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Introduction  8 

The global climate change and forestry research and policy communities can benefit from 9 

projections of future forest land use and management based on economic models that reflect 10 

dependencies between natural resource systems, markets and policy drivers. Such tools can be 11 

used to develop future anticipated baselines, which can inform policy dialogue or investment 12 

decisions regarding activities that maintain or enhance forest carbon stocks. The myriad of 13 

methods used to project land use and GHG emissions across alternative economic futures 14 

includes simulation methods (e.g., Wear and Coulston, 2015), structural dynamic methods (Tian 15 

et al., 2018), recursive dynamic partial equilibrium methods (e.g., Forsell et al., 2016), and 16 

spatial allocation optimization frameworks (Latta et al., 2018). Structural economic and dynamic 17 

models can offer distinct advantages for projecting forest carbon futures at regional and global 18 

scales, such as price endogenous land use and management decisions (Tian et al., 2018) relative 19 

to simulation approaches, but such frameworks are often built at aggregated spatial, temporal, 20 

and activity-level scales, requiring data aggregation processes to link physical forest resource or 21 

                                                           
1 The views expressed in this article are those of the authors and do not necessarily represent the views or policies 
of the U.S. Environmental Protection Agency. 
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land cover data with market data (Prestele et al., 2016). Aggregating or averaging across scales is 1 

a common technique for representing physical and economic parameters in model-specific 2 

regional aggregates. Such aggregation offers operational advantages in minimizing 3 

computational processing challenges, reconciling differences in data availability at different 4 

spatial scales, and linking together resource systems with regional markets. However, there are 5 

important trade-offs associated with data aggregation for structural model development, 6 

including potential bias that can result from aggregating input data across spatial, temporal, and 7 

activity scales and thus reducing the level of heterogeneity present in the modeling system and 8 

simulation results. Reduced spatial or activity-scale data limits the amount of data heterogeneity 9 

present in a structural optimization modeling framework, moving the system further away from 10 

representing the “margin” of some key parameter set (e.g., transportation costs) and towards 11 

average regional conditions.  12 

Aggregation bias is widely discussed in the statistical and econometric modeling 13 

literature, and techniques have been developed to correct for potential aggregation bias. 14 

However, limited work to date has explicitly evaluated aggregation bias potential in structural 15 

models.  This paper seeks to fill this key gap in the forest modeling literature by highlighting 16 

potential sources of aggregation bias in baseline forestry projections using the Land Use and 17 

Resource Allocation (LURA) model, a detailed spatial allocation partial equilibrium model of 18 

the U.S. forest sector. We evaluate baseline projections of forest carbon, regional harvest levels, 19 

and other key outputs across a range of data structures representing different levels of spatial, 20 

forest type, and age-class aggregation. The spatial aggregation component relates directly to 21 

forest biomass transportation costs. The LURA framework (described in Latta et al., 2018) 22 

represents distinct transportation cost components from plots to facility (mills, electricity 23 
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generation unit [EGU], and port), and from facility to facility. We evaluate aggregation bias first 1 

by averaging transportation distances and costs at a county level, a state level, and then at a 2 

regional level.  3 

Then, we explore aggregation of per acre forest volume characteristics across age class 4 

structure and forest type delineation. Age class aggregation includes moving from per acre 5 

volumes at an individual plot-level age class distinction to a 5- and 10-year age class aggregation 6 

(both of which are popular age-class aggregates in the forest modeling community). Age class 7 

aggregation changes both the growth dynamics and harvest rules for individual plots. Finally, we 8 

move from a forest type classification system that covers 14 individual forest types in the model 9 

to a simplistic Hardwood and Softwood delineation, which is consistent with other modeling 10 

frameworks and data-sources and the delineation for harvest levels reported from the Timber 11 

Product Output database (USDA). Forest type aggregation affects growth dynamics, harvest 12 

rules, and other management variables in the framework. Spatial, age-class, and forest type 13 

aggregation scenarios are interacted in a partial factorial experimental design to evaluate relative 14 

levels of aggregation bias across these key elements.  15 

The advantage of our approach is that we maintain the high level of spatial resolution in 16 

the modeling framework using FIA plots as the primary supply-side simulation unit and mills, 17 

EGUs, and ports as the demand-side simulation units. Ultimately, the structure of the model 18 

remains intact, and the operational objective is still to minimize the costs of achieving national 19 

demand targets for specific forest product groups (consistent with Latta et al., 2018). However, 20 

as we aggregate across key elements of the model related to changes in demand through the 21 

shifting of transportation costs when aggregating across space, and to timber supply through 22 

changes in age class and forest type driven by forest management decisions, this approach allows 23 
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us to approximate the effect of aggregation on key variables of interest (e.g., GHG emissions and 1 

harvest levels) while avoiding structural changes to the modeling framework itself. We show that 2 

aggregation across space, age class, and forest types can result in considerable variation in 3 

projected terrestrial forest carbon stocks across the United States with a 7% difference nationally 4 

and more than 25% in key regions relative to the disaggregated base model formulation.  5 

