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Executive Summary 

RTI International built upon its crop modeling work in Rwanda (Chew et al., 2020; Hegarty-

Craver et al., 2020) to apply the use of drones (also known as unmanned aerial vehicles or 

UAVs) to generate crop type labels in the Konni region of Niger and use them to develop 

machine learning models that predict crop types. Drone data offer the ability to see and label 

crops at high resolution (~2 cm) at multiple intervals during a given growing season, providing a 

potential alternative to in-person field data collection. RTI captured and used the drone data for 

the area of investigation to create large crop label datasets containing multiple crop examples at 

specific locations and times. These labeled data in turn provided the training data for satellite-

based crop type models that can be applied over large areas. These models can be run multiple 

times during a compact as part of a project’s monitoring and evaluation strategy so that a shift in 

crop types and extents can be detected more quickly than with traditional survey-based 

methods, allowing for program intervention and recalibration if needed. 

Goals 

Our main goal was to obtain drone imagery, for both the dry and rainy seasons, starting in the 

2021 dry season and ending in the 2023 dry season. With the help of expert agronomists, we 

aimed to classify fields by crop type and provide those data for training satellite-based crop type 

prediction models, all to support the determination of whether the provisioning of water to the 

Konni Irrigation Perimeter resulted in a shift toward higher-value crops. 

Methods 

The Konni area is not very large and is contained within a single satellite image (scene). To use 

satellite imagery to predict the type of crop over a larger area, we chose a subset of the Konni 

Irrigation Perimeter 

area over which to fly 

our drones. The 

fields serviced by the 

irrigation perimeter 

are divided into five 

zones. We chose a 

smaller area inside of 

each of the zones to 

ensure we captured 

crops that were 

prevalent in the 

Konni area as a 

whole. 

We contracted with 

Drone Africa Service 
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(Niamey, Niger) who operate several fixed wing and quadcopter-style drones equipped with 

high-resolution cameras. These drones fly at a low altitude and capture high-resolution vertical 

and oblique (taken at an angle) visible-spectrum images. Drone missions were timed to capture 

crops at two growth stages: early- to mid-season, and mid- to late-season. The two sets of 

imagery allowed analysts to see the crops at different points in the growing season, which 

helped differentiate similar crops, as well as capture at least one image of planted crops for 

each field sampled in case crops were either planted late or harvested early. Traditional vertical 

images were acquired and used, but the additional oblique imagery that was captured proved to 

be an invaluable complementary source of information that helped improve crop identification. 

The oblique imagery did not cover the entire study area as the vertical imagery did, but it was 

taken at a lower altitude as well as at an angle. This allowed analysts to see the crops in greater 

detail and gave us greater confidence in our crop labels.  This project demonstrated that 

integrating oblique drone imagery into the work flow is essential and should be adopted as best 

practices. 

Imagery was processed by RTI into mosaics and then published as image services to RTI’s 

external Esri Portal. Portal is a core component of Esri’s ArcGIS Enterprise software and allows 

web-based viewing and annotation of GIS layers. The image services were displayed in a web 

map, along with field, zone, and satellite boundaries. Analysts were then asked to delineate 

fields by crop types. In general, most fields within a farmer’s plot were monocrops, but we did 

capture and use examples where intercropping was present. 

The purpose of delineating known locations of crops is to train a satellite model with those data 

to predict the locations of those same crops across a larger area. RTI created a point layer 

derived from the centroids of satellite cells and intersected them with the field boundaries, 

transferring the crop type to each point, and thus labeling each satellite cell with the crop type 

found on the ground. The percentage of the cell covered by the primary crop type was recorded, 

so that cells below a certain percent (e.g., 80%) could be removed from the training dataset 

during modeling if desired (i.e., to train the model on more uniform cells). 

Crop labels derived from the drone imagery are the key component to satellite-based machine 

learning models for crop type prediction. These models use multiple satellite spectral bands, 

combinations of bands, and ancillary computed spatial data (such as distance to a well) to form 

a relationship between the input values and the crop type. The training data were divided into 

two parts: 80% of the data were used to train the model, and 20% were used to evaluate the 

model’s predicted crop type against a location where the crop type is known. 

Results 

Our modeling results were excellent. In all cases we achieved an accuracy of greater than 90%, 

meaning that the crop predictions over the entire study area are very reliable and can be used 

to determine crop type changes.  

As far as changes in crop types and extents, we noted multiple changes. There was a large 

decrease in cereal crops between the 2023 and 2024 rainy seasons with land shifting into non-

cereal crops and fallow. Cereal crops accounted for 97.90% of the study area during the 2023 
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rainy season, but only 73.64% of the study area during the 2024 rainy season. Non-cereal crops 

increased from 0.31% to 10.33% of the study area between these seasons, while the fallow 

area increased from about 1.77% to 16.01% of the study area. There were also large shifts in 

land allocation between the 2024 and 2025 dry seasons. In the 2024 dry season, there did not 

appear to be irrigation water flowing based on drone imagery and approximately 99.60% of the 

study area was fallow with about 0.02% planted in cereal crops and the other 0.38% in non-

cereal crops. In the 2025 dry season, when irrigation water was available, the fallow area fell to 

50.82% of the study area while 35.32% of the study area was planted in cereal crops and the 

other 13.85% was allocated to non-cereal crops. The large increase in non-cereal area in the 

rainy season is in line with the expectation that farmers with greater access to water will shift 

their production to higher-value cash crops. The positive dry season result strongly suggests 

that farmers with greater access to water will grow cereal or non-cereal crops, rather than leave 

their fields fallow.  

Lessons Learned  

During our work, we noted several findings that will improve our methodology moving forward. 

In terms of drone imagery acquisition, we found that having two passes at different periods is 

sufficient to capture enough identifiable crop examples for training data. We also found that 

higher-resolution (~2 cm) drone imagery, although more expensive and larger in file size, is 

noticeably better than the 3 cm imagery we initially specified, and therefore allows crops to be 

identified with greater confidence. In addition, combining low-altitude oblique drone imagery with 

vertical drone imagery yielded more reliable crop labels. Lastly, hiring a trained agronomist with 

local cropping systems knowledge to guide our work and provide quality control was essential. 

Although we did not get a chance to do so, we strongly recommend that seasonal crop 

prediction models trained on multiple years of input data be created and evaluated for accuracy. 

This has the potential to produce significant savings of both time and money once stable models 

that can be effectively transferred across growing seasons and areas are developed.   
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1. Background 

The main goal of this study was to perform high frequency monitoring of crops in the Konni 

Irrigation Perimeter area to augment traditional monitoring and evaluation (M&E). This high 

frequency monitoring was not meant to replace traditional M&E, but rather improve aspects 

such as time-to-insight. The following defines how we think about traditional M&E and 

enumerates its various facets. 

1.1 Monitoring and Evaluation 

The disciplines and practices once known simply as “monitoring and evaluation” have 

undergone multiple rounds of rebranding over the last decade.1 Regardless of the specific label 

being applied, the core aim remains the same: to rigorously understand the relationship 

between a program’s implementation and its outcomes. Given that understanding, program 

designers and implementers can tweak their approaches to meet any of several goals. The 

sections below describe the central tenets of traditional M&E. 

1.1.1 Triangulation 

Traditional M&E makes heavy use of human-centered methods like surveys, questionnaires, 

and interviews. Whether administered by field enumerators or conducted via short message 

service (SMS), as is increasingly common, these methods are subject to bias at the respondent 

level. The shortcomings of these methods—as well as various mechanisms for partially 

mitigating those shortcomings—have been extensively documented in the social scientific 

literature (Larsen et al., 2002; Bogner & Landrock, 2016). 

1.1.2 Reproducibility 

Traditional enumerator-driven M&E methods require pairing careful instrument development 

with significant investments in training to achieve good inter- and intra-rater reliability.2 The 

former becomes increasingly difficult as the size of the workforce scales; the latter suffers when 

fatigue, difficult terrain, and other environmental conditions come into play. 

1.1.3 Cost 

Initial data collection 

The costs of initial data collection using traditional M&E methods are driven by human labor 

(wages, per diem, and lodging) and other direct costs (materials, vehicle rental, fuel). The 

collection is typically done by teams with a supervisor, increasing the cost. 

 
1 M&E became monitoring, evaluation, and learning (MEL), which in turn became monitoring, evaluation, adaptation, 
and learning (MEAL), which in turn became monitoring, evaluation, research, learning, and adaptation (MERLA). In 
some contexts, the term “CLA” (for collaborating, learning, and adapting) is used instead.  
2 Inter-rater reliability refers to the consistency between different assessors measuring the same input, often 
concurrently. Intra-rater reliability is the consistency over time of a given assessor’s repeated measures on the same 
input. 
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Data processing and analysis 

The increasing adoption of electronic data capture—collecting data via digital forms on mobile 

phones or tablets, or through interactive voice response, SMS, etc.—has substantially reduced 

digitization or data entry costs associated with traditional M&E. Much of the data processing, 

cleaning, and analysis, however, continues to be implemented in spreadsheets using labor-

intensive manual techniques. While some efficiencies can be gained over time as analysts gain 

experience, this typically means that subsequent rounds of data analysis incur substantial 

additional labor costs. It is, of course, possible to deploy reproducible data cleaning, processing, 

and analytics techniques in traditional M&E contexts. Doing so would also yield significant 

benefits in cost, quality, and timeliness. Such approaches have not historically been a feature of 

traditional M&E teams, however, and may require a significant effort to successfully introduce. 

