar 1-Apr 

2002 54 45 199 157 120 108  154 112 75 63 

2003 5 146 240 191 206 201  94 44 60 55 

2004 22 200 258 263 277 208  58 63 78 9 

2005 55 423 262 337 358 364  -162 -86 -65 -59 

2006 147 145 210 197 154 192  64 52 9 46 

2007 119 205 292 252 246 205  88 47 41 0 

2008 136 375 326 434 521 464  -49 60 146 89 

2009 133 255 326 304 289 230  71 49 34 -25 

2010 107 247 235 247 247 247  -12 0 0 0 

2011 125 267 316 275 252 195  49 8 -15 -72 

2012 142 111 248 249 243 174  137 138 132 63 

2013 43 87 160 170 148 122  73 83 61 35 

2014 22 173 316 287 281 268  143 114 108 95 

2015 34 226 282 263 268 197  56 37 42 -29 

2016 91 241 350 386 292 241  109 145 51 0 

2017 143 346 269 444 473 411  -77 98 127 65 

Average 86 218 268 278 273 239  50 60 55 21 

Min 5 45 160 157 120 108  -162 -86 -65 -72 

Max 147 423 350 444 521 464  154 145 146 95 

% >0       
 75% 88% 81% 56% 
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A.3 MODEL RESULTS 
Based on the previously described conceptual model, the first step in our analysis is to examine whether 

and to what extent there is evidence that inflow forecasts affect irrigation decisions. Specifically, for each 

box group in our dataset, we calculate the ratio of the number of acres irrigated to the number of project 

allocated acres. It is important to note that, because of the way the data are reported, the box groups 

analyzed include irrigation for other crops besides hay and alfalfa, but hay and alfalfa account for a ma-

jority of the acreage in these selected groups. Based on equation (11), we then regress this ratio on both 

observed and predicted measures of water availability. 

Table A.4 reports ordinary least squares (OLS) regression results for the sample of box groups with hay 

production (2002-2017). The dependent variable, which is irrigated acres expressed as a percentage of 

allocated acres, ranges from 0 to 200 percent, with a mean value of 90.5 percent. Values greater than 100 

percent are possible for box groups in farms that have more land than is allocated for irrigation by the 

project. A separate regression was run for each of the four monthly forecasts due to high correlation 

between them. 

Table A.4. OLS Regression Models for Percent of Allocated Acres that are Irrigated (Farm Blocks with 

Hay Production, 2002-2017) 

Variable 
January 1  
Forecast 

February 1  
Forecast 

March 1  
Forecast 

April 1  
Forecast  

coeff 
 

coeff 
 

coeff 
 

coeff 
 

Intercept 71.568 *** 81.444 *** 82.898 *** 83.238 ***  
(25.83) 

 
(41.14) 

 
(51.35) 

 
(52.97) 

 

         

Reservoir carry-over 0.029 *** 0.029 *** 0.033 *** 0.034 ***  
(2.51) 

 
(2.49) 

 
(2.91) 

 
(3.03) 

 

         

Reservoir inflow fore-
cast 

0.061 *** 0.024 *** 0.017 *** 0.018 *** 

(6.06) 
 

(3.64) 
 

(4.43) 
 

(4.37) 
 

        

R-squared 0.0348 
 

0.0204 
 

0.0194 
 

0.0187 
 

N observations 1,538 
 

1,538 
 

1,538 
 

1,538 
 

N farms 117 
 

117 
 

117 
 

117 
 

t-statistics in parentheses, based on robust standard errors, clustered by farm ID 

* p < 0.10, ** p < 0.05, *** p < 0.01 

Although the overall explanatory power of the regressions is low, with R-squares 0f 0.04 and less, we do 

find that statistically significant effects for the two explanatory variables included. In each regression, both 

the carry-over storage from the previous year and the forecast inflow for the current year have positive 

and significant effects on the percentage of land irrigated. The coefficients on the carryover variable sug-

gest that each 100 KAF increase in carry-over from the previous year increases the percent of allocated 

acres that are irrigated by between 2.9 and 3.4 percentage points. As for the effects of the inflow fore-
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casts, the regression using the January forecast has the highest coefficient. It implies that a 100 KAF in-

crease in the forecast increases the percent irrigated by an expected 6.1 percentage points, compared to 

between 1.7 and 2.4 percentage points for the other three forecasts. 

Table A.5 reports OLS regression results for the smaller sample of box groups that specifically include 

alfalfa production. As previously discussed, this narrower focus also reduces the timeframe of the analysis 

to the period 2006 to 2017. The results are similar regarding the sign and statistical significance of the 

variables, but with a few differences. The effect of reservoir carryover is larger in this subsample, such 

that a 100 KAF increase would augment the percent of allocated acres that are irrigated by between 6 and 

7 percentage points. The estimated effects of inflow forecasts are more varied across regressions, ranging 

from a 4.6 percentage point effect per 100 KAF increase for the January forecast to less than 1 percentage 

point for the March forecast. The regression using the February forecast does not find a statistically sig-

nificant effect for the forecast variable. 

Table A.5. OLS Regression Models for Percent of Allocated Acres that are Irrigated (Farm Blocks with 

Alfalfa Production, 2006-2017) 

 
Variable 

January 1  
Forecast 

February 1  
Forecast 

March 1  
Forecast 

April 1  
Forecast  

coeff 
 

coeff 
 

coeff 
 

coeff 
 

Intercept 72.336 *** 81.298 *** 82.656 *** 82.642 ***  
(22.53) 

 
(34.29) 

 
(42.08) 

 
(41.85) 

 

         

Reservoir carry-over 0.067 *** 0.064 *** 0.065 *** 0.064 ***  
(4.77) 

 
(4.12) 

 
(4.37) 

 
(4.27) 

 

         

Reservoir inflow fore-
cast 

0.046 *** 0.014 
 

0.009 * 0.011 *** 

(4.27) 
 

(1.62) 
 

(1.91) 
 

(2.07) 
 

        

R-squared 0.0459 
 

0.0318 
 

0.0306 
 

0.0310 
 

N observations 941 
 

941 
 

941 
 

941 
 

N farms 84 
 

84 
 

84 
 

84 
 

t-statistics in parentheses, based on robust standard errors, clustered by farm ID 

 * p < 0.10, ** p < 0.05, *** p < 0.01 

 

In general, these findings support the expected relationship between actual and predicted water supplies 

and the size of the area selected for irrigation. Given this finding, the next step is to examine whether and 

to what extent measures of water availability, based on both observed and forecast reservoir conditions, 

have an effect on hay and alfalfa production levels. In particular, we estimate regressions that are based 

on equation (13) in the conceptual model. 