Literature Review 6 

Aggregation has long been studied in statistical analyses; particularly, econometricians 7 

are interested in accurately modeling the relationship between the individual (micro) behavior 8 

and aggregate (macro) statistics, so that data from both the micro and macro level can be used for 9 

estimation and inferences about economic parameters. However, biases can arise from 10 

aggregation; Greenwood and Luloff (1979) found that aggregation bias can influence the 11 

application of the standard 𝑡 test for aggregated coefficients and may change the overall fitness 12 

of a regression equation in inconsistent ways. Additionally, Luloff and Greenwood (1980) found 13 

coefficients switching signs and magnitude with the sign switching remaining statistically 14 

significant when aggregation was included across a sample. These, and other findings (see Theil, 15 

1954; Boot and de Wit, 1960; Orcutt et al., 1968; Gupta, 1971; and Sasaki, 1978), led to the 16 

derivation of statistical test which could be used to measure aggregation biases, such as in 17 

Pesaran, Pierse, and Kumar (1989), and Lee, Pasaran, and Pierse (1990). Cherry & List (2002) 18 

found aggregation biases of crime deterrent effects by examining the multiple levels of crime 19 

types in reduced-form regressions.  20 

 In structural models, aggregation can also be thought about as using micro level data to 21 

represent macro level responses to economic conditions. Aggregation bias is also present in 22 

structural models, as shown in Foroni & Marcellino (2014), which applies a dynamic stochastic 23 
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general equilibrium model (DSGE) to show that potential biases from temporal aggregation can 1 

be large in empirical models.  Using the Global Trade Analysis Project (GTAP) modeling 2 

systems, Brockmeier & Bektasoglu (2014) analyze and compare the effects that data aggregation 3 

and model structure have on results.  Brockmeier & Bektasoglu (2014) apply both general 4 

equilibrium (GE) and partial equilibrium (PE) versions of GTAP, as well as aggregated and 5 

disaggregated versions of the input data. Results show that data aggregation, especially related to 6 

competition and tariffs, has a larger effect on model outcome than model structure. Charateris & 7 

Winchester (2010) use a computable general equilibrium model (CGE) to see the impact of dairy 8 

disaggregation and joint production on trade liberalization outcomes. It is shown that aggregation 9 

can lead to misleading results if joint production is not accounted, such as lower rates of 10 

exportation, reduced economic output, and lower welfare effects due to the substitution effect on 11 

the consumption side. Applying the GTAP model Grant et al. (2007) investigate the effects of 12 

reduced trade barriers of the U.S. dairy sector and find that an aggregated version results in an 13 

underestimation of trade flows compared to the disaggregated version, production is reduced 14 

(similar to Charateris & Winchester, 2010), but relatively consistent results surrounding total 15 

welfare. Narayanan et al. (2010) compared PE, GE, and a combined PE-GE model to estimate 16 

the welfare effects of the Indian automotive industry under reduced trade barriers. They found 17 

that when data inputs are aggregated, this aggregation results in an increase in total imports, a 18 

slight change in overall prices, and relatively small effects in total welfare.   19 

 The effects of spatial aggregation have been researched in the civil engineering field with 20 

respect to transportation as well. Jeon et al. (2012) showed that using an aggregated Traffic 21 

Analysis Zone structure and network model with aggregated regions can still produce results 22 

within a reasonable range of error requiring less time and costs of the analysis. Varejão and 23 



6 
 

Portugal (2007) used historical labor data to estimate labor demand functions across varying 1 

levels of spatial and temporal aggregations. Data aggregated from the quarterly level to the 2 

annual level resulted in estimates of longer adjustment lag time between reaching a market 3 

clearing steady state, that is, an upward bias in the estimated coefficient of the lagged dependent 4 

variable (Varejão & Portugal, 2007). When data was aggregated spatially, from individual 5 

establishment level to industry level, the estimated coefficients had the expected signs, but as 6 

data was aggregated to larger industries, the effects of lags and coefficients were more 7 

reasonable. These results demonstrate that the most disaggregated estimates were less reliable 8 

than higher levels of spatial aggregation. Additionally, several studies have evaluated the 9 

“zoning effect” and its implications multivariate regression parameter estimation (Amrhein & 10 

Reynolds, 1976, 1996, 1997; Reynolds & Amrhein, 1998; Fotheringham and Wong, 1991; and 11 

Openshaw and Taylor, 1979). The zoning effect is created by aggregating statistics across some 12 

partition created through some decision-making process, an example of this is aggregating 13 

individuals up to the census track level (Reynolds & Amrhein, 1998).   14 

Aggregation in Structural Forest Models 15 

 16 

Structural models of the forest sector rely on a wide range of aggregating assumptions in 17 

order to simplify both the input data requirements of models, and the computational rigor of 18 

solving a large optimization model. Table 1 provides an overview of recent modeling studies in 19 

the forest economics domain, focusing primarily on studies in the projections and 20 

climate/bioenergy policy domains in which developing robust baseline forest carbon projections 21 

is often a primary objective. Economic modeling approaches highlighted in Table 1 include 22 

structural dynamic models (GTM, FASOMGHG), recursive dynamic global partial equilibrium 23 

frameworks (GFPM, GLOBIOM), spatial allocation optimization (LURA), an integrated 24 
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assessment model, and a regional partial equilibrium framework (SRTS). Models vary 1 

significantly in how forest sector activities are aggregated by region, time-scale (or simulation 2 

step), age-class structure, and forest type delineation. Table 1 focuses on aggregation of U.S. 3 

forest sector components—for global models, frameworks may have different aggregation 4 

approaches for different regions. This table shows that most existing economic models used for 5 

projections analysis aggregate to at least a 5-year age class structure with regional aggregates for 6 

supply-side representation. Some frameworks also use a high-level of aggregation to distinguish 7 

different forest types.  8 

 9 

  10 
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Table 1: Comparison of modeling examples and associated levels of aggregation 11 