1.1.4 Time-to-Insight 

A perennial issue with traditional M&E methods is the substantial delay between data collection 

and decision-making. Fieldwork alone often takes many days, if not weeks. If electronic data 

collection is used, data entry can be foregone; otherwise, it often takes several more days or 

weeks. Once the data are ready, analysis can begin, and typically takes multiple days. The end 

result is that M&E data are often presented to program leaders months after they were 

collected, at which point they may no longer reflect reality on the ground. 

1.2 Niger Compact 

1.2.1 History of Compact 

The compact between the United States via the Millennium Challenge Corporation (MCC) and 

the Republic of Niger was signed on July 29, 2016, entering into force roughly 18 months later, 

on January 26, 2018.3 Its initial term of 5 years was extended by 12 months through a 2022 

amendment intended to address the disruptions and delays occasioned by the global COVID-19 

pandemic.4 The compact closed on January 26, 2024.5 

1.2.2 Agricultural Focus of Compact 

The MCC’s Niger Constraints Analysis of January 2014 identified access to water for agriculture 

and livestock as a binding constraint on economic growth in Niger.6 Accordingly, over 

$256 million dollars (nearly 58% of the compact’s total funding of $442.6 million, but over 71% 

of its programmatic allocation) was earmarked for an Irrigation and Market Access Project. 

The Compact aims to increase rural incomes through improvements in 

agricultural productivity and sales resulting from modernized irrigated agriculture 

with sufficient trade and market access; and to increase incomes for small-scale 

agriculture-dependent and livestock-dependent families in eligible municipalities 

 
3 Compact between MCC and Niger. July 29, 2016. Accessed 2025-04-04. 
4 Niger Compact Amendment. February 10, 2022. Accessed 2025-04-04. 
5 Niger Compact. Accessed 2025-04-04. 
6 Niger Constraints Analysis. Accessed 2025-04-04. 

https://assets.mcc.gov/content/uploads/2017/05/niger-compact-signed.pdf
https://assets.mcc.gov/content/uploads/compact-niger-amendment.pdf
https://www.mcc.gov/where-we-work/program/niger-compact/
https://assets.mcc.gov/content/uploads/2017/05/Niger_CA_withCover.pdf
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in rural Niger by improving crop and livestock productivity, sustaining natural 

resources critical to long-term productivity, and increasing market sales of 

targeted commodities through two projects: the Irrigation and Market Access 

Project and Climate-Resilient Communities Project.7 

At the signing of the compact, the Irrigation Perimeter Development Activity (IPDA) and the 

Management Services and Market Facilitation Activity were jointly projected to directly benefit 

nearly 40,000 Nigeriens.8 The IPDA focused on rehabilitating the Konni irrigation system and 

developing new irrigation infrastructure in the Dosso-Gaya area. 

1.3 Konni Irrigation Perimeter 

The Konni Irrigation Perimeter was first constructed in 1976 with additional infrastructure added 

in 1982. Since that time, as the perimeter fell into disrepair, the agricultural community grew, 

along with the need for irrigation during increasingly frequent dry periods. Therefore, as part of 

the Niger Compact, MCC provided funding to improve the perimeter—repairing existing 

infrastructure and building new irrigation to connect the entire area to a reliable source of water. 

1.3.1 Goals of the High Frequency Monitoring Project 

Data on the areas planted with different crops in the current growing season and projected 

yields are important for public- and private-sector decision-makers to allocate resources, plan 

logistics, anticipate commodity production and prices, and prepare for any potential food 

security concerns. In addition, these data can be used as part of impact evaluations assessing 

the effects of agricultural programs and policies.  

Many countries utilize farmer surveys and collection of remote-sensing data to gather these 

data. Drone imagery is widely used to map and monitor agriculture (Hall et al., 2018). Not only 

can drone imagery be used to delineate extents, it can also be used to determine if and where 

crops need additional water or fertilizer, or are suffering from disease or pests. These types of 

data can both aid in yield prediction as well as inform interventions to mitigate potential yield 

reductions due to crop stressors. However, in resource-poor parts of the world, estimates of 

planted area by crop type and projected crop yields may not be available in a timely fashion due 

to sparse data collection and administrative lag times. As a result, there may be insufficient data 

to analyze the impacts of agricultural development program implementation on crop mix and 

yields prior to availability of data collected in surveys administered at program midpoints or 

endpoints. By the time survey data are processed and analyzed, it may be too late to 

substantively adjust the program implementation based on evaluation findings.  

Satellite-based crop type and yield models hold the promise of facilitating much more frequent 

monitoring of outcomes that can be observed remotely. For instance, by developing a satellite-

based crop analytics framework that can be updated whenever new imagery becomes available 

to generate estimates of crop extents, it may be possible to generate actionable metrics earlier 

 
7 Niger Compact Amendment. 
8 Niger Compact. 
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in a program’s implementation when small changes to an intervention may produce a higher 

return on investment. These model estimates are not meant to replace traditional M&E but 

complement it and provide input at more frequent intervals.  

RTI’s primary goal was to collect drone data during multiple growing seasons and use those 

data to calibrate satellite-based crop analytics models for the Konni Irrigation Perimeter. This 

would then inform MCC evaluation of the effectiveness of the irrigation components of this 

compact. 

1.3.2 Partners 

The larger work on this project was divided into three main components: the collection of crop 

yield data and farmer surveys, the generation of ground truth data used for training and 

validating satellite-based models, and the modeling itself. The three components were each led 

by a different organization: Mathematica, RTI, and NASA respectively.  

▪ Mathematica has broad experience designing and implementing agricultural surveys in 

developing nations.  

▪ RTI has experience using drones to develop crop type model training data, as well as 

modeling expertise, and survey design and implementation. 

▪ NASA has extensive experience in satellite-based crop mapping, including work in 

Burkina Faso and Senegal.  

Based on each organization’s experience and skill sets, the work was broadly divided as 

indicated in Table 1. 

Table 1.  Division of Tasks Among Team Members 

Task Mathematica RTI International NASA 

Farmer surveys and 
crop yields ●   

Drone imagery 
acquisition and crop 
label generation 

 ●  

Satellite model 
development 

 ● ● 

 

In addition to doing their own tasks, data were shared between team members: RTI provided 

crop type locations to Mathematica to help them plan their crop cut implementation and to 

NASA to support their model development; Mathematica shared their crop cut data with NASA 

to help train a crop yield model; and NASA shared the predictive surfaces which were generated 

by the models. None of the team members could have performed all these tasks on their own. 

The results of this project were only made possible by contributions of each organization. 
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1.4 Drone Imagery 

Low-altitude, high-resolution drone imagery taken over agricultural crops can make crop type 

and extent identification faster, more efficient, and less costly than traditional on-the-ground 

sampling. By identifying where certain crops are being grown, a satellite-based predictive model 

can be built using these crop locations as training data. 

While visible-spectrum (0.38 µm–0.75 µm) RGB imagery is sufficient for crop delineation, aerial 

cameras with additional bands such as red edge (0.68 µm–0.75 µm) and near-infrared 

(0.78 µm–1.4 µm) can provide information about relative crop stress, and potentially enhance 

the ability to discriminate between crops. Ideally, imagery would include these additional bands, 

but these cameras are not yet standard and are not available in all cases. 

The resolution of the aerial camera and the drone flight altitude combine to create an image of a 

certain ground resolution. In the case of crop identification, a pixel resolution of less than 3 cm is 

necessary to reliably identify crop types. 

A given plant will have different physical characteristics depending on its life cycle stage 

(phenology). To enhance plant type identification, it is preferable to get imagery at several 

points during the growing season. Just before harvest is the ideal time for crop identification 

because the leaves are at their largest and fruit may be visible. It is also helpful to have imagery 

of specific known crop types during the middle of the growing season to be able to see how 

similar crops may differ visually. This also guards against missing crop examples due to early 

harvest or crop failure. Therefore, if budgets allow, two or three UAV flights per growing season 

are recommended. 

Orthorectified drone imagery is viewed in a geographic information system (GIS) application in 

which a trained analyst identifies examples of crop types, including monocrops and intercrops. 

Monocrops are a single crop found in a given field, whereas intercrops are a mixture of two or 

more. The analyst draws a polygon around the field and then, using a spatial join in a GIS, 

extracts the crop type and ancillary metadata collected to each satellite cell centroid. These 

centroids then form the training dataset upon which satellite-based machine learning models are 

created and evaluated. 
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2. Phase 1 

2.1 Feasibility Study 

Phase 1 of this project was to determine the feasibility of augmenting traditional monitoring and 

evaluation by using satellite models to perform high frequency monitoring of agriculture in the 

Konni Irrigation Perimeter in Niger. This idea meshes with MCC’s desire to explore ways to 

obtain higher-quality, higher-frequency, and lower-cost project monitoring data.  More frequent 

data collection that occurs before, during, and after specific program interventions would allow 

MCC to know earlier in the process if the intervention is having the desired effects and allow for 

program changes that potentially would lead to improved outcomes. 