Table A.6 reports OLS regression results for the box groups with hay production. As in the previous anal-

yses, we run separate regressions for each of the four monthly forecasts. The dependent variable in each 
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case is the natural log of total hay production (in tons) by the box group in that year, and the first explan-

atory variable is the natural log of the number of project-allocated acres for the box group. The logarithmic 

transformation of these variables is used to address the rightward skewness of their distributions. The 

number of project-allocated acres is included in the regression because it is one of the main determinants 

of the box group’s total water allocation (equation [3]) and an indicator of the size of the farm unit. The 

coefficient (i.e., elasticity) estimates for this variable, are consistently positive and statistically significant, 

and indicate economies of scale – i.e., a 1 percent increase in project allocated acres is expected to in-

crease output by 1.2 percent. The next two explanatory variables are measures of actual water availability, 

which are also key determinants of the box group’s total water allocation. 

Table A.6. OLS Regression Models for Log (Annual Hay Production [tons/yr]) by Farm Block (2002-2017) 

 
Variable 

January 1  
Forecast 

February 1  
Forecast 

March 1  
Forecast 

April 1  
Forecast  

coeff 
 

coeff 
 

coeff 
 

coeff 
 

Intercept -1.417 *** -0.835 ** -1.029 *** -1.107 ***  
(-3.74) 

 
(-2.45) 

 
(-3.04) 

 
(-3.1) 

 

         

Log(Allocated acres) 1.237 *** 1.241 *** 1.239 *** 1.238 *** 

 (20.53)  (20.79)  (20.72)  (20.73)  

         

Reservoir carry-over 0.0026 *** 0.0033 *** 0.0028 *** 0.0031 *** 

 (3.44)  (4.44)  (3.61)  (4.24)  

         

Total reservoir inflow 
April-July 

0.0024 *** 0.0006   0.0015 ** 0.0009 * 

 (2.75)  (1.01)  (2.56)  (1.87)  

         

Size of inflow over-
forecast 

0.001   -0.004 *** -0.003 *** -0.001   

 
(0.73) 

 
(-3.86) 

 
(-4.9) 

 
(-1.08) 

 

         

Size of inflow under-
forecast 

-0.003 * -0.001   -0.004   0.001   

(-1.94) 
 

(-0.6) 
 

(-1.28) 
 

(0.67) 
 

        

R-squared 0.4512  0.4544  0.4533  0.4504  
N observations 1,541 

 
1,541 

 
1,541 

 
1,541 

 

N farms 116 
 

116 
 

116 
 

116 
 

t-statistics in parentheses, based on robust standard errors, clustered by farm ID 

* p < 0.10, ** p < 0.05, *** p < 0.01 
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Both carryover storage from the previous year and total observed inflow to the reservoir during the year 

have positive and mostly significant effects. The coefficients for the carryover volume suggest that each 

10 KAF increase is expected to increase production by about 3 percent. The coefficients for actual inflows 

are more varied across regressions. This variation is most likely due to variation in the level of statistical 

correlation between the actual inflow variable and the forecast error variables, which are generally high-

est in January and lowest in March. In the regression including the March forecasts, each 10 KAF increase 

in actual inflow is estimated to increase production by about 1.5 percent. 

The last two variables are measures of forecast error. They take the forecast error values reported in the 

last four columns of Table A.3 and separate the “over-forecasts” (positive values in the table) from the 

“under-forecasts.” The over-forecast value is equal to forecast error if the forecast error is positive, and it 

is otherwise equal to zero. The under-forecast value is equal to the absolute value of the forecast error if 

the forecast error is negative, and it is otherwise equal to zero. In other words, both measures have pos-

itive or zero value, and both are expected to have a negative effect on total yield. 

We find that the size of the over-forecasts in February and March have negative and statistically significant 

effects on hay production. The April over-forecast also has a negative effect, but it is not significant, and 

the January over-fast is positive but not significant. For the under-forecasts, we only find that the January 

under-forecast has a statistically significant (but only at a 0.1 percent level) and negative effect. The ef-

fects are negative but not significant for the February and March forecasts and positive but not significant 

for the April forecast. 

Therefore, the results provide evidence that, controlling for farm size and actual water supplies, over-

forecasts (which were more common than under-forecasts during the study period) have had a negative 

effect on total hay production. The size of the coefficients for the February and April over-forecasts sug-

gest that each 10 KAF increase in the over-forecast decreases output by 3-4%. The evidence regarding 

under-forecasts is less conclusive. The coefficient for the January forecast suggests that a 10 KAF increase 

in the size of the under-forecast reduces output by about 3 percent; however, this robustness of this 

finding is not supported by similar estimates from the regressions using the other monthly forecasts. 

Table A.7 reports results for a similar regression analysis using data from the box groups with alfalfa pro-

duction, which again is restricted to the years with available data (2006-2017). The overall findings re-

garding the effect of the number of project-allocated acres is similar to the hay production model, with 

statistically significant elasticity estimates of 1.2 in each regression. The effect of carry-over is also con-

sistently positive and significant, but with larger estimated coefficients, suggesting that each 10 KAF in-

crease in carry-over volume increases alfalfa production by about 6-7 percent. The effect of actual reser-

voir inflows is also consistently positive and significant; however, as in the hay production model, the 

magnitude of the estimated coefficient varies across models. Again, the lowest correlation between actual 

inflows and forecast errors in the March regression, which indicates that each 10 KAF increase in actual 

inflow volume increase output by 2 percent. 
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Table A.7. OLS Regression Models for Log (Annual Alfalfa Production [tons/yr]) by Farm Block (2006-

2017) 