Model Name Study Model Type Spatial Scale Spatial Units Time 

Scale 

Age 

Class 

Forest Types 

Global Timber Model (GTM) 

Baker et al., 2019; 

Favero et al, 2018; 

Tian et al., 2018 

Dynamic 

Optimization PE 

Global - 16 

Regions 
Country for US 

200 

years 
10 year  

Disaggregated, 50 types in 

US based on FIA data 

Forestry and Agricultural Sector 

Optimization Model with 

Greenhouse Gases (FASOMGHG) 

Cai et al., 2018; Beach 

et a., 2010 

Dynamic 

Optimization PE 
US 11 Region 

75 

years 
5 year  

Disaggregated, 14 types in 

US based on FIA data 

 
Wear & Coulston, 

2015 

Reduced Form 

Simulation Model 
US 

FIA Plots (150,350 

points), presented at 

regional scale 

25 

years 
5 year  

4, a single forest type for 

each region 

Land Use and Resource Allocation 

Model (LURA) 

Latta, Baker, & Ohrel, 

2018; 

 

Spatial Allocation 

PE  
US 

FIA Plots (150,350 

points) 

25 

years 
1 year  

14 types based on FIA 

classifications 

Global Change Assessment Model 

(GCAM) 

Chen et al., 2018; 

Markandya et al., 

2018  

 

Recursive 

Dynamic Model 

Global - 17 

Regions 

32 Regions for 

energy-economics, 

283 for land use 

100 

years 
5 year 

Managed and non-

managed 

Global Biosphere Management 

Model (GLOBIOM) 

Tyner, Zhao, & 

Forsell et al., 2016 
PE Model 

Global 5 x 5 

arcminute 

grid 

Aggregated to entire 

US 

100 

years 
10-year  

 Managed and non-

managed 

US Forest Product Model/Global 

Forest Products Model 

(USFPM/GFPM) 

Nepal et al., 2012; 

Ince et al., 2011; 

Buongiorno et al., 

2003 

Dynamic Partial 

Equilibrium 
Global  

3 US regions: North, 

South, West 

40 

years 
Annual 

4 categories 

(Differentiated by 

HW/SW and sawtimber, 

pulpwood) 

Sub-Regional Timber Supply 

(SRTS) 

Galik & Abt, 2016; 

2012; Abt, Cubbage, 

& Abt, 2009 

Recursive 

dynamic and 

simulation 

Southern US  FIA Survey Units 
25 

years 
5-year 5 forest types 

 12 

 13 

  14 
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Data and Methods  15 

 16 

 This analysis applies the Land Use and Resource Allocation Model (LURA). LURA is a 17 

recursive dynamic, spatial allocation model of the US forest sector (Latta et al., 2018; Martinkus 18 

et al., 2017). The LURA framework efficiently allocates forest resources to either match 19 

exogenous demand targets over time for different forest products (as in this analysis) or to match 20 

exogenously-defined harvest levels from other projections models (e.g., Latta et al., 2018, which 21 

uses key macroeconomic and energy market drivers, such as GDP, housing starts, and diesel 22 

prices, to project future demand targets for 22 individual forest products).  23 

Forest biomass is supplied at the plot-level, based on data from the Forest Inventory and 24 

Analysis 2015 (FIA). The FIA plots are part of the national inventory of forests for the United 25 

States. In total, 150,350 forest plots are included in LURA with information on condition 26 

classes2, eco-provinces (Cleland et al. 2007), site classes, forest type, age class, management 27 

intensities, and ownership characteristics for each plot. Representative annual growth rates are 28 

calculated for each forest type, land classification, and eco-province combination (a further 29 

explanation can be found in the supplement of this manuscript and in Latta, Baker, & Ohrel 30 

2018). The harvest decision is based on minimizing the transportation costs of harvest logs to 31 

mills with available capacity, and travel of final goods from mills to demand ports.  32 

Scenario Design 33 

Aggregation scenarios in this analysis include spatial, forest type, and age class 34 

aggregations; as well as interactions between key aggregation categories. Three different 35 

                                                           
2 Condition classes are homogeneous components within the FIA plot system. Consider an FIA plot with 
four subplots—two that are younger stands, and two that older. The subplots are allocated to common 
condition classes with similar composition and age-class structure. 
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aggregation levels were implemented to examine the effects of aggregation on results for both 36 

natural and economic systems within the same modeling framework. The first level compares 37 

results across different spatial aggregates moving from individual plots, to counties, to states, and 38 

finally to major market regions as represented in the U.S. Forest and Agricultural Sector 39 