Part of MCC’s Niger Compact included the rehabilitation and extension of the Konni Irrigation 

Perimeter to provide water to agricultural plots (Figure 1), as well as other programs intended to 

boost agricultural productivity and increase the value of farmers’ crops. RTI proposed to use 

satellite imagery paired with ground truth information to measure changes in crop mix and crop 

extents and use this information to evaluate the potential to monitor/map crop yields and soil 

moisture in this area of Niger.  

Figure 1.  Cultivated Area Within the Konni Irrigation Perimeter 

 

2.2 Scoping Trip to Niamey, Niger 

RTI traveled to Niamey, Niger in December 2019 along with our MCC partners to meet with 

local officials working in the agricultural sector. The overall objective of this trip was to determine 

the feasibility of augmenting traditional monitoring and evaluation by using satellite-based 
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predictive models to perform high frequency monitoring of agriculture in the Konni Irrigation 

Perimeter in Niger. Specifically, the objectives were to:  

1) Meet with local drone operators to gauge their capacity to capture low-altitude aerial 

imagery that would facilitate crop identification and produce training data 

2) Meet with local stakeholders to determine their interest in providing agronomy 

interpretation of the drone imagery 

3) Meet with local stakeholders to determine their interest in providing site-specific 

productivity data and soil moisture data.  

This trip had two additional overarching goals. The first was to form a basis for collaboration 

with the various government agencies and nongovernmental organizations (NGOs) that would 

foster future cooperation and sharing of resources. The second was to gauge interest in and 

capabilities for building long-term capacity to take ownership of this methodology and implement 

it going forward. 

We visited Drone Africa Service, a Niamey-based company that has been in business for 

approximately 9 years. The owner, Mr. Aziz Abdul Kountche, constructs his own drones (Figure 

2) using components purchased from Europe and the United States. He has performed work for 

many local NGOs, government agencies, and universities.  

We also had a telephone conversation with a second drone operator, Mr. Assadeck of Éspace 

Geomatique, based in Ouagadougou, Burkina Faso. Their office in Niamey was not yet 

operational. 

In addition, we identified and visited several local institutions that could (1) provide ground truth 

information on crops, crop yields, and soil moisture, (2) check the work of local students doing 

crop identification, and (3) build capacity so that the technology can be used to measure 

agricultural outcomes and soil moisture beyond the end of the compact. 

The institutions we visited were: 

▪ Ministry of Agriculture and Livestock (MAGEL)—government 

▪ L’Office National des Aménagements Hydro-Agricoles (ONAHA)—government 

▪ Abdou Moumouni University—education 

▪ Haute Commissariat à L’Initiative 3N (HC3N)—government 

▪ SERVIR/AGRHYMET—research institute 

▪ National Network of Chambers of Agriculture (RECA)—local NGO 

▪ United Nations World Food Programme (WFP)—international NGO 

 

All institutions expressed a willingness to be part of a small coordination and collaboration group 

that would be set up and administered by MCC/Millennium Challenge Account (MCA)-Niger. In 

return for data sharing, knowledge transfer, and provision of equipment and training that will 

ultimately lead to sustainability, the institutions indicated that they could help with our project 

needs. 
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Figure 2.  Fixed Wing Drone Used by Drone Service Africa 

 
 

2.3 Feasibility Results 

Before proceeding with Phase 2, RTI evaluated several criteria in Phase 1 to make a judgment 

of Phase 2 feasibility. These included the ability to acquire drone imagery, acquire suitable 

satellite imagery, create ground truth data, and ultimately create models that predict crop types 

and therefore provide additional monitoring and evaluation data points. 

2.3.1 Drone Imagery Providers 

Our assessment was that there were at least three firms capable of capturing low-altitude, high-

resolution aerial imagery using a drone as the platform. Drone Africa Service based in Niamey, 

Niger has successfully completed work for many NGOs, Nigerien government entities, and 

universities. Their clients have included the UN High Commission for Refugees (Niger), the Red 

Cross of Luxembourg, the International Crops Research Institute for the Semi-Arid Topics 

(ICRISAT), the Delegation of the European Union to the Republic of Niger, and Abdou 

Moumouni University of Niamey. Their rates were within budget and they were very familiar with 
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the process to apply for and obtain drone authorization from the Ministry of Defense, the 

Ministry of the Interior, and the National Agency for Civilian Aviation (ANAC). 

Two additional service providers identified were Charis Unmanned Aerial Solutions (Charis) 

based in Kigali, Rwanda, and Éspace Geomatique (S.A.R.L.) based in Ouagadougou, Burkina 

Faso. RTI has used Charis previously for work performed in Rwanda and found them to be 

highly competent and able to complete work on schedule and within budget. Éspace 

Geomatique is a Burkina-Faso–based company that has good experience and has a branch 

office in Niamey, Niger. Both were capable of flying drones in Niger and had comparable rates 

to Drone Africa Service. 

2.3.2 Drone Imagery Mission Parameters 

Although drones can be equipped with a variety of sensors, including infrared, thermal, and 

radar, the purpose of drone imagery for this project was to create labeled point data of crop 

types, and so it only needed to carry a high-resolution camera capable of capturing imagery in 

the visible spectrum. 

We learned from agricultural consultants in Niamey that while some areas of Niger farm 

continuously throughout the year, mixed farming areas like Konni have two distinct seasons: the 

dry season and the rainy season, each with their own distinct mixture of crop types. The dry 

season generally runs between November and April, while the rainy season occurs between 

May and October. We therefore determined that it was necessary to acquire drone imagery 

during each of the two growing seasons at multiple intervals. This strategy would allow us to 

develop sufficient high-quality training data for crops that may leaf out or be harvested at 

different times. 

2.3.3 Ground-Based Observations 

For crop type identification, corroborative ground-based observations are valuable as they can 

be used to confirm the crop type identification done through drone imagery by a trained analyst. 

Our experience in Rwanda suggested that combining ground-based observations with drone 

imagery produces highly accurate crop type labels. This allows the creation of a knowledge 

base, and thus the majority of labeled training data can be derived from the drone imagery 

alone using an online GIS viewer. RTI’s scoping trip to Niamey identified a network of 

government agencies, NGOs, and universities that possess existing ground-based crop data, as 

well as the ability to collect future ground-based crop data. Specifically, we understood that they 

would be able to provide crop identification confirmation, crop yield data, and soil moisture data 

upon which the satellite models are based. The coordination of the data collection and provision 

was to be done by the MCA-Niger staff in Niamey. 

2.3.4 Sources of Satellite Imagery 

RTI has previously had good success using Sentinel 2 imagery from the European Space 

Agency for mapping crop types in similar smallholder contexts. This imagery has a high spatial 

resolution (10 m), the sensor constellation revisits the same place on Earth every 5 days, and 
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there is no cost to obtain or use it. There are several other sources of satellite imagery that are 

available at no cost through an agreement with MCC such as Maxar’s Worldview data and 

Planet Labs’ PlanetScope. Therefore, access to appropriate satellite imagery as an input to 

seasonal crop prediction models was not an issue and we could focus on the alignment with 

higher-resolution UAV flights and field data collection campaigns.  

The modeling software used for RTI’s Rwanda Grand Challenge was well suited to create 

agricultural measures in the Konni area. Specifically, we believed that machine learning models 

(e.g., random forest classification) developed with ground truth satellite data and implemented 

on the highly scalable and accessible Google Earth Engine platform had the highest probability 

of success. Random forest was selected because it is a mathematically robust and transparent 

model. However, the success of this approach ultimately hinged on the quantity and quality of 

ground truth data. 

2.3.5 Summary 

Based on our scoping trip to Niamey and a review of current best practices in terms of data 

inputs and modeling environments, RTI found no significant barriers to performing high 

frequency monitoring of agriculture in the Konni Irrigation Perimeter area. Ground truth data in 

the form of labeled crop type locations on drone imagery were obtainable. There were no 

impediments in terms of capacity, permitting, cultural sensitivity, security, or cost. Crop yield and 

soil moisture calibration data are more challenging to acquire, especially in the quantity needed 

to develop reliable models. But local in-country organizations expressed a willingness to provide 

these data, so it was potentially possible to develop these models as well. We also believed that 

the methodology developed can be applied outside of the Konni area and be carried out beyond 

the end of the compact by in-country stakeholders, as long as the necessary training and 

equipment are provided. 
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3. Phase 2 

Based on the findings from Phase 1, we began the implementation of our data collection, 

processing, and analysis that comprised the bulk of the work in Phase 2. 