 
Variable 

January 1  
Forecast 

February 1  
Forecast 

March 1  
Forecast 

April 1  
Forecast  

coeff 
 

Coeff 
 

coeff 
 

coeff 
 

Intercept -2.123 *** -1.301 *** -1.446 *** -1.452 ***  
(-4.09) 

 
(-2.7) 

 
(-3.12) 

 
(-3.13) 

 

         

Log(Allocated acres) 1.204 *** 1.203 *** 1.204 *** 1.200 *** 

 (14.11)  (14.1)  (14.13)  (14.05)  

         

Reservoir carry-over 0.007 *** 0.006 *** 0.006 *** 0.006 *** 

 (7.13)  (6.59)  (6.75)  (6.47)  

         

Total reservoir inflow 
April-July 

0.004 *** 0.001 * 0.002 *** 0.001 ** 

 (4.02)  (1.71)  (3.33)  (2.2)  

         

Size of inflow over-
forecast 

0.000   -0.003 *** -0.004 *** -0.003 *** 

 
(0.3) 

 
(-2.85) 

 
(-5.24) 

 
(-2.92) 

 

         

Size of inflow under-
forecast 

-0.013 *** 0.000 
 

-0.025 ** 0.000   

(-5.4) 
   

(-2.12) 
 

(0.01) 
 

        

R-squared 0.4827  0.4779  0.4835  0.478 
 

N observations 945 
 

945 
 

945 
 

945 
 

N farms 84 
 

84 
 

84 
 

84 
 

         

t-statistics in parentheses, based on robust standard errors, clustered by farm ID 

 * p < 0.10, ** p < 0.05, *** p < 0.01 

 

In these regressions, the size of over-forecasts for inflows has a consistently negative and significant esti-

mated effect on alfalfa production, except for the regression using the January forecast (no effect). As in 

the hay production model, the size of the significant coefficient estimates suggests that each 10 KAF in-

crease in the over-forecast decreases output by 3-4%. The under-forecasts are found to have negative 

and statistically significant effects on production for the regressions using the January and April forecasts. 

However, the magnitudes of these coefficients are very high. 

These results provide further evidence that forecasts errors have an overall negative effect on production, 

in this case specifically on alfalfa production. This evidence is generally more consistent and robust for 

over-forecasts, but the results for the under-forecasts suggest similar effects. 
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Given these estimates, we can also estimate the effect of forecast errors on alfalfa revenues, and we can 

estimate the value of information associated with perfect and improved forecasts. To do this, we used 

data from the USDA National Agricultural Statistics Service (USDA NASS) 13 to obtain an average estimate 

of $225 per ton Colorado alfalfa hay prices in recent years. 

Over the 2006-2017 study period, annual alfalfa production in the study area has averaged 60,146 tons 

per year. As shown in Table A.3, the average March 1 forecast error for April-July inflows has been positive 

(over-forecast) at 55 KAF. Based on the regression results in Table A.7, reducing an over-forecast of 55 

KAF to zero (i.e., to a perfect forecast) is expected to increase by annual alfalfa production by 24 percent 

(i.e. 14,400 tons). Assuming a price of $225, for a typical year, this translates to a VOPI equal to an increase 

in revenue of $3.2 million. Based on the regression results, we can also estimate the value of improved 

(but not necessarily perfect) forecast information. For example, reducing an over-forecast of 55 KAF by 

25% (13.75 KAF) is expected to increase revenues by 5.5 percent, which translated to a value of $746,000. 

  

 

13 https://downloads.usda.library.cornell.edu/usda-esmis/files/c821gj76b/9019sk86q/fn107g042/agpr0220.pdf 

https://downloads.usda.library.cornell.edu/usda-esmis/files/c821gj76b/9019sk86q/fn107g042/agpr0220.pdf
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Background on the Value of Information from Streamflow Forecasts: Conceptual 

Model and Review of the Literature 

To address the fundamental research question of this project – what are the socioeconomic impacts of 

decisions based on improved streamflow forecasts? – it is useful to begin by defining a conceptual frame-

work for valuing forecasts. The framework can then be used as a framework for reviewing and summariz-

ing the current state of knowledge regarding the magnitude and determinants of these values. 

In short, the value offered by streamflow forecasts is derived from the information they provide to deci-

sion makers. This information has the potential to improve the choices they make. Therefore, to assess 

the economic value of streamflow forecasts, we rely on a value of information (VOI) approach. The basic 

principles of this approach date back several decades (Howard, 1966); however, it has evolved and been 

increasingly used in environmental, health, and earth science applications (Adams et al., 2013; Laxmina-

rayan and Macauley, 2014). The VOI approach focuses on decision making under uncertainty –i.e., when 

future conditions that will affect the outcome of a decision are out of the control of the decision maker 

and not known with certainty. It examines how information changes the choices made by decision makers, 

and how the outcomes of these choices depend on both the choices made and the conditions that end up 

occurring. 

In the VOI framework, the level of well-being achieved by a decision maker is typically represented by a 

utility function, such as the following. 

U = U(D,S) 

This function says that the well-being/utility (U) realized by a decision maker depends on (1) the state of 

the world that occurs (S) after a decision is made and (2) the actions (D) taken by the decision maker 

before the state of the world is known. Depending on the context, U can be expressed in monetary terms 

(i.e., dollar benefits) or in other units that are relevant indicators of the decision makers well-being. 

For example, the decision context could involve an individual whose choice D is whether to book a non-

refundable rafting trip on a river. The state of the world S that is unknown at the time of the decision is 

the streamflow on the day of the trip. The level of utility realized depends on both the choice made and 

the streamflow conditions that occur on the day of trip. 

Because S is not known with certainty at the time of the decision, the decision maker is assumed to be 

guided by an expected utility function such as the following. 

EU = E(D, F) 

This function represents the level of utility that the decision maker expects to achieve based on (1) infor-

mation about the future state of the world (F) at the time of the decision and (2) the action taken before 

the state of the world is known (D). 

In the example of the river rafter, the information F could be a streamflow forecast for the day of the trip. 

The expected level of utility depends on the combination of the choice made and the forecast. 