Optimization Model with Greenhouse Gases (FASOMGHG) framework as summarized in Baker 40 

et al. (2010), Latta et al. (2013), and Cai et al. (2018). Spatial aggregation directly affects the 41 

travel cost associated with moving harvested logs to mills, intermediate wood products to mills 42 

and ports, and final products to demand centers such as ports. We find through our aggregation 43 

processes that in regions with highly developed forestry industries, overall travel costs decline 44 

under spatial aggregation; conversely, regions with limited infrastructure see travel costs increase 45 

with spatial aggregation as large areas of forestland exist far from mills.  The second aggregation 46 

source moves from plot specific age-class delineations (pulling ages directly from the FIA 47 

dataset for each plot) to 5-year age classes across each spatial aggregation level. The final source 48 

of aggregation considers a 10-year age class across each spatial level, while also aggregating 49 

from the original 14 forest types to two representative forests (hardwoods and softwoods). Our 50 

choice of aggregation across plot ages to age classes as well as from specific forest stand types 51 

generalized hardwood and softwoods changes the per-acre volume level, growth rate, yield, and 52 

harvesting costs from the margin to the average which effects on harvesting decisions, 53 

production of harvested wood products, and carbon storage. 54 

  The following sections provide additional detail on these aggregation procedures and 55 

how they impact model functionality and resulting outcomes by shifting the basic economics of 56 

the system and forest management decisions.  57 
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Spatial Aggregation  58 

 59 

The degree of spatial aggregation of a model directly affects resource supply, moving it 60 

further from spatial heterogeneity and thus marginal nature of supply to one more reflective of 61 

constant averages. Our spatial aggregation scenarios in LURA first require a weighted average 62 

representative plot location (latitude and longitude) to be created for each spatial aggregate. We 63 

then conduct the same level of aggregation for demand points (forest product mill, electricity 64 

generation unit [EGU], or port) for each of the forest product classifications. The scenario-65 

specific locations are then run through the LURA transportation cost algorithms (see Latta et al., 66 

2018) to determine transportation distances and costs. 67 

 In the base (labeled Plot in Figure 1) scenario transportation distances and hauling costs 68 

are calculated independently for each combination of 150,350 plot and more than 3,000 demand 69 

point locations, given an assumed energy price projection (in this case we assume 2018 Annual 70 

Energy Outlook Reference Case diesel prices). Thus, the plot scenario results in the most 71 

spatially heterogenous cost estimates yielding smooth upward-sloping marginal transportation 72 

cost functions. For counties (labeled County), we first calculate the weighted average centroid 73 

location of forest plots within each county of the lower 48 states then repeat the procedure for the 74 

forest product manufacturing facilities. Next, transportation distances and associated hauling 75 

costs are recalculated for this generic plot location. This procedure is replicated for state (labeled 76 

State) and regional (labeled Regional) versions of the model as well. Subsequent model 77 

simulations continue to manage individual plots, but spatial heterogeneity in transportation costs 78 

decreases with each level of aggregation. As spatial aggregation occurs, regions with a limited 79 

number of mills end up with relatively large average transportation costs compared to regions 80 

with a large numbers of mills. These regions with less existing forest product manufacturing 81 
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infrastructure have relatively steep marginal cost curves, and when travel distance (i.e. a proxy 82 

for transportation costs) are averaged across the entire region, these plots are no longer cost 83 

competitive for mills within region or in neighboring regions. Additionally, spatial aggregation 84 

directly effects a models ability to efficient allocate intra-regional transfers of products. In a plot 85 

level analysis, each plot is able to ship products to the closest, economically feasible, mill no 86 

matter what county, state, or region that mill is in. This allows for the marginal transportation 87 

cost for many plots to remain low. As travel distances from plots to mills are averaged across 88 

large spatial expanses these low marginal costs begin to increase for plots which previously 89 

shipped biomass to mills in other regions. Figure 1 shows Plot, County, State, and Region forest 90 
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resource locations, providing a visual illustration of the degree of spatial aggregation associated 91 

with each scenario.  92 

  93 

 94 

Figure 1: Illustration of spatial aggregation for plot (upper left), county (upper right), state 95 

(lower left), and regional (lower right) applications. 96 

 97 

 98 

Age-class Structure Aggregation Scenarios 99 

 100 

Next, we consider alternative age class structures in the model, aggregating from the 101 

single-year age class delineation used in the base LURA model to 5-year and 10-year age class 102 

aggregates. Specifically, we take the LURA forest plot per-acre volumes  representative of a 103 

given stand age and group plots into common aggregates for five-year (0-4, 5-9, 10-14, etc.) and 104 