3.1 Implementation 

MCC’s goal was to develop satellite-based models that would detect a change in water usage, 

crop types, crop extents, and crop yields. To achieve this goal, we needed to collect the 

appropriate training data. The water usage question is difficult to answer because water comes 

from three sources—rain, wells, and irrigation canals—and we do not know how much comes 

from each source. The health of crops depends in part on the quantity and timing of available 

water. All things being equal, a good way to determine if farmers are increasing their use of 

irrigated water is to measure the type and extents of crops, especially in the dry season when 

there is less rainfall. The types and extents of crops can be determined from drone imagery 

taken during each growing season. For crop yields, the best training data comes from crop cuts, 

a small (~0.1 ha or smaller) representative area that is harvested and weighed, which were 

planned and administered by our colleagues at Mathematica. The intention is that these data 

will be made available to future partners, so that crop yield models can be developed. 

3.1.1 Drone Imagery Acquisition 

Our intention was to acquire drone data for six growing seasons (three rainy and three dry) 

starting in March 2021. It is possible to train a crop type model with training data generated in a 

single season. The model could then be used with satellite data from future years, as well as 

against past satellite data, to predict the type and locations of crops identified in the training 

data. However, acquiring additional drone data gives the opportunity to develop separate 

training data and separate models for each season/year, as well as to combine models across 

multiple years. Additional drone-derived training data allows us to measure how well a model 

trained using previous years’ training data performs in the current year. This gives us the 

flexibility to use the models with the best performance and therefore the ability to determine if 

the crop mix and crop extents were changing to higher-value crops that require more water but 

also generate a higher income for the farmers, as irrigation water became more readily 

available. 

The first drone mission was flown over a portion of the irrigation perimeter and along the canal 

that links the Mijoyo River to the irrigation perimeter (Figure 3). The purpose of these flights 

was to (1) determine what crops were growing on the irrigation perimeter during the dry season 

before any irrigation infrastructure construction began, and (2) determine if drone imagery could 

be used to identify/quantify the amount of water being drawn by farmers along the canal before 

it reached the irrigation perimeter (Figure 4). 
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Figure 3.  Areas Covered by Drone Imagery, Dry Season 2021 

  

Figure 4. Example of Farmers Pumping Water from Canal before It Reaches the Konni 
Irrigation Perimeter 
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We solicited quotes from the three drone operators who we were confident could do the work, 

and ultimately chose Éspace Geomatique for the first drone mission, as they were the least 

expensive. This work was completed to our mission specifications, and we were able to 

generate an image service that was displayed within our online crop labeler application. 

3.2 Project Delays 

Our drone schedule and subsequent crop labeling and model development was impacted by 

several events in the early part of the project. MCC’s intention was to suspend farming on a 

portion of the irrigation perimeter while it was being rehabilitated and expanded. Farming was to 

continue in those portions not under construction while those farmers not able to farm would be 

compensated for their losses. However, due to construction delays and the COVID-19 epidemic, 

we were advised by MCC that there was no cultivation between the 2021 rainy season and the 

2022 dry season. Therefore, we did not acquire any drone imagery during this time. Beginning 

in the rainy 2022 growing season, there were indications that part of the perimeter was under 

cultivation while construction was fast tracked. However, the drone imagery showed little to no 

activity. The same was the case for the 2023 dry season. During the 2023 rainy season 

widespread cultivation returned to the perimeter, although construction was still ongoing. 

Access to irrigated water started following the 2024 dry season after MCC provisionally 

accepted the completed construction works. The drone imagery acquired during each growing 

season is presented in Table 2. 

Table 2.  Drone Imagery Captured by Year/Season 

Year Season Month Resolution Labels 
Created 

Vendor Notes 

2021 Dry March 3 cm Yes Éspace Geomatique  Includes areas along canal where 
water extraction suspected 

2021  Rainy N/A N/A N/A N/A N/A 

2022 Dry N/A N/A N/A N/A N/A 

2022 Rainy August 2 cm Yes Drone Africa Service Plots were almost all fallow 

2023 Dry March 2 cm No Drone Africa Service All zones unplanted 

2023 Rainy August 2 cm Yes Drone Africa Service Mapillary imagery acquired 

2023 Rainy September 2 cm Yes Drone Africa Service Mapillary imagery acquired 

2024 Dry March 2 cm Yes Drone Africa Service Oblique imagery acquired, almost 
all plots were unplanted or 
abandoned 

2024 Rainy August 2 cm Yes Drone Africa Service Oblique imagery acquired 

2024 Rainy September 2 cm Yes Drone Africa Service Oblique imagery acquired 

2025 Dry March 2 cm Yes Drone Africa Service Oblique imagery acquired 

Note: Mapillary is a platform for hosting ground-based imagery.  
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On July 26, 2023, the Nigerien military staged a coup d’état deposing the country’s elected 

president and taking control of the government. The military suspended government services 

and closed the borders and air space which eliminated non-Nigerien drone operators thus 

forcing us to use Drone Africa Service. Despite this, the DAS provided a reasonable quote and 

was able to obtain the required permits in time to perform the first drone flights for the 2023 

rainy season. 

3.3 Crop Labeling 

RTI created a web application that displayed the drone imagery overlaid with farmer plot 

boundaries and Sentinel 2 satellite pixel extents. The application allowed an analyst with an 

account and an internet connection to access the imagery from anywhere in the world. There 

was the ability to label individual Sentinel 2 cells, as well as delineate polygons of fields with the 

same crop or crop mix. The general workflow for each season is presented in Figure 5. 

Figure 5. Crop Labeling Workflow 

 

To improve efficiency, in the web application, we added drop-down lists of commonly found 

crops, their condition, their growth stage, if they were present with any other crops, and our 

confidence in the accuracy of the label (Figure 6).  
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Figure 6. RTI Crop Labeler Interface 

 
 

Figure 7 shows an example of an onion field and the Sentinel cells it intersects. Each of the 

intersected cells becomes a crop label with a measure of cell overlap. Cells completely inside 

the field get a value of 100%, while those along the edges receive a value of less than 100%. 

The modeler can then select only labels above a given threshold to train and evaluate the model 

in an effort to maximize accuracy.  
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Figure 7. Crop Labeling Workflow 

 
 

There are roughly 5,000 agricultural fields in our drone sample area. Accordingly, our goal was 

not to label every single field, but rather to accumulate a sample of all crop types present at 

various growth stages and conditions. This strategy represented a balance between the need to 

be thorough but also to be time efficient. The results of the crop delineation were stored in an 

enterprise geodatabase comprised of ArcGIS Server and Microsoft SQL Server. 

3.3.1 Challenges 

We initially engaged with volunteer agricultural consultants with whom we had made contact 

through the MCA office in Niamey. We set up accounts, created a labeling guidance document, 

and provided several online training sessions, all in French. We asked that consultants 

delineate fields and attribute them with crop type and the other related information. The 

consultants had difficulty with their internet connection speed and did not feel confident 

providing crop identification on their own. We then set up interactive sessions, where RTI used 

the app, shared its screens via an online meeting, and did the crop delineation with guidance 

from the consultants. This was better but progress was slow because we could only get 1–2 

hours of the volunteers’ time every few weeks. 

Another challenge was that even though the process worked well overall, a trained agronomist 

using 2 cm resolution RGB imagery may still have had difficulty determining with certainty the 

crop type growing at a given location. This is due in part to the fact that many crops look similar 

on the imagery. The timing of the drone flights also led to problems. If a flight is too early in the 

growing season when leaves are small and there may not be any fruit to see, it may not be 

possible to discern one crop from another. If it is too late in the growing season, crops may have 
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already been harvested and thus do not appear at all. And because not all crops of a given type 

are planted at the same time, whenever drone flights are scheduled, some may be too immature 

to identify, while others may have already been harvested. 

3.3.2 Strategies to Overcome Challenges 

We initially relied on crop image examples from past missions to train geospatial analysts to do 

the crop labeling. After having difficulty getting volunteer Nigerien agronomists to help with our 

crop labeling, we hired a Rwandan agricultural consultant with whom we previously had worked. 

Since he was familiar with Nigerien crops and farmers’ growing strategies across Sahel 

countries, he was able to thoroughly review the labels to correct any errors and ensure 

consistency. Having a paid, trained agronomist was crucial in ensuring our crop training data 

were created in a timely fashion and were as accurate as could be.  

Bracketing the growing season with multiple sets of drone imagery is the best way to avoid 

getting imagery that is too early or too late. A minimum of two passes is recommended, while 

three is better if the budget allows it. For Konni, we planned for an early/mid set, as well as a 

mid/late set. While not perfect, it gave us sufficient examples of multiple crops at multiple growth 

stages and minimized the number of immature and harvested fields. 

Higher-resolution imagery (2 cm) also helped us to better identify crop types. Our first mission 

completed by Éspace Geomatique was flown at 3 cm, and the difference between this and 

subsequent missions flown at 2 cm was noticeable. It also increased the size and therefore 

reduced the ease of file transfer and processing of the datasets as well as the online viewer 

performance, but it was worth the tradeoff in our experience. 