The decision maker is therefore assumed to choose the action D that maximizes EU, given the information 

available. In other words, their objective function is to maximize EU, given the information available (and 
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other relevant constraints on their behavior). This a priori optimal decision (D*) can be represented by a 

decision function, such as: 

D* = D(F) 

In the example of the river rafter, the decision function could be used to predict, for any streamflow fore-

cast, what the rafter’s choice would be. 

This same decision function can then also be used to determine the action that would be optimal if the 

state of the world were known (D**). In other words, knowing S after the fact, the ex post optimal decision 

can be represented as: 

D** = D(F=S) 

Given these components, the value of new or improved information can be assessed by analyzing the 

change in the utility level attained with the information. One simple example is the ex post value of perfect 

information (VOPI).  That is, how much better off would the decision maker be if she had known S with 

certainty (i.e., with a perfect forecast of F=S) , compared to a situation where information was not perfect 

(F≠S). 

VOPI (F, S) = U( D[S], S) - U( D[F], S) = U(D**,S) – U(D*,S) 

Importantly though, ex post VOPI can only be evaluated after the fact, when S is known with certainty; 

therefore, it depends on the realization of S. In addition, it only has a positive value if the decision would 

have been different with less than perfect information. In the example of the river rafter, if the ex post 

optimal decision (D**) would have been to book the trip, but the decision with an imperfect forecast was 

to not book, the VOPI is the benefit that would have been received from a rafting trip with good stream-

flow conditions. If the opposite is true, and the rafter books a non-refundable trip that cannot happen 

because of poor streamflow conditions, then VOPI is the cost of booking the trip, which could have been 

avoided. 

The same basic approach can be used to specify the ex post value of improved (but not perfect) infor-

mation. In this case, one compares one type of imperfect information (F1) with better information that is 

still not perfect (F2) 

VOII (F1, F2) = U( D[F2], S) - U( D[F1], S) 

Although useful as a starting point for valuing information, VOPI and VOII measures have inherent limita-

tions. First, they only provide values for a single combination the actual state of the world (S) and the 

predicted value with imperfect information (F). In practice, to achieve a more comprehensive understand-

ing of a prediction/forecast model, one must estimate VOPI and VOII for a large number of relevant com-

binations of S and F. 

Second, it is often more important and relevant to assess the value of information from an ex ante per-

spective – i.e., to measure expected value of information (EVOI). In other words, what is the maximum 

amount decision makers would be willing to pay for the information (given uncertainty about the future 

state S of interest)? In this case, the simple VOPI and VOII functions need to be expanded to address the 

range of potential states of the world and their associated probabilities, as well as the probabilities of 
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different information, conditional on each of those states. As a result, the computational requirements 

for full scale ex ante VOI analyses can become substantial. 

Given this conceptual framework and to establish a baseline for our study, we conducted a detailed search 

of the published literature for studies that have applied a VOI approach to estimate values for streamflow 

forecasts. Based on this search we identified ten main studies of interest, all published over the period 

1995 to 2018. The study area, methods, and key findings of each study is summarized in a standardized 

format in Table B.1. Six of the studies were conducted in the U.S. (five in West Coast states and one in the 

Missouri River Basin), two in Canada (Quebec), and two in Europe (Norway and Spain). Snowpack is a 

significant contributor to streamflows in all the areas analyzed. 

The ten selected studies examine a variety of different decision contexts and objectives; however, all but 

one study focus on reservoir operation decisions, especially with respect to maximizing hydropower gen-

eration or revenues (six studies). Other objectives include managing flows and reservoir levels for recrea-

tion, agriculture, water supply, and environmental flows. The key decision (control) variable for all the 

reservoir operation studies is the quantity of water released; however, the time frame for these decisions 

varies substantially across studies from very short term (hourly or daily) to monthly or seasonal releases. 

The other study (Matte et al., 2017) focuses on short-term (daily) emergency management decisions in 

the context of flood mitigation. In addition to reservoir operation decisions, one of the studies (Lines et 

al., 2018) also focuses on water allocation announcement decisions by reservoir operators and on farm-

ers’ planting decisions based on these announcements. 

The types of streamflow forecasts analyzed, compared, and valued in these studies also vary depending 

on the decision context. They vary in terms of forecast period (from a few days to several months), fore-

cast frequency (daily to seasonal), and update frequency. They also vary from simple deterministic fore-

casts (including “perfect” forecasts based on actual data as an upper-bound point of reference) to more 

complex stochastic and ensemble forecasts. With the exception of the two studies conducted in Quebec, 

which focus on short-term forecasts, all the studies examine the benefits of incorporating snow-pack in-

formation to improve streamflow forecasts. 

Applying the VOI approach requires each study to specify a decision model that can be used to predict the 

value of the decision variable (e.g., reservoir release) based on different types of available information 

(e.g., streamflow forecasts). Eight of the studies reviewed here used optimization models to represent 

decision makers’ behaviors, ranging from a simple discrete choice framework under a limited number 

scenarios (Lines et al., 2018) to more complex dynamic and/or stochastic programming approaches incor-

porating thousands of scenarios. As an alternative to optimization, two of the studies relied on existing 

reservoir operating rules for the systems being studied to represent the decision process. 

In a VOI context, optimization models are attractive because they inherently maximize the benefits of 

available information (assuming that the objective function being optimized accurately represent the ben-

efits of those affected by the decision). However, these models may overstate the actual value provided 

by information, when actual decision processes are simpler or more constrained. 

In other cases, even if the optimization or operating rules used in the VOI analysis accurately represent 

the decision process that is actually used, it may be difficult to translate the results into units that reflect 

the values of beneficiaries. For example, Anghileri et al (2016) assume that the reservoir operator’s ob-

jective at Oroville Dam in California is to select the daily releases that result in the smallest combined 
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annual water supply deficits (in square terms) with respect to pre-defined targets for irrigation, municipal 

water supply, and environmental flows. Although they find that incorporating forecasts into the optimi-

zation process can reduce annual supply deficits (squared), it is difficult to translate these reductions into 

monetary value terms for the downstream beneficiaries. 

Estimating VOI requires comparing the outcomes of decisions made under different forecast conditions 

but the same actual conditions. Six of the studies used historical records of streamflows to represent ac-

tual conditions for their simulation runs, and the others used hydrologic models to develop simulated 

time series of streamflows. Depending on the application, the actual flow estimates ranges from less than 

one year to several decades of data. 