10-year (0-9, 10-19, 20-29, etc.) age classes for which we calculate an area-weighted per-acre 105 

volume. This process reduces the heterogeneity in FIA-reported stocking levels present in the 106 
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base model, as plots within a specific age-class group are aggregated and assigned an initial 107 

stocking rate that averages across all plots by forest type and site class.  108 

The SVS infographics in Figures 2-4 illustrate this concept through a visual 109 

representation of a group of plots ranging from 60-69 years in age for an FIA sample of Douglas-110 

fir plots in the Interior West region. The left panel of each figure shows a single-year age-class 111 

structure, with nine representative plots (represented by black boxes) showing average stocking 112 

density for plots at a given age class. Figure 2 demonstrates the level of heterogeneity present in 113 

initial inventory conditions for a single forest type and region combination. Heterogeneity across 114 

a plot can be caused by regeneration success, previous disturbance, management, or other 115 

ecological processes. This heterogeneity is captured in the representative nine plots seen in the 116 

top right panel of this figure, which provides a bird’s-eye view of the simulated plots. The 117 

horizontal perspective of this plot grouping (lower right-hand side) also shows spatially 118 

heterogeneous initial inventory conditions from this data query.  119 

Figure 3 shows the same visual, with only two representative plots and assuming two 5-120 

year age class aggregates within the 60-69 year window (60-64 years and 65-69 years, 121 

respectively). This aggregation shows the process of moving from nine representative plots with 122 

the one-year age class structure to two plots that average across groupings of those original nine 123 

plots that fall within the 5-year aggregates. Thus, the same original set of trees in the 1-year age 124 

class SVS infographic are re-shuffled from nine representative plots to two, which reduces 125 

heterogeneity in initial inventory. The 5-year age class aggregation also offers some degree of 126 

heterogeneity in inventory, as demonstrated visually in the discernible difference between the 127 

upper/right-hand side representative plots and those on the left, but the difference is less extreme 128 

than for the single-year age class aggregation shown in Figure 2. Figure 4 illustrates a 10-year 129 
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aggregation (60-69), which results in an even more homogenous initial inventory as the original 130 

nine subplots are now represented by a single block with an average stocking density across the 131 

original nine.  132 

Expanding this example, Figure 5 illustrates the importance of age class delineation on 133 

initial inventory parameters for representative plots of a certain forest type/region combination. 134 

Again, using Douglas-fir plots in the Interior West region for this illustrative example, Figure 5 135 

compares initial inventory cubic volume per acre across the different age class structures 136 

demonstrating how initial inventories compare to aggregates across the scenarios. Representative  137 

1-year age class (Plot scenario formulation) for different plots results in inventory conditions that 138 

vary substantially across years, while a 5-year aggregation shows two distinct inventory levels 139 

and the 10-year age-class averages out these low- and high-end stocking levels in the sample and 140 

provides a consistent single stocking level for the plots within this age class, significantly 141 

reducing the heterogeneity inherent in the system. This averaging, or smoothing of conditions, 142 

affects harvest costs (determined by per-acre removals) and thus the harvest decision within the 143 

model. 144 
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 145 

Figure 2: Visual illustration of average inventory condition for Douglas-fir in the Interior West for nine representative plots 146 
(delineated by black lines, indicated by arrows) between 60-69 age class (1-year age class distribution) 147 
 148 

 149 
Figure 3: Visual illustration of average inventory condition for Douglas-fir in the Interior West for two representative plots 150 
between two age classes - 60-64 and 65-69 (5-year age class distribution) 151 

 152 
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 153 
Figure 4: Visual illustration of average inventory condition for Douglas-fir in the Interior West for a representative plot with one 154 
60-69 age class (ten-year age class distribution) 155 

 156 

 157 

Figure 5: Illustrative example of initial inventory estimates for Douglas-fir in the Interior West based on 1-, 5-, and 10-year age 158 
class aggregates 159 

 160 

Forest-Type Aggregation  161 
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 Finally, we consider alternative forest type aggregates. The basic forest representation of 163 

LURA includes 14 primary forest types3 reflecting the diversity of species compositions in the 164 

forests of the conterminous U.S. This study adds a scenario formulation that consolidates these 165 

forest types into two broad Hardwood and Softwood classifications. This aggregation reduces the 166 

level of detail by limiting the model’s ability to achieve higher relative yields at additional costs 167 

with plantation forest systems. Furthermore, this level of aggregation over-simplifies the 168 

inventory stocking assumptions in the model for existing forest plots in the FIA database by 169 

averaging out productivity and carbon storage differences across species. From an economic 170 

perspective it also limits the harvest choices to species averages thereby eliminating the option of 171 

targeting plots with high proportions of relevant merchantable products such as softwood 172 

sawlogs or hardwood pulpwood.  173 

In a broad sense, the spatial aggregation scenarios can be considered a focus on the 174 

effects of transportation costs, the age class aggregations on the effects of harvest costs, and the 175 

forest type aggregations on the effects of log primary forest merchantability. The resulting suite 176 

of scenarios thus is designed to provide a rich overview of a wide range of potential aggregation 177 

bias issues. Table 2 describes that various scenarios utilized in this analysis and how each varies 178 

levels of aggregation in spatial and activity-scale components.  179 

 180 

 181 

 182 

 183 

                                                           
3Forest types include: Aspen, Douglas-Fir, Hardwood, Juniper, Maple, Oak, Oak-Pine, Pine, Pine2, Softwood, 