We also augmented our vertical drone imagery with two other types of imagery. We theorized 

that having a second set of either ground-based or oblique images from a low-altitude drone 

would aid in interpretation. We contracted with our drone operator to take ground-based images 

with his phone and post them to the image-sharing website Mapillary (similar to Google 

StreetView). This did not yield very much actionable imagery as the photos tended to be too far 

from the crops of interest and only captured crops in the first few meters. Low-level (15–20 m 

above terrain) drone imagery taken at an angle (oblique) (Figure 8), however, proved to be very 

useful. This imagery did not encompass the entire project area, but was done in irregular 

transects of regularly spaced photos. Incorporating these images into our online viewer proved 

to be invaluable, as it gave a second view of a given crop and allowed us to label larger fields 

with higher confidence. 
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Figure 8. Example of Low-Altitude Oblique Drone Imagery 

 
 

3.4 Modeling 

Although our NASA colleagues were tasked with doing the bulk of the satellite modeling, RTI 

was also encouraged to develop models that would accurately predict the types and extents of 

the crops growing in the Konni Irrigation Perimeter during the various growing seasons. This 

activity was in addition to our primary task of developing training/evaluation data. 

We trained multiple model variations using publicly accessible satellite imagery (Sentinel and 

LandSat data) with data derived from drone imagery. We primarily trained random forest 

models; the benefits of random forests include quick training speed and ease of extracting 

variable importance metrics, which allowed us to assess the impact of the input satellite 

wavelength bands we used.  

We used free and open-source software (R and QGIS) to train these models and predict output 

crop cover. To tune the model parameters and better characterize the performance of the 

model, we performed five-fold cross-validation using the R package caret.  We partitioned the 

training set into five equal-sized subsamples, or folds, creating five subsampled datasets (each 

using four folds for training data and one for testing data—the commonly used 80/20 split).  

The model used multiple predictive parameters, mostly individual satellite bands. For each 

parameter value we wanted to analyze, we trained a separate model; for example, five-fold 

cross-validation with four parameter values results in 20 total model runs. Using caret, we 

determined which parameter values maximized the model performance. Finally, using the best 
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parameter values, we trained the final model using the entirety of the training set (i.e. all five 

folds) and validated using the test set. 
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4. Results 

4.1 2021 Dry Season 

While one of the purposes of the drone imagery taken in March 2021 was to assess its utility in 

quantifying water extraction from the canal linking the Mijoyo River to the irrigation perimeter, 

we also used it to identify crops being grown on and off the perimeter. A large percentage of the 

land was fallow, but there were many examples of onions and cabbage (Figure 9). These data 

were shared with NASA and they used them to train and evaluate a satellite-based crop type 

predictive model. We did not perform any modeling using these training data. The drone 

imagery showed areas where water was being extracted from the canal and used to irrigate 

crops but was not useful in quantifying the amount. 

Figure 9. Fields Labeled by Crop Type Dry Season 2021 

 

4.2 2023 Rainy Season 

The 2023 rainy season marked the first time that widespread cultivation occurred in the Konni 

Irrigation Perimeter since the beginning of the rehabilitation and expansion. At this time, 

construction was still ongoing and irrigation from the works was not available. Our drone 
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imagery was concentrated within the five zones that comprise the fields that surround Konni. 

We contracted for two sets of drone imagery: one in early August 2023 and the second in late 

September 2023. Using these sets of images in image services publishing to our external Esri 

Portal, we classified fields with the crops present. Most fields were planted with cereal crops, 

specifically maize and sorghum. We did not see many examples of non-cereal crops. There was 

however, a fairly large number of fields that were left unplanted (fallow). The types and extents 

of the crops present are shown in Figure 10. 

Figure 10. Fields Labeled by Crop Type, Rainy Season 2023 

 
 

We generated a crop type model that was trained on five main land covers/crops: maize, 

sorghum, dolique, groundnuts, and fallow. This model was greatly influenced by the large 

numbers of fields of maize and sorghum in the training data, consequently producing an overall 

accuracy of 95%. However, the overall accuracy may not reflect the reality of how and where 

misclassifications occur, especially in models trained on data with class imbalances such as this 

one. Since we labeled so much maize, it is not surprising that the model mostly (and correctly) 

predicted maize.  
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Appendix A.1 shows a breakdown of the confusion matrix and accuracies by crop type, allowing 

us to interpret the accuracy with more nuance. The confusion matrix provides data about how 

often the predictive surface crop either (1) agrees with the human-labeled satellite grid cell, or 

(2) is confused and predicts a different crop type at the location of the human-labeled grid cell. 

The confusion matrix indicates that the model is 99% accurate when identifying maize and 87% 

accurate when identifying sorghum; however, these high accuracies are a result of the overall 

abundance of cereal crops and come at the expense of accuracy when identifying dolique, 

groundnuts, and fallow land. 

The predictive crop type surface produced by the model is shown in Figure 11. 

Figure 11. Predicted Crop Types over Entire Study Area, Rainy Season 2023 

 
 

In terms of hectares, maize and sorghum comprised almost all the planted area (Table 3). 

Some fields were left fallow, and the only non-cereal crop of note was groundnuts (8.37 ha). 
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Table 3.  Area of Predicted Crop Types (Konni Perimeter), Rainy Season 2023 

Crop Type Hectares Percent Area Model 
Accuracy 
Percent 

Maize 2388.62 87.73 99.06 

Sorghum 277.48 10.19 87.45 

Fallow 48.15 1.77 72.78 

Groundnuts 8.37 0.31 70.86 

Dolique 0.09 0.00 33.33 

 

4.3 2024 Dry Season 

We intended to obtain two sets of drone imagery for the 2024 dry season. After receiving and 

processing the first set from mid-March, it was apparent that almost all the fields had either 

been left unplanted, or the crops had been abandoned. Figure 12 shows an example of the 

state of cultivation within the irrigation perimeter during the 2024 dry season. From the drone 

imagery, there did not appear to be any water flowing in the irrigation canals, which may explain 

the lack of cultivation during this dry season 

Figure 12. Typical Condition of Fields, Dry Season 2024 
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We created labels for the few fields that were actively being farmed as well as examples of 

fallow/abandoned fields (Figure 13) and shared these ground truth data with our NASA 

colleagues.  

Figure 13. Fields Labeled by Crop Type, Dry Season 2024 

 
 

We also did our own modeling to generate a predictive crop surface and generated a map 

shown in Figure 14. The model’s confusion matrix and accuracies are provided in Appendix 

A.2. The overall accuracy was very high, but this is because the model was trained with almost 

all fallow examples. Given that the drone imagery showed extremely limited cultivation, it is 

entirely expected that the model produced a surface that identified bare earth/fallow as 99.6% 

(Table 4) of the land use within the irrigation perimeter  



 High Frequency Monitoring: The Use of Drone Imagery to Generate  
Training Data for Crop Modeling in the Konni Irrigation Perimeter 

2021-2025 Final Report 

4-6 

UNCLASSIFIED 

Figure 14.  Predicted Crop Types over Entire Study Area, Dry Season 2024 
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Table 4.  Area of Predicted Crop Types (Konni Perimeter), Dry Season 2024 

Crop Type Hectares Percent 
Area 

Model 
Accuracy 
Percent 

Fallow 2712.99 99.60 100.00 

Tomatoes 3.41 0.13 88.89 

Onions 3.15 0.12 54.17 

Okra 1.41 0.05 90.91 

Sweet Potato 0.96 0.04 47.06 

Squash 0.7 0.03 33.33 

Sorghum 0.59 0.02 77.78 

Cabbage 0.21 0.01 66.67 

Cassava 0.18 0.01 40.00 

Groundnuts 0.13 0.00 100.00 

Millet 0.07 0.00 100.00 

Beans 0.06 0.00 50.00 

Melons 0.06 0.00 0.00 

Maize 0.04 0.00 0.00 

Dolique 0.03 0.00 0.00 

 

4.4 2024 Rainy Season 

The 2024 rainy season marked the first time we obtained oblique drone imagery to complement 

our vertical imagery. Oblique imagery is typically taken at a lower altitude than the vertical 

imagery and the camera points toward the ground at an oblique angle (Figure 15). The 

coverage is continuous along the flight path, but the flight paths do not cover the entire drone 

area the way that the vertical imagery does. It is meant to augment the vertical imagery, not 

replace it. 