In addition to assessing VOI associated with different types of forecasts, several of the studies analyzed 

the sensitivity of VOI estimates with respect to other model inputs or assumptions. The most common 

factors included in these sensitivity analyses relate to reservoir storage capacity or the ratio of this storage 

to stream inflow. Other commonly analyzed factors are selected determinants or drivers of the demand 

for or value of reservoir releases such as electricity prices, hydropower generation capacity, or other water 

demand parameters. Two of the studies (Lines et al., 2018; Matte et al., 2017) also examine the sensitivity 

of VOI with respect to measures of risk aversion among decision makers. 

Generally speaking, the studies find that the information contained in streamflow forecasts can provide 

meaningful value to decision makers and that improved forecasts (e.g., by incorporating snowpack infor-

mation) increase this value. However, the magnitude of these benefits varies significantly across studies 

For example, for the Yuba River multi-reservoir system they study, Rheinheimer et al. (2016) estimate that 

the upper-bound benefits associated with a perfect hydrologic forecast would be an increase in annual 

hydropower revenue of 1.2 percent on average. For the for the main-stem reservoirs in the Missouri River 

system analyzed, Maurer et al., (2004) estimate that total increases in hydropower generation benefits 

would be less than 2% even with perfect forecasts. For the Skagit River System, Kim et al., (1997) estimate 

that incorporating seasonal flow forecasts for the snowmelt season increases annual value of hydropower 

generation by an average of 5%. In contrast, Odegard et al. (2017) find that including snow measurement 

in streamflow forecasts for a could increase annual hydropower production at a Norwegian plant by as 

much as 10 percent. For the Columbia River system, Hamlet et al, (2002) estimate that incorporating cli-

mate forecasts into long-lead streamflow forecasts could increase annual net income from nonfarm hy-

dropower by over 20 percent. 

As previously mentioned, several studies also analyze the sensitivity of VOI estimates for reservoir opera-

tions with respect to differences in the size (volume) of the reservoir or the ratio of size to annual inflow. 

The general finding is that VOI decreases with respect to both metrics (i.e. streamflow forecasts are more 

valuable when the flow being forecast represents a larger portion of reservoir volume). Maurer et al. 

(2004) summarize findings from six studies, including their own, which shows a distinct downward rela-

tionship between the percent increase in hydropower revenues with perfect forecast information and the 

ration of system volume to annual inflow. They attribute the relatively low value from their own study 

(<2%) to be in large part a function of the system’s large size relative to inflow volume. 

Two studies also examine the relationship between streamflow forecast VOI and the risk aversion of those 

who use or benefit from the information. Matte et al. (2016) for example find that the value of forecast 

systems in the context of flood mitigation is very sensitive to the level of risk aversion among emergency 

management decision makers. For example, risk-averse end-users in their study tend to put relatively 
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more weight (negative) on high flood consequence scenarios (independent of probability); therefore, im-

proved forecast reliability in the upper tail of the distribution is particularly valuable for them.  In contrast, 

in the Lines et al. (2018) study, it is the less risk-averse beneficiaries (farmers) who benefit the most from 

additional forecast information. 
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Table B.1 – Summary of Value of Information Literature Review 

 

Citation Kim, Y.O. and Palmer, R.N., 1997. Value of seasonal flow forecasts in Bayesian stochastic program-
ming. Journal of Water Resources Planning and Management, 123(6), pp.327-335. 

Context Skagit, WA power system supplying Seattle. The hydropower dams on Skagit River (785MW in total). 
Snowmelt dominated in Spring 

Decisionmaker's Objective Maximize value of energy generation over planning period (year) 

Control variable(s) for decisionmaker Monthly releases from each reservoir for hydropower production 

Decisionmaker's solution model Nonlinear dynamic programming models incorporating different types of flow forecast information 
and uncertainty (deterministic, stochastic, bayesian stochastic) 

Forecast description Long term. Monthly inflow forecasts based on historical record (1928-1988), estimated serial month-
to-month correlation, and snowmelt runoff model 
- monthly energy prices are deterministic based on historical averages 

Forecast alternatives (1) deterministic inflow forecast (average historical flow for each month) 
(2) stochastic monthly inflow forecast without persistence (average and variance of historical flow for 
each month) 
(3) stochastic monthly inflow forecast with persistence (adding serial correlation) 
(4) stochastic monthly inflow forecast augmented with seasonal snow-based inflow forecast (used in 
Bayesian optimization model)  

Actual streamflow method Observed inflows 1928-1988 

Sensitivity analyses - value with perfect information (actual inflows) NOT modeled 
- vary size of main reservoir 
- vary energy demand requirement 
- vary energy price 

Key Findings - stochastic models outperform deterministic 
- seasonal flow forecast adds additional value; incorporating seasonal flow forecasts for the snow-
melt season increases annual value of generation by an average of 5% 
- adding reservoir capacity adds value to stochastic model but not seasonal flow forecast 
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Citation Ødegård, H.L., Eidsvik, J. and Fleten, S.E., 2019. Value of information analysis of snow meas-
urements for the scheduling of hydropower production. Energy Systems, 10(1), pp.1-19. 

Context Norway, single hydropower reservoir/facility, at most 15% snow contribution (size not specified) 

Decisionmaker's Objective Maximize expected annual income from hydropower (limit time that reservoir level is above or below 
specified limits); carryover to next year not addressed 

Control variable(s) for decisionmaker Weekly water release from reservoir for hydropower, select from discrete levels (J = 2 or 4) 

Decisionmaker's solution model Dynamic optimization model using Least Squares Monte Carlo 

Forecast description Long term (year); probability of weekly reservoir inflow for year; no adjustment during year 
- Based on observed 10-yr mean of inflow for each week 
- Electricity price varies over time but is known/deterministic 

Forecast alternatives Include snow measurement (scalar value) to improve probability forecasts; scalar value takes on dis-
crete values with equal probability 

Actual streamflow method Simulated inflows based on observed 10-yr means and variance for each week (50,000 scenarios gen-
erated) 

Sensitivity analyses - Vary precision of snow information 
- Vary discrete release levels  
- Vary reservoir size relative to inflow  

Key Findings - More snow information increases VOI, with an estimated increase in annual hydropower production 
at the plant by as mcuh as 10%. 
- More discrete production levels increases VOI 
- Smaller reservoir relative to inflow increases VOI 

    

Citation Linés, C., Iglesias, A., Garrote, L., Sotés, V. and Werner, M., 2018. Do users benefit from additional 
information in support of operational drought management decisions in the Ebro basin?. Hydrol-
ogy and Earth System Sciences, 22(11), pp.5901-5917. 