Planted Douglas-Fir, Planted Oak-Pine, Planted Pine, and Planted Softwood  
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Table 2: Summary of age class (AC), and forest type (FT) aggregation types across each 184 

scenario.   185 

Spatial Aggregation Base Age5FT Age10HWSW 

Plot 
AC = one-year 
FT = 14 forest types 

AC = five-year 
FT = 14 forest types 

AC = ten-year 
FT = hardwood and softwood 
only 

County 
AC = one-year 
FT = 14 forest types 

AC = five-year 
FT = 14 forest types 

AC = ten-year 
FT = hardwood and softwood 
only 

State 
AC = one-year 
FT = 14 forest types 

AC = five-year 
FT = 14 forest types 

AC = ten-year 
FT = hardwood and softwood 
only 

Region 
AC = one-year 
FT = 14 forest types 

AC = five-year 
FT = 14 forest types 

AC = ten-year 
FT = hardwood and softwood 
only 

 186 

Results and Discussion  187 

 Aggregating distances to mills or other final demand points shifts representation of key 188 

economic parameters (e.g., transportation costs) from an approximate marginal cost specification 189 

closer to average considerations. With regional average transportation cost parameters, even if 190 

biomass supply is represented at a plot level, a forest modeling framework will be agnostic 191 

between harvesting two plots with similar physical characteristics, even if the plots are (i.e.) 20 192 

and 50 kilometers away from a demand point. 193 

Somewhat surprisingly, however, our results indicate that when implemented, spatial 194 

aggregation has only a modest impact on aggregate forest carbon accumulation at a national 195 

scale (Tables 3-4). Table 3 presents the total estimated CO2 stored in the United States forest 196 

sector in each scenario at two points in time, 2026, and 2036, and Table 4 shows the percent 197 

difference in projected CO2 storage across different scenario assumptions relative to the base 198 

model formulation (1-year age class, all forest types, and plot-level transportation cost 199 

assumptions). Results show a negligible difference in carbon storage when moving from plot to 200 
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county-level aggregates (approximately 0% in all time steps). Aggregating to the state-level 201 

decreases CO2 stocks slightly and this difference grows over time but represents less than a one-202 

percent difference in projected carbon stocks relative to the base formulation for all time periods. 203 

Regional aggregation of transportation distances and costs has the most meaningful impact on 204 

carbon stocks, resulting in a net increase in projected carbon relative to the base formulation of 205 

approximately 1% over the simulation horizon.  206 

The change in aggregate carbon storage is a result of shifting regional harvest patterns. 207 

Cumulative removals decrease overall under the regional aggregation scenario relative other 208 

spatial considerations, which boosts carbon stocks in regions with less forest sector activity 209 

overall (e.g., the Corn Belt and Pacific Southwest regions). With higher transportation costs, 210 

harvest patterns shift to regions with greater existing mill capacity and lower relative 211 

transportation costs. Mill residual utilization also increases, resulting in a forest product sector 212 

that is more confined to the Southeast, South Central, and Pacific Northwest regions. LURA 213 

includes assumptions governing the supply of industrial byproducts from forest product 214 

manufacturing (e.g., bark, shavings, sawdust) and this biomass can be utilized as an energy input 215 

or to produce other products (e.g., pulp)4. As relative costs increase with aggregation and 216 

production shifts to regions where lumber and pulp mills are co-located (or are in close 217 

proximity), a greater proportion of lumber mill residual biomass is utilized by pulp and paper 218 

mills. This result occurs in part due to the loss of spatial heterogeneity when averaging across 219 

regions; when modeled at the plot-level, regions with few mills still have relatively large 220 

amounts of forestland within a small supply radius to meet demand for harvested logs. As 221 

aggregation in these regions occur, these low-distance plots are no longer modeled, instead all 222 

                                                           
4 A more detailed discussion of residual biomass allocation in LURA is offered in Latta, Baker, and Ohrel (2018).  
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plots within the region have the same average distance to a mill. By moving from the margin to 223 

the average, productive forest areas in regions with few mills are ignored, exacerbating the 224 

competitive advantage of regions such as the southeast and northwest.   225 

While projected national carbon stocks show minimal overall changes with higher levels 226 

of spatial aggregation (i.e., county, state, regional) versus the base model formulation, the 227 

projected flux and carbon stocks vary more with the age class and forest type aggregation 228 

scenarios. Shifting from a 1-year to a 5-year age class distribution with a plot-level model 229 

formulation results in approximately 1.5% less carbon storage by 2028 and 3.4% less carbon by 230 

the 2036 simulation period. Projected CO2 fluxes (shown in Figure 6), which remain negative 231 

when aggregating across space, convert from net sink to emissions source with a 5-year age class 232 

aggregation, and this switch occurs late in the simulation horizon (after the 2030 simulation 233 

period—consistent with projections reported in Latta et al. [2018] and Wear and Coulston 234 

[2015]).  Reverting from sink to source of emissions over a 20-year flux indicates that age-class 235 

aggregation represents an important source of potential bias with the key policy implication that 236 

projected national emissions level (economy-wide) would be higher in the presence of this 237 

aggregation as the LULUCF flux has historically been an important annual sink for the U.S. 238 

(EPA, 2018).  239 

Aggregating to a 10-year time step and with forest type aggregation (two types instead of 240 