We again contracted for two sets of drone imagery: one in early August 2024 and the second in 

late September 2024. This included collection of both vertical and oblique imagery.  
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Figure 15.  Example of Oblique Drone Imagery 

 
 

All sets of images were published to our external Esri Portal and, using our online crop labeler, 

we classified fields to generate a cross section of crops present. The oblique imagery turned out 

to be an invaluable resource. Because it was taken at a lower altitude and we could see the 

relative height and the shape of the tops of plants, we were able to label more crops with higher 

confidence. As in 2023, most fields were planted with cereal crops in 2024 (mostly sorghum, but 

also millet and maize). In addition, we saw many examples of non-cereal (cash) crops (Figure 

16). 
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Figure 16. Number of Fields Labeled by Crop Type, Rainy Season 2024 

 
 

These ground truth data trained the rainy season 2024 model, which produced the crop type 

predictive surface shown in Figure 17. Our model produced an overall accuracy of 91% 

(Appendix A.3), which was largely driven by large numbers of labels for sorghum, maize, millet, 

fallow, and groundnuts. Of these, maize (86%) and groundnuts (88%) achieved lower 

accuracies, although they were still quite good. In general, the cereal crops produced higher 

accuracies than non-cereal crops. This is mostly because these fields tend to be larger than 

non-cereal crops and therefore generate more crop labels inside their boundaries 

Geographically, there does not appear to be any spatial pattern. Sorghum was planted 

throughout the irrigation perimeter along with millet and maize, with some cash crops 

interspersed between. 
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Figure 17.  Predicted Crop Types, Rainy Season 2024 

 
 

Table 5 displays the crop areas in hectares and their corresponding percentages of the planted 

area. As suggested by the map, sorghum makes up the largest crop by area, followed by bare 

earth/fallow, and then two additional cereal crops: millet and maize. The most prevalent non-

cereal (cash) crop was groundnuts, with 5.39% of the cultivated area. 
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Table 5. Area of Predicted Crop Types (Konni Perimeter), Rainy Season 2024 

Crop Type Hectares Percent 
Area 

Model 
Accuracy 
Percent 

Sorghum 1,468.94 54.26 98.08 

Bare Earth 428.98 15.85 89.25 

Millet 258.37 9.54 93.27 

Maize 205.26 7.58 86.49 

Groundnuts 145.95 5.39 88.46 

Napier Grass 62.28 2.30 93.10 

Cabbage 58.14 2.15 72.97 

Tomatoes 41.26 1.52 72.46 

Anise 10.72 0.40 65.63 

African Eggplant 8.88 0.33 73.08 

Squash 7.86 0.29 69.39 

Okra 5.57 0.21 58.33 

Natural Veg 1.91 0.07 58.33 

Sweet Potato 1.56 0.06 87.50 

Cowpeas 0.63 0.02 83.33 

Bell Peppers 0.45 0.02 60.00 

Lettuce 0.23 0.01 33.33 

 

4.5 2025 Dry Season 

For the 2025 dry season, we followed the same method we used for the creation of the 2024 

rainy season crop labels, which was to use the oblique drone imagery in conjunction with the 

vertical imagery. The distribution of the labeled fields is shown in Figure 18. There were more 

fields under cultivation during the 2025 dry season as compared to the 2024 dry season. The 

presence of water in many of the irrigation canals suggests that either (1) water was flowing 

from the main irrigation canal, or (2) it had recently rained. Water availability is likely the reason 

for the noticeably increased cultivation. 
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Figure 18. Number of Fields Labeled by Crop Type, Dry Season 

 
 

We used these crop labels to create a dry season model and produce a predictive surface 

(Figure 19). It is immediately evident that there was still a large area within the irrigation 

perimeter that was left fallow, but there were also many plots growing sorghum and maize. The 

overall model accuracy was excellent at 95% (Appendix A.4). This number was driven by the 

large number of bare earth/fallow, sorghum, and maize labels. For the cereal crops, sorghum 

(94%), maize (93%), and millet (63%) were predicted with high accuracy. Millet is lower 

because of the low number of training labels. For the non-cereal crops, the model performed 

very well for onions (88%), cabbage (76%), groundnuts (89%), and squash (97%).  
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Figure 19. Predicted Crop Types, Dry Season 2025 

 
 

Table 6 shows the number of hectares and the corresponding percent of the study area 

predicted for each of the crops for which we trained the model. After sorghum and maize, we 

saw a small amount of onions (6%) and cabbage (3%). Though grown on small areas, it was 

unusual to see melons and Irish potatoes grown during the dry season in this area. These crops 

require significant amounts of water to grow and are not normally a dry season crop, which 

indicates that least some farmers are using irrigation to grow crops for additional income. Irish 

potatoes in particular are a high value cash crop in Niger. 
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Table 6. Area of Predicted Crop Types (Konni Perimeter), Dry Season 2025  

Crop Type Hectares Percent 
Area 

Model 
Accuracy 
Percent 

Fallow/Bare Earth 1384.41 50.82 99.58 

Sorghum 521.64 19.15 94.42 

Maize 439.1 16.12 93.10 

Onions 167.9 6.16 87.90 

Cabbage 84.17 3.09 75.58 

Groundnuts 49.3 1.81 88.89 

Squash 33.84 1.24 97.06 

Mustard 14.17 0.52 81.82 

Melon 13.03 0.48 76.67 

Irish Potatoes 12.27 0.45 86.21 

Lettuce 2.84 0.10 60.00 

Millet 1.32 0.05 62.50 

 

4.6 Changes 

4.6.1 Rainy Season Changes 

The crop types identified by the model for the 2023 and 2024 rainy growing seasons were not 

identical, thereby making change calculations difficult. To resolve this, and to limit the number of 

possible combinations, we combined crops/land covers into the following categories: 

1. Fallow = fallow, bare earth, natural vegetation 

2. Cereal Crops = maize, millet, sorghum 

3. Non-Cereal Crops = all others 

Figure 20 shows a map of the nine possible combinations. The map shows that the majority of 

the cultivation remained in cereal crops (dark purple) between 2023 and 2024, with some cereal 

crop areas being left fallow, and some cereal crops moving to non-cereal (cash) crops. 
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Figure 20. Cereal/Non-Cereal Crop Change, Rainy Seasons 2023–2024  

 
 

Crop change category areas and percentages are presented in Table 7. As the map indicated, 

72.61% of cultivated land remained in cereal crops between 2023 and 2024. Approximately 

15% of land was left fallow in 2024 as compared with 2023, and about 10% of the 2023 cereal 

crop area was converted to non-cereal crops in 2024. The other types of changes amounted to 

only about 2% of the total area under cultivation. 
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Table 7.  Changes in Cereal/Non-Cereal Crops, Rainy Seasons 2023–2024 

Change Description Area (ha) Percent 

Remained Cereal 1992.04 72.61 

Cereal to Non-Cereal 275.55 10.04 

Cereal to Fallow 418.52 15.25 

Non-Cereal to Cereal 5.12 0.19 

Fallow to Cereal 23.44 0.85 

Fallow to Non-Cereal 6.16 0.22 

Remained Fallow 19.24 0.70 

Remained Non-Cereal 1.71 0.06 

Non-Cereal to Fallow 1.78 0.06 

 

To calculate the net change from 2023 to 2024 by category, we added the amount of area that 

was converted into each category, and subtracted the amount of area that was converted out 

of each category. The results of this calculation are presented in Table 8. 

Table 8.  Net Change in Cereal/Non-Cereal Crops, Rainy Seasons 2023–2024 

Net Crop Category 
Change 

Area (ha) Change in Percentage 
of Total Area 

Cereal -665.51 -24.26 

Non-Cereal 274.81 10.02 

Fallow 390.7 14.24 

 

Overall, there was a large decrease in cereal crops, which accounted for 97.90% of the study 

area during the 2023 rainy season, but only 73.64% of the study area during the 2024 rainy 

season. Non-cereal crops experienced a very large increase from 0.31% to 10.33% of the study 

area between these seasons, while the fallow area increased from about 1.77% to 16.01% of 

the study area. While an increase in non-cereal crops is one of MCC’s goals, an increase in 

fallow area is not. Given that these changes are between two specific rainy seasons, any trends 

should be interpreted with caution. There may be other factors at play besides water availability. 

4.6.2 Dry Season Changes 

The crop types identified by the model for the 2024 and 2025 dry growing seasons were also 

not identical, thereby again making change calculations difficult. To resolve this, and to limit the 

number of possible combinations, we again combined crops/land covers into the same three 

categories: 
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1. Fallow = fallow, bare earth, natural vegetation 

2. Cereal Crops = maize, millet, sorghum 

3. Non-Cereal Crops = all others 

Figure 21 shows a map of the nine possible combinations. The map shows that most of the 

cultivation remained fallow (medium brown) between 2024 and 2025, with some cereal crop 

areas being left fallow, and some cereal crops moving to non-cereal (cash) crops. 

Figure 21. Cereal/Non-Cereal Crop Change, Dry Seasons 2024–2025  

 
 

Crop change category areas and percentages are presented in Table 9. As the map indicates, 

approximately 50% of cultivated land remained fallow between 2023 and 2024. This is a large 

decrease from the 2024 dry season when over 99% of the cultivated land was left fallow. Most 

of the previously fallow land was planted with cereal crops (35%), but we also note a significant 

increase in non-cereal crops (13.6%) as well. 
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Table 9.  Changes in Cereal/Non-Cereal Crops, Dry Seasons 2024–2025 

Change Description Area (ha) Percent 

Remained Cereal 0.3 0.01 

Cereal to Non-Cereal 0.27 0.01 

Cereal to Fallow 0.13 0.00 

Non-Cereal to Cereal 3.94 0.14 

Fallow to Cereal 960.33 35.00 

Fallow to Non-Cereal 373.12 13.60 

Remained Fallow 1399.1 51.00 

Remained Non-Cereal 4.8 0.17 

Non-Cereal to Fallow 1.57 0.06 

 

To calculate the net change between 2024 and 2025 by category, we added the amount of area 

that was converted into each category, and subtracted the amount of area that was converted 

out of each category. The results of this calculation are presented in Table 10. 