Context Spain, Ebro basin, three reservoir system predominantly supplying agriculture (98,000 ha) 

Decisionmaker's Objective Reservoir operators: announce water curtailment and adjust allocation appropriately if shortage is 
predicted 
Farmers: maximize profits from crop production;  

Control variable(s) for decisionmaker Reservoir operators: drought declaration and volume of water to supply/curtail to farmers in emer-
gency situation every 2 weeks March-October 
Farmers: area and types of crops, number of plantings monthly November to March 
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Decisionmaker's solution model Reservoir operators: choose curtailment if estimated water supply is less than predicted demand by 
farmers 
Farmers: From a set of discrete crop planting options, choose the one with highest expected profit 
(given water forecast)  

Forecast description Dichotomous forecast of the system's surface water availability for the season (good vs. bad) 

Forecast alternatives 1) only reservoir levels used to predict water availability 
2) reservoir levels AND satellite-based snow pack data used for prediction 

Actual streamflow method Observed monthly reservoir levels 2001 to 2014 

Sensitivity analyses   

Key Findings Value of information varies across farmer types with different decision options 
Less risk averse farmers benefit from information that may allow them to plant crops with high re-
turn 

    

Citation Anghileri, D., Voisin, N., Castelletti, A., Pianosi, F., Nijssen, B. and Lettenmaier, D.P., 2016. Value of 
long‐term streamflow forecasts to reservoir operations for water supply in snow‐dominated river 
catchments. Water Resources Research, 52(6), pp.4209-4225. 

Context California, Oroville reservoir (10K km2 drainage, 5 billion m3 annual inflow); interannual reservoir in 
snow-dominated river basin 

Decisionmaker's Objective Minimize water supply/release deficit (squared) with respect to daily water demands for irrigation, 
municipal supply, environmental flows, while observing flood control constraint. Hydropower not in-
cluded. 

Control variable(s) for decisionmaker Daily water release from reservoir  

Decisionmaker's solution model Deterministic dynamic optimization using single trace (average of ensemble members) 
- Minimize squared deficit of daily release relative to total daily demand (exogenous)over 1 year hori-
zon 
               Demand is based on observed past diversions; squared term penalizes large daily deficits – 
spreads them out 
- Flood control is included as a constraint (rule curve) – upper bound on reservoir storage 

Forecast description Long term: daily inflows for one year, single trace (deterministic), updated weekly 
- Future based on average of 49-member 365 day climate ESP approach with VIC hydrology model 
- “Nowcast” actual and current conditions using observed meteorology and VIC model 
- Mass balance reservoir model with evaporation 
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Forecast alternatives  (1) perfect forecast 
 (2) worse forecast: “climatology” (1960-2010 daily average simulated inflow)  
(3) hybrid with perfect for remaining water year (seasonal) and climatology thereafter (inter-annual) 

Actual streamflow method Simulated with VIC hydrology model using observed meteorology for each year from 1960 to 2010. In 
each year, the remaining 49 years of meteorology are used as the ensemble for the ESP 

Sensitivity analyses - Vary water demand 
- Vary capacity-inflow ratio 

Key Findings - ESP performs better (minimizes deficits) in drier years 
- ESP has limited value in this case because forecast skill is seasonal (spring) whereas objectives are 
annual water supply with longer lead time needs 
- ESP would be most valuable with high demand and lower capacity, which would make management 
more seasonal (than inter-annual) 

    

Citation Rheinheimer, D.E., Bales, R.C., Oroza, C.A., Lund, J.R. and Viers, J.H., 2016. Valuing year‐to‐go hy‐
drologic forecast improvements for a peaking hydropower system in the Sierra Nevada. Water Re-
sources Research, 52(5), pp.3815-3828. 

Context California, Yuba River, multi-reservoir system aggregated to composite single reservoir (262 million 
m3 capacity). Snow-dominated in spring. Little interannual carry-over 

Decisionmaker's Objective Maximize annual hydropower revenues less penalties for unmet environmental flows. 

Control variable(s) for decisionmaker Hourly then daily water release from reservoir  

Decisionmaker's solution model Linear programming model 

Forecast description Long term “year-to-go” daily; updated daily based on hydrology model. Actual modeled inflow 
blended with “predicted inflow” based on median inflows.  
- Electricity prices deterministic 

Forecast alternatives (1) perfect forecast (no blending) 
(2) actual values blended with snow water equivalent (SWE) data enhanced prediction 

Actual streamflow method Simulated with hydrology model using 1952-2009 

Sensitivity analyses - Systematic error added to SWE model 
- Changing blending factor 
- Vary storage capacity to inflow ratio 
- Vary powerhouse release capacity to inflow ratio 
- Vary powerhouse capacity 

Key Findings - Perfect hydrologic forecasts increase annual hydropwer revenues by an average of 1.2% 
- Insensitivity of forecast value to reservoir size due to little spill in larger reservoirs 
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Citation Maurer, E.P. and Lettenmaier, D.P., 2004. Potential effects of long-lead hydrologic predictability on 
Missouri River main-stem reservoirs. Journal of Climate, 17(1), pp.174-186. 