14) results in projected carbon stocks that are approximately 8% less than the base model 241 

formulation and the projected carbon flux reverts from sink to source early in the simulation 242 

horizon (after the 2020 simulation step). Thus, U.S. forest carbon stocks are declining for the 243 

bulk of the simulation timeframe.  While other recent projections that rely on modeling 244 

frameworks with a decadal age-class structure representation have projected a continuing sink 245 
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for U.S. forests (Tian et al. 2018), we show different results in this (that is, we find a more rapid 246 

decline in carbon accumulation with age-class aggregation. The difference in the overall sign in 247 

the projected flux change between Tian et al. (2018) and this study can be explained by the lack 248 

of endogenous land use and management options in LURA. But our results do show potential 249 

bias in age-class aggregation, which can shift both initial carbon stock conditions due to 250 

differences in initial inventories, as well as the shape of the flux projection as economic criteria 251 

regarding “when” to harvest can change for all plots.  252 

Projected national changes in carbon stocks are less than 10% over the simulation 253 

timeframe for all sources of aggregation considered in this study, which is relatively small in 254 

percentage terms, but represents a meaningful portion of U.S. terrestrial carbon storage. 255 

However, fluxes vary significantly, which has important implications for policy makers and 256 

other practitioners that seek to establish baseline projections of future forest or land use sector 257 

emissions. For context, the difference in baseline flux projections presented in this analysis is 258 

larger than the differences in LURA-derived emissions projections across macroeconomic 259 

scenarios presented in Latta et al. (2018), but not as large as the differences in projected 260 

emissions flux presented in Wear and Coulston (2015) and Tian et al. (2018), and the latter two 261 

studies rely on very different underlying modeling methodologies.   262 

 263 

 264 
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Table 3: Projected U.S. forest CO2 stocks in different simulation time steps across model 

aggregation scenarios. Moving across columns in the table, plot characteristics become more 

aggregated (age class and forest type considerations), while each row introduces a greater level 

of spatial aggregation.   

  2026 2036 

  Base Age5FT Age10HWSW Base Age5FT Age10HWSW 

Plot 90,497 89,574 87,251 92,210 89,351 85,422 

County 90,509 89,590 87,258 92,232 89,364 85,428 

State 90,370 89,446 87,108 91,971 89,103 84,961 

Region 91,412 90,475 87,898 93,246 90,308 86,014 

 

Table 4: Percent difference in projected U.S. forest carbon stocks in different simulation time 

steps across model aggregation scenarios relative to the base model formulation 

  2026 2036 

  Base Age5FT Age10HWSW Base Age5FT Age10HWSW 

Plot  -1.0% -3.6%  -3.1% -7.4% 

County 0.0% -1.0% -3.6% 0.0% -3.1% -7.4% 

State -0.1% -1.2% -3.7% -0.3% -3.4% -7.9% 

Region 1.0% 0.0% -2.6% 1.1% -2.1% -6.7% 
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Figure 6: Annual CO2 flux (where negative value represents sequestration) and carbon stock 

(where positive value represents carbon stored in forests) comparison across different 

aggregation sources 
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In addition to shifting initial inventory conditions, national and regional changes in 

harvest patterns are key drivers of projected carbon outcomes. Regional differences in projected 

harvests are driven in part by the geopolitical boundaries and relative forest density between 

different regions, which has implications for transportation cost calculation as the model 

formulation is aggregated from plot level to other spatial aggregates. For instance, in the eastern 

United States, counties and even some states are relatively small compared to the west mid-west 

regions, and thus aggregation from plot-level transportation cost parameters to county- or state-

level has little effect.  

Projected harvest levels are similar for the plot- and county-level model formulation, 

regardless of age-class or species aggregation considerations (Table 5 and 6). Consistent with the 

slight decrease in projected carbon stocks, aggregate harvests increase slightly for the state-level 

scenarios (less than one percent). Projected harvests for the regional formulation (with a one-year 

age class distribution and heterogeneous forest types are approximately 6%-10% lower than 

under the plot-based model formulation, which is again consistent with the projected change in 

carbon stocks presented in Tables 3 and 4. The regional aggregation induces large changes in 

plot-level transportation cost considerations, making forest harvests much less economical in 

regions with low levels of forest density.  

The 5-year age class aggregation also shifts cumulative national harvest levels – 

increasing in the first five years, but then decreasing over the remaining intervals for the plot, 

county, and state formulations. The net change in projected harvests is small (less than one 

percent) for all Age5FT scenarios relative to the base formulation except for the regional 

aggregate (which sees a decrease in harvests of approximately 9% relative to the plot-level 

formulation).  
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The Age10HWSW scenarios show a long-term increase in cumulative harvests for the 

plot, county, and state scenarios relative to the base formulation, but this effect is relatively small 

overall (2%-4%). Under the regional formulation for Age10HWSW, total cumulative harvests 

decline approximately 4% by the 2036 simulation period. This change in directionality between 

the regional aggregation and plot, county and state aggregations is surprising. Even when 

aggregating across age class, and forest type the projected harvest levels are consistent, but once 

plots are aggregated across large regions the results are inconsistent. As mentioned previously, 

regional aggregation moves transportation costs from the margin to an average which increases 

the costs of producing wood products using primary logs. This forces the model to rely more 

heavily on utilizing bioproducts and residues to produce things like paper and boards. Overall, 

aggregation has only a small effect on harvesting decisions in this framework, but aggregation 

more greatly effects projections of forest carbon storage. 
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Table 5: Projected cumulative U.S. forest harvests in different simulation time steps across 

model aggregation scenarios 

  2026 2036 

  Base Age5FT Age10HWSW Base Age5FT Age10HWSW 

Plot 182 182 185 

             