Table 10.  Net Change in Cereal/Non-Cereal Crops, Dry Seasons 2024–2025 

Net Crop Category 
Change 

Area (ha) Change in 
Percentage of 
Total Area 

Cereal 963.87 35.13 

Non-Cereal 367.88 13.41 

Fallow -1331.75 -48.54 

 

Overall, there were also very large shifts in land allocation between the 2024 and 2025 dry 

seasons. In the 2024 dry season, there did not appear to be irrigation water flowing based on 

drone imagery and approximately 99.60% of the study area was fallow with about 0.02% 

planted in cereal crops and the other 0.38% in non-cereal crops. In the 2025 dry season, when 

irrigation water was available, there was a huge increase in cropped area with fallow area falling 

to 50.82% of the study area while 35.32% of the study area was planted in cereal crops and the 

other 13.85% of the study area allocated to non-cereal crops. This is a marked increase in 

cultivation, as compared with the 2024 dry season.  The 2025 drone imagery revealed much 

more area under cultivation and water in most of the irrigation ditches. Therefore, it is not 

surprising to see a dramatic decrease in fallow area. Most of the increases were seen in 

traditional cereal crops, rather than non-cereal crops suggesting that farmers returned to what 

they normally grow.  
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5. Discussion 

This project produced several types of results that are worthy of discussion. Our main goal was 

to assess crop changes using high frequency monitoring. In addition, we wanted to know how 

well it augmented traditional monitoring and evaluation and to determine if our methods were 

sufficient to implement the augmentation. We also present lessons learned and look to modify 

our approach for future projects.  

5.1 Crop Changes 

With the delays in construction and resumption of cultivation in the Konni Irrigation Perimeter, 

we were only able to compare two rainy growing seasons (2023–2024) and two dry growing 

seasons (2024–2025). Fortunately, the construction works were provisionally accepted following 

the 2024 dry season, which allowed us to assess the cultivation before and after irrigation was 

provided. This is especially true for the dry season, when irrigation is essential. 

5.1.1 Rainy Season Changes 

Comparison of the rainy season crops, as combined into three categories (cereal, non-cereal, 

and fallow) revealed that there was a decrease in the overall share of the study area allocated 

to cereal crops of 24.26%. The corresponding increases were split between very large gains in 

fallow (+14.24% of total study area) and non-cereal crops (+10.02%). One of the impacts that 

MCC was anticipating as a result of increased access to irrigation is reallocation of crop mix 

from traditionally grown cereal crops toward non-cereal crops that require more water but that 

can be sold at higher market prices, thus increasing farmers’ incomes. Based on our predictive 

crop type models, we are seeing a trend in that direction. Clearly this is a small sample size, 

and there are other factors that determine what a farmer decides to plant in any given growing 

season, but the results of this analysis indicate that provision of additional water is having a 

positive impact on rainy season non-cereal crop production. 

5.1.2 Dry Season Changes 

Comparison of the dry season crops, as combined into three categories (cereal, non-cereal, 

fallow) revealed that the amount of land left fallow decreased by almost 50%. The 

corresponding increases were split between cereal crops (+35.1% of total study area) and non-

cereal crops (+13.4%). Given that most fields were either left unplanted or were abandoned in 

2024, it was encouraging to see that half the irrigation perimeter was cultivated in 2025. Again, 

this is a small sample size but given that we saw water in the new irrigation canals, it is feasible 

that the availability of water during the dry season has allowed farmers to grow primarily cereal 

crops, but also some non-cereal (cash) crops. If this continues, and if the mix of crops shifts 

from cereal to non-cereal, then the impacts of the provision of additional water are in line with 

what MCC was expecting. 
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5.2 Augmentation to Traditional Monitoring and Evaluation 

The remote-sensing approach discussed in this report complements more “traditional” M&E 

methods in several ways. This section discusses how using remote sensing at frequent intervals 

provides timely actionable data. 

5.2.1 Triangulation 

The findings of the remote-sensing approach will provide a line of sight into the empirical 

outcomes established by our team member Mathematica. Crop diversification measures 

generated using remote-sensing data will avoid social desirability bias, recall bias, and other 

forms of respondent-level bias that may mislead a program’s decision-makers. Analysts will use 

this visibility to estimate the nature and extent of the biases, enabling statistical adjustments that 

correct for them and thus yield more reliable estimates. 

5.2.2 Reproducibility 

Traditional enumerator-driven M&E methods require pairing careful instrument development 

with significant investments in training to achieve good inter- and intra-rater reliability.9 The 

former becomes increasingly difficult as the size of the workforce scales; the latter suffers when 

fatigue, difficult terrain, and other environmental conditions come into play. Our approach, in 

contrast to traditional enumerator-driven M&E, has been shown in this study to be highly 

reproducible, and its performance is not typically affected by the same conditions that would 

affect enumerators. We were able to collect the drone data in the same way each season, and 

label it using the same tools with the same guidance. We were also able to write data 

processing scripts which provided consistent input into the crop type models. The models 

themselves were consistent, which allowed us to compare results from one season to the next. 

5.2.3 Cost 

Initial data collection 

We are not able to directly compare the cost of obtaining drone data to crop type data collected 

by traditional enumerators since we did not produce crop labels both ways. The cost of imagery 

is approximately $10 per hectare, and this fell between quotes we received for comparable work 

in Rwanda and Zambia. These costs were reasonable and we budgeted accordingly. The 

imagery can be collected by a single individual, which keep costs to a minimum. Additionally, we 

do not have to return to the field if we need more data since we can derive additional labels from 

the drone imagery. However, to control costs, it is important to obtain multiple quotes when 

purchasing these services. We noted an uptick in costs, particularly the permits, when the coup 

 
9 Inter-rater reliability refers to the consistency between different assessors measuring the same input, often 
concurrently. Intra-rater reliability is the consistency over time of a given assessor’s repeated measures on the same 
input. 
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made it economically unfeasible for firms located outside Niger to perform the work and we had 

to go with a single vendor. 

Data processing and analysis 

The crop labeling process was computationally intensive and required a significant initial 

investment in building out the data cleaning and inference pipeline. However, we created 

reproducible processes that were applied to new datasets at significantly reduced costs. Thus, 

the methods and software written was used for multiple rounds of data collection. This 

significantly reduced processing and analytical costs and allowed us to conduct higher-

frequency monitoring than would have been possible otherwise. 

5.2.4 Time-to-Insight 

Because of the various factors contributing to delays in this project (construction, COVID, and 

the military coup), we did not get to implement high frequency monitoring as often as we would 

have liked. However, we were able to establish our process and calculate the change between 

two dry seasons, and two rainy seasons. Based on the methods and software we created, we 

are confident that we could have modeled crop diversification on a regular six-month basis. This 

could have provided additional data points to program leaders and valuable complementary 

data to traditional M&E. 

5.3 Additional Lessons Learned 

While our experience in Rwanda taught us much about using drone imagery for crop 

identification, we also learned several things from our work in Niger. We knew that having 

multiple images of the same crops at different growth stages was essential to accurate crop 

identification. In Rwanda, we used three passes, but in Niger we found that two passes were 

sufficient. Not only did this reduce the cost of contracting drone imagery, but it also reduced the 

number of hours spent processing the imagery and reduced the storage space needed. 

We also learned that the resolution of the drone imagery makes a difference. While 3 cm 

resolution was sufficient to identify most crops, imagery at 2 cm was noticeably better and 

allowed us to use leaf shape as a discriminator. We would specify 2 cm (or better) imagery in 

the future for all missions that require crop identification. 

Another aspect of drone imagery acquisition is the scheduling of flights to capture crops at 

optimal points in the growing season. Scheduling the flights as far in advance as possible is 

very helpful, especially if the acquisition of the necessary permits from appropriate in-country 

aviation authorities is potentially slow. Some delays, such as weather, are impossible to predict 

but most can be avoided with good planning. 

We envisioned using in-country personnel from the government agencies we contacted at the 

outset of this project to do the bulk of the crop labeling. However, expecting these staff to do the 

work on a volunteer basis proved to be unrealistic. We ended up hiring a trained agronomist to 

guide the crop labeling and providing final quality control. If we had set up this function at the 

outset of the project, it would have allowed us to quickly move through the drone imagery. 
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It became apparent that we needed a way to corroborate the crop types we were seeing in the 

vertical drone imagery with another form of identification. This was especially true of the cereal 

crops where millet, maize, and sorghum look very similar from directly above. One option we 

tried was using a mobile phone to capture ground images that could be viewed in the online 

platform Mapillary. While this platform is primarily for hosting dashcam videos, it can also be 

used for hosting images from someone walking along a route. This did not work very well, since 

only the crops in the foreground were discernible, and then only if the person was close enough. 

A much better solution was the inclusion of oblique drone imagery as a complement to the 

vertical imagery. By using these in tandem, we were able to discriminate between similar crops 

and greatly increase our labeling confidence. 