Context Missouri River 3 mainstem (sequential) dams (Fort Peck, Garrison, Oahe) 

Decisionmaker's Objective Maximize hydropower revenues (flood control, navigation, water supply, recreation, environmental 
flows were set as constraints)  

Control variable(s) for decisionmaker Monthly time-step releases for hydropower from 3 reservoirs 

Decisionmaker's solution model Operating rules based on adaptations of system’s master water control manual 

Forecast description Long term (12-month) monthly stream flow 

Forecast alternatives - "Perfect forecast" generated using observed system monthly inflow sequences 1968-1997 
- Alternative forecasts generated by stochastically adding error to observed values 

Actual streamflow method Observed system monthly inflow sequences 1968-1997 

Sensitivity analyses - Hypothetical reduction in system storage 
- Varying perfect knowledge of climate, soil mosture, and snow pack 

Key Findings - Small benefits in percentage terms -- for the main-stem reservoirs, total increases in hydropower 
generation benefits are less than 2% even with perfect forecasts. 
- Increase in benefits with smaller capacity system 

    

Citation Hamlet, A.F., Huppert, D. and Lettenmaier, D.P., 2002. Economic value of long-lead streamflow 
forecasts for Columbia River hydropower. Journal of Water Resources Planning and Management, 
128(2), pp.91-101. 

Context Columbia River Basin (OR/WA); snow-dominated; relatively low reservoir storage system; seasonal 
peak flows out of phase with peak energy demand 

Decisionmaker's Objective Maximize hydropower revenues at major storage and RoR dams in Canada and US while managing 
for flood control and other uses 

Control variable(s) for decisionmaker Monthly reservoir releases for hydropower  

Decisionmaker's solution model Reservoir rule curves 

Forecast description Long term (12-month) monthly stream flow ensemble forecasts with snow pack info and VIC hydrol-
ogy model, updated monthly 
-  Electricity prices: average monthly spot market prices projected by Bonneville Power Admin 

Forecast alternatives - Increasing (by 6 months) forecast lead time by adding information from long-lead climate forecast  
- Perfect forecast of climate category 

Actual streamflow method Monthly time step ColSim reservoir simulations driven by naturalized streamflows from 1931 to 1988 

Sensitivity analyses  Revised rule curves for reservoir operation 
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Key Findings Considerable improvement in reservoir operations for hydropower generation 

    

Citation Matte, S., Boucher, M.A., Boucher, V. and Fortier Filion, T.C., 2017. Moving beyond the cost–loss 
ratio: economic assessment of streamflow forecasts for a risk-averse decision maker. Hydrology 
and Earth System Sciences, 21(6), pp.2967-2986. 

Context Canada, Quebec, Montmorency River, small flood-prone watershed  

Decisionmaker's Objective Maximize expected utility for flood emergency managers, where utility is a function of flood damage 
and flood damage can be mitigated by emergency management spending  

Control variable(s) for decisionmaker Emergency management spending which reduces the damages associated with floods of different 
sizes  

Decisionmaker's solution model Optimization model maximizing utility  

Forecast description Short term. 1 to 5-day horizon, updated every 3 hours 

Forecast alternatives Variations in forecast uncertainty captured by: 
1. “Dressed” deterministic forecasts, using past error statistics 
2.  Meteorological ensemble forecasts passed on to the HYDROTEL distributed hydrologic model  
3. Ensemble forecast with random noise applied to precipitation and temperature inputs. 

Actual streamflow method Observed stream-flow for 2011-2014 study period 

Sensitivity analyses - Vary risk aversion coefficient in utility function 
- Vary damage multiplier  

Key Findings - Value of forecasting system strongly depends on decision maker’s risk aversion 
- Forecast quality in traditional sense does not necessarily translate to higher value when risk aver-
sion is included 

    

Citation Tejada‐Guibert, J.A., Johnson, S.A. and Stedinger, J.R., 1995. The value of hydrologic information in 
stochastic dynamic programming models of a multireservoir system. Water resources research, 
31(10), pp.2571-2579. 

Context California Shasta-Trinity System 2 reservoirs and 5 power plants; snow-dominated in Spring 

Decisionmaker's Objective Maximize the value of energy produced, with penalites for shorfalls on water supply 

Control variable(s) for decisionmaker Monthly releases for hydropower 

Decisionmaker's solution model Nonlinear stochastic dynamic programming SDP models incorporating different types of flow forecast 
information and uncertainty (deterministic, stochastic,...) 

Forecast description Long term: Monthly inflow forecasts based on historical record (1895-1977), Markov chain model of 
streamflow persistence, and snowmelt runoff model; updated monthly 
- monthly energy prices are deterministic based on historical averages 
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Forecast alternatives (1) deterministic inflow forecast (average historical flow for each month) 
(2) stochastic monthly inflow forecast without persistence (average and variance of historical flow for 
each month) 
(3) stochastic monthly inflow forecast with persistence (adding serial correlation) 
(4) stochastic monthly inflow forecast augmented with seasonal snow-based inflow forecast  

Actual streamflow method Monthly inflow historical record (1895-1977) 

Sensitivity analyses - Vary targets and penalties 

Key Findings - Largest benefits of including additional hydrologic state information for objective with large penal-
ties on shortages 

    

Citation Boucher, M.A., Tremblay, D., Delorme, L., Perreault, L. and Anctil, F., 2012. Hydro-economic assess-
ment of hydrological forecasting systems. Journal of Hydrology, 416, pp.133-144. 

Context Canada Quebec Gatineau Basin, 2 reservoirs and 3 hydropower plants 

Decisionmaker's Objective Maximize hydraulic generation of the valley 

Control variable(s) for decisionmaker Daily releases to turbine flow and spill from Baskatong reservoir 

Decisionmaker's solution model SOHO linear stochastic programming model 

Forecast description Short-term: Deterministic and ensemble 10-day forecast with daily time-step 

Forecast alternatives - Low resolution ensemble  
- Post-processed ensemble to address under-dispersion 

Actual streamflow method September 1 to December 17, 2003 

Sensitivity analyses   

Key Findings - Both deterministic and ensemble forecasts result in higher total electricity production and lower 
number of inundation days over the simulation period 

 

 



 

 

 

Appendix C List of Interviews and Focus Groups 
 

Interview/Focus Group Sector Organization 

Interview Reservoir Operators DWCD 

Interview Reservoir Operators DWCD - reservoir operations 

Interview Reservoir Operators DWCD - reservoir operations 

Interview Reservoir Operators Reclamation 

Interview DWCD DWCD staff 

Interview DWCD DWCD board member 

Interview Agriculture Ute Mountain Farm and Ranch 

Interview Agriculture Ute Mountain Farm and Ranch 

Interview Agriculture Ute Mountain Farm and Ranch 

Interview Agriculture Ute Mountain Farm and Ranch 

Focus Group Agriculture Agricultural producer -- FSA 

Focus Group Agriculture Agricultural producer -- FSA 

Focus Group Agriculture Agricultural producer -- FSA 

Focus Group Agriculture Agricultural producer -- FSA 

Interview Agriculture Montezuma County Extension 

Interview Agriculture CSU Ag Extension, SW CO Research Center 

Interview Agriculture CSU Ag Extension, SW CO Research Center 

Interview Agriculture Dolores County Extension 

Interview Agriculture Montezuma Valley Irrigation Company 

Interview Recreation Dolores River Boating Advocates 

Interview Recreation Commercial outfitter 

Interview Recreation Commercial outfitter 

Interview Recreation USFS 

Interview Recreation BLM 

Interview recreation BLM 

Interview Ecological CPW Durango Office 

Interview Colorado Water Law Western Resource Advocates 
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Appendix D IRB-approved interview questions 
Interview Questions for DW and DWCD areas: 

1. What decisions do you use streamflow forecast information for? How do you use it? 

When? 

2. What forecast information do you use when making these decisions? 

3. What elements of the forecast do you pay most attention to/matter the most in this 

process? (e.g., uncertainty, lead time, frequency)? What elements of the forecast would 

be most helpful to improve? 

Prompt: Would this be the same during a very wet year, like the current year, or in 

very dry years, like 2017-2018? 

4. What other factors impact your decisions? (e.g., how important is the forecast in the 

suite of information that you consult?) 

5. What years were the forecasts very helpful? In what years were the forecasts least help-

ful? 

Prompt: Ask about specific years (e.g., 2017-18 drought; current wet year) 

Prompt: What makes a forecast bad? What makes it good? 

6. How does your decision-making process and use of forecast information change based 

on the conditions (e.g., a dry year, a wet year, successive dry years, etc.)? 

Prompts: Think about the year that we were just talking about. Did you change when or 

how often you look at forecast information? Did you seek additional information to supplement 

the forecast? Did you change your management practices based on the forecast information? 

7. Think about [choose a year that they have been discussing]. Knowing what you know 

now about the water conditions for that year, what would you have done? 

Prompt: Please look at these scenarios (scenario game). What would you do with this fore-

cast information? 

Prompt: If I could give you a crystal ball and give you a perfect forecast for that year, and 

tell you exactly what was going to happen with the water, what would you have done?  
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Additional Questions for Reservoir Operators and Water Managers in DW and DWCD: 

1. Do you communicate forecast information to other groups? If so, whom do you com-

municate with? How do you pass along this information (e.g., email, press release, etc.)? 

2. Are there spatial/location-specific forecasts for which increased precision is more im-

portant? 

Additional Questions for Ag Extension Agents in DWCD: 

1. Do you communicate any forecast information to the ag community? If so, whom do 

you communicate with? How do you pass along this information (e.g., email, press re-

lease, etc.)? 

2. In your experience, how does the agricultural community respond to water reduc-

tion/availability? In other words, what do they do in particularly dry years? What about 

in very wet years? 

Additional Questions for Recreation Outfitters (e.g., Rafting Companies and Angling Guides) 

in DWCD: 

1. Do you communicate any forecast information to other groups? If so, whom do you 

communicate with? How do you pass along this information (e.g., email, press release, 

etc.)? 

2. Where do go when there isn’t enough water? 

TO CONCLUDE: Do you have any questions, or is there anything else that you would like to add 

that I didn’t ask you about? 

Focus Group Questions / Discussion Prompts: 

1. Do you use streamflow or water availability forecast information to inform decisions? 

How do you use it? When? 

Prompt for Ag Community: Do streamflow forecasts or water availability forecasts impact your 

decision on what to plant, how much to plant, or when/where to graze? 

Prompt for M&I: Do streamflow forecasts or water availability forecasts impact your decision 

on how to manage water useage? 

Prompt for Recreation: How does release information from McPhee Reservoir impact the num-

ber of days you can raft, or where and when you can fish? 

2. What streamflow forecast or water availability forecast information do you use when 

making these decisions? Where do you get that information? 

3. IF THEY USE FORECAST INFORMATION: What elements of the forecast do you pay most atten-

tion to/matter the most in this process? (e.g., uncertainty, lead time, frequency)? What 

elements of the forecast would be most helpful to improve? 
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IF THEY USE SOME OTHER WATER AVAILABILITY FORECAST INFORMATION: What elements of the water availa-

bility forecast do you pay most attention to/matter the most in this process? (e.g., uncertainty, 

lead time, frequency)? What elements of the forecast would be most helpful to improve? 

Prompt (same for both): Would this be the same during a very wet year, like the current year, 

or in very dry years, like 2017-2018? 

4. What other factors impact your decisions? (e.g., how important is the forecast in the 

suite of information that you consult?) 

5. What years were the forecasts very helpful? In what years were the forecasts least help-

ful? 

Prompt: Ask about specific years (e.g., 2017-18 drought; current wet year) 

OR Prompt: What makes a forecast bad? What makes it good? 

OR Prompt: Think of a year that the forecast let you down. How? Was it the timing, the amount, 

etc? 

6. How does your decision-making process and use of streamflow or water availability 

forecast information change based on the conditions (e.g., a dry year, a wet year, suc-

cessive dry years, etc.)? 

Prompts: Think about the year that we were just talking about. Did you change when or how 

often you look at forecast information? Did you seek additional information to supplement the 

forecast? 

Prompt for Ag Community: Did you change your planting or grazing practices based on the fore-

cast information? 

Prompt for M&I: Did you change your water management practices based on the forecast infor-

mation? 

Prompt for Recreation: Did you decide to change locations or increase/decrease the number of 

days for rafting/fishing based on that forecast information? 

7. Think about [choose a year that they have been discussing]. Knowing what you know 

now about the water conditions for that year, what would you have done? 

Prompt: If I could give you a crystal ball and give you a perfect forecast for that year, and tell 

you exactly what was going to happen with the water, what would you have done? 

TO CONCLUDE: Do you have any questions, or is there anything else that you would like to add 

that I didn’t ask you about? 