5.4 Future Improvements 

Future work of this type could benefit from additional technological and methodological 

improvements. The most important one is to determine if we can create accurate seasonal crop 

type models that span multiple years and extended geographies. We could do this by combining 

training data as well as satellite bands from multiple years. The model would have to be 

validated against ground truth data, so there would still be a need to collect some actual ground-

based observations. But if the prediction accuracy is high enough, using a model to accurately 

predict crop types beyond a single season at a single location would save a significant amount 

of both time and money.  

The second would be to use a sensor that captures more than just the visible spectrum. Having 

a sensor that also records reflected radiation in the red edge (0.68 µm–0.75 µm) and near-

infrared (0.78 µm–1.4 µm) bands could help discriminate between crop types that look the same 

in the visible spectrum. This, and the ability to create vegetation indices such as Normalized 

Difference Vegetation Index (NDVI), might allow crops to be correctly identified, as well as 

indicate their health, which is directly related to available water. 

Another improvement would be to reduce the area flown by the drone. This would reduce both 

costs and processing times, as well as reduce the time between imagery acquisition and model 

development and training. It would also reduce data storage costs since there would be less 

data. One caveat is that the area would still need to be representative of the study area as a 

whole. Careful sampling would have to be done so that all crops present are included. 

A fourth improvement would be to use machine learning to create the crop type labels, which in 

turn would be used to train and evaluate the satellite models.10 If a machine learning model 

could be trained to identify crop types on drone imagery, then a significant amount of labor 

could be saved. Caveats to this approach are that a large number of known examples would be 

needed for all crop types that exist in the study area and that these “synthetic” labels would still 

need to be reviewed by a trained agronomist before being released to train a satellite-based 

model. 

 
10 See Cajka et al. (2022) for additional discussion, https://cropanalytics.net/wp-content/uploads/2022/10/RTI-
Rwanda-Case-Study_Final-Report_2022.pdf.  

https://cropanalytics.net/wp-content/uploads/2022/10/RTI-Rwanda-Case-Study_Final-Report_2022.pdf
https://cropanalytics.net/wp-content/uploads/2022/10/RTI-Rwanda-Case-Study_Final-Report_2022.pdf


 

 

UNCLASSIFIED 

References



 High Frequency Monitoring: The Use of Drone Imagery to Generate  
Training Data for Crop Modeling in the Konni Irrigation Perimeter 

2021-2025 Final Report 
 

R-1 

UNCLASSIFIED 

References 

Bogner, K. & Landrock, U. (2016). GESIS Survey Guidelines Response Biases in Standardised 
Surveys. https://doi.org/10.15465/gesis-sg_en_016  

Chew, R., Rineer, J., Beach, R., O’Neil, M., Ujeneza, N., Lapidus, D., Miano, T., Hegarty-
Craver, M., Polly, J., & Temple, D.S. (2020). Deep neural networks and transfer learning 
for food crop identification in UAV images. Drones, 4, 7. 
https://doi.org/10.3390/drones4010007 

Hall, O., Dahlin, S., Marstorp, H., Archila Bustos, M. F., Öborn, I., & Jirström, M. (2018). 
Classification of maize in complex smallholder farming systems using UAV imagery. 
Drones, 2, 22. https://doi.org/10.3390/drones2030022 

Larsen, M. & Rasinski, K. (2002). The psychology of survey response by Roger Tourangeau; 
Lance J. Rips; Kenneth Rasinski. Journal of the American Statistical Association, 97, 
358-359. https://doi.org/10.2307/3085796. 

https://doi.org/10.15465/gesis-sg_en_016
https://doi.org/10.3390/drones4010007
https://doi.org/10.3390/drones2030022
https://doi.org/10.2307/3085796


 

A-1 

UNCLASSIFIED 

Appendix A – Model Metrics 

A.1  Confusion Matrix Rainy 2023 Model 
 

Bare Earth/
Fallow Dolique Groundnuts Maize Sorghum 

Total 
Predicted 

Bare Earth/
Fallow 

353 0 1 15 3 372 

Dolique 0 1 0 0 0 1 

Groundnuts 0 0 124 12 1 137 

Maize 119 2 48 7793 238 8200 

Sorghum 13 0 2 47 1686 1748 

Total Actual 485 3 175 7867 1928 10458 

Accuracy 0.7278 0.3333 0.7086 0.9906 0.8745 0.9521 
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A.2  Confusion Matrix Dry 2024 Model 

 
Beans Cabbage Cassava Dolique 

Bare 
Earth/
Fallow 

Ground-
nuts Maize Melon Millet Okra Onions Sorghum Squash 

Sweet 
Potato Tomato 

Total 
Predicted 

Beans 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Cabbage 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 2 

Cassava 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 

Dolique 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Bare Earth/
Fallow 

1 1 2 0 3767 0 1 2 0 1 11 2 10 9 1 3808 

Groundnuts 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 2 

Maize 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Melon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Millet 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 

Okra 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 10 

Onions 0 0 1 0 0 0 0 0 0 0 13 0 0 0 1 15 

Sorghum 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 7 

Squash 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 6 

Sweet Potato 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 9 

Tomato 0 0 0 0 0 0 0 0 0 0 0 0 1 0 16 17 

Total Actual 2 3 5 0 3767 2 1 2 1 11 24 9 18 17 18 3880 

Accuracy 0.5000 0.6667 0.4000 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 0.9091 0.5417 0.7778 0.3333 0.4706 0.8889 0.9884 
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A-3 

UNCLASSIFIED 

A.3  Confusion Matrix Rainy 2024 Model 

 African 
Eggplant Anise 

Bare 
Earth/
Fallow 

Bell 
Peppers Cabbage 

Cow-
peas 

Ground-
nuts Lettuce Maize Millet 

Napier 
Grass 

Natural 
Veg Okra Sorghum Squash 

Sweet 
Potato Tomato 

Total 
Predicted 

African 
Eggplant 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 

Anise 1 21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 23 

Bare Earth/
Fallow 

0 5 332 1 4 0 7 0 3 0 1 0 1 5 5 0 3 367 

Bell Peppers 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

Cabbage 0 0 2 0 54 0 0 0 1 0 0 0 0 0 1 0 1 59 

Cowpeas 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 5 

Groundnuts 0 3 6 0 4 0 138 0 0 0 1 0 1 2 3 0 4 162 

Lettuce 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 

Maize 0 0 4 0 2 0 0 0 160 2 1 1 2 4 0 0 2 178 

Millet 0 0 3 0 0 0 3 0 3 291 0 2 0 9 0 0 0 311 

Napier 
Grass 

0 0 0 0 0 0 0 0 1 0 54 0 0 0 0 0 1 56 

Natural Veg 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 7 

Okra 0 0 0 0 0 0 0 0 0 0 0 0 9 0 0 0 0 9 

Sorghum 6 3 25 1 7 1 8 2 16 17 1 2 6 1124 5 1 7 1232 

Squash 0 0 0 0 1 0 0 0 0 1 0 0 0 1 34 0 0 37 

Sweet 
Potato 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 

Tomato 0 0 0 0 2 0 0 0 1 1 0 0 0 1 1 0 50 56 

Total Actual 26 32 372 5 74 6 156 3 185 312 58 12 19 1146 49 8 69 2532 

Accuracy 0.7308 0.6563 0.8925 0.6000 0.7297 0.8333 0.8846 0.3333 0.8649 0.9327 0.9310 0.5833 0.5833 0.9808 0.6939 0.8750 0.7246 0.9119 
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UNCLASSIFIED 

A.4  Confusion Matrix Dry 2025 Model 

 Labeled 

  
Cabbage 

Bare Earth/
Fallow 

Ground-
nuts 

Irish 
Potatoes Lettuce Maize Melon Millet Mustard Onions Sorghum Squash 

Total 
Predicted 

Cabbage 65 0 1 0 0 1 1 0 0 1 1 0 70 

Bare Earth/
Fallow 

5 1172 0 0 0 8 1 2 0 2 1 0 1191 

Groundnuts 0 0 24 0 0 0 1 0 0 0 0 0 25 

Irish 
Potatoes 

0 0 0 25 0 0 0 0 0 0 0 0 25 

Lettuce 0 0 0 0 3 0 0 0 0 0 0 0 3 

Maize 6 2 0 0 0 243 2 1 1 5 3 1 264 

Melon 0 0 1 0 0 0 23 0 0 0 0 0 24 

Millet 0 0 0 0 0 0 0 5 0 0 0 0 5 

Mustard 1 0 0 0 0 0 0 0 9 0 0 0 10 

Onions 7 1 0 0 0 0 0 0 0 109 4 0 121 

Sorghum 1 2 1 1 2 9 1 0 0 4 203 1 225 

Squash 1 0 0 3 0 0 1 0 1 3 3 66 78 

Total Actual 86 1177 27 29 5 261 30 8 11 124 215 68 2041 

Accuracy 0.7558 0.9958 0.8889 0.8621 0.6000 0.9310 0.7667 0.6250 0.8182 0.8790 0.9442 0.9706 0.9539 

 