338  

             

336                   345  

County 182 182 185 

             

338  

             

336                   345  

State 183 183 187 

             

341  

             

339                   352  

Region 166 165 166 

             

317  

             

317                   324  

 

Table 6: Percent difference in cumulative projected U.S. harvests in different simulation time 

steps and across model aggregation scenarios relative to the base model formulation 

  2026 2036 

  Base Age5FT Age10HWSW Base Age5FT Age10HWSW 

Plot  0.0% 1.6%   -0.6% 1.9% 

County 0.0% 0.0% 1.6% -0.1% -0.7% 1.9% 

State 0.5% 0.5% 2.7% 0.7% 0.4% 4.1% 

Region -8.8% -9.3% -8.8% -6.3% -6.4% -4.1% 
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Not all forest types are affected equally across the US across aggregation scenarios. 

Overall, the average travel distance of hardwood harvest is much more variable compared to 

softwood harvests. This is driven in part by less forest density for traditional hardwood stands as 

these HW stands typically require longer growing intervals for harvest, which limits the available 

alternative plots with viable amounts of biomass. When performing regional analysis, differences 

in projected carbon and timber product supply across various levels of spatial and activity-level 

aggregation can lead to very different conclusions. At the state and regional aggregations, the 

effects are much larger in magnitude, resulting in large cumulative reductions in harvesting in 

the Northeast, Corn Belt, Rocky Mountains, and Great Plains, with a decline of 90%, 81%, 76%, 

and 70% in harvest levels (respectively) when moving from plot level locations to a regional 

average locations respectively (Figure 7). While these effects are large in percentage terms, it is 

important to note that these regions, in particular the Corn Belt and Great Plains, play a relatively 

small role in the national forest product supply. Additionally, in the plot-based model, the Corn 

Belt is sending over 30% of its harvested logs to other regions for processing. When travel 

distances are averaged across the entire region, plots which may be near the border of a region, 

and closer to mills in other regions are going to experience a greater impact in costs. If 

aggregation shifts cost structures and regional comparative advantages further in favor of regions 

such as the Southeast, South Central, then an efficient solution is to reduce harvests and 

concentrate product mill capacity in these regions, which we find.  

Differences in cumulative harvests for the regional aggregate scenarios are driven by a 

spatial reallocation of forest sector activity out of larger regions with relatively low forest density 

and high aggregated transportation costs to more traditional forest sector regions. The Southeast, 

South Central, and Pacific Northwest (West) regions all see meaningful increases in cumulative 
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harvests under the regional aggregate scenarios, and this effect is amplified when age-class 

structure and forest type considerations are also aggregated. This reallocation occurs as higher 

costs and less heterogeneity in plot-level characteristics shifts the domestic regional comparative 

advantage of forest product activity further in favor of highly productive regions. Furthermore, 

the Lake States region, which is a relatively small region but is endowed with existing mill 

infrastructures and high levels of forest density sees increased projected harvest levels for the 

regional scenarios relative to plot-based locations to regional locations, with increases of more 

than 20% for all aggregation scenarios relative to the base formulation. Thus, at higher levels of 

transportation cost and plot characteristic aggregation, there is a distinct shift to regions with 

existing infrastructure, which artificially de-emphasizes existing forest sector activity in regions 

such as the Corn Belt or Pacific Southwest in lieu of regions with increased comparative 

advantage under new cost structures created by data aggregation processes. Our hypothesis is 

that this type of aggregation bias is evident in other modeling frameworks as well that rely on 

similar or different regional delineations, but models that are not based on spatially explicit units 

may not offer the ability to directly test for spatial aggregation bias. 

Furthermore, while national harvest levels decline under regional aggregation, exogenous 

demand targets for all forest product categories are still met as a higher total proportion of 

harvested logs are utilized, logging residue collection and use increases, and use of mill residuals 

increases.  Higher levels of residue utilization results in an overall decrease in the amount of new 

harvest that is required to meet exogeneous demand. Our results show that in the regionally 

aggregated model an increased reliance on byproducts occurs to meet demand which leads to an 

overall reduction in cumulative harvest by 8.4% by 2028 compared to the plot-based model, even 

with large regional shifts in harvest patterns. 
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Aggregation across space, time, and forest types also impacts total harvest levels and the 

average yield per acre, or the relative intensity of harvests. At the most disaggregated level, 

average volume harvested per acre over the entire time horizon was 3.2 thousand ft3/acre for the 

plot-based scenario, while in the fully aggregated model yields are 2.6 thousand ft3/acre. This is 

due mainly to the shift in initial conditions associated with moving from 14 individual forest 

types to only 2 forest types. The initial forest inventory in both models is the same, however, 

because the 2-forest type model has averaged-out the fast-growing plantation forest types, the 

growth rate of forests in the United States declines relative to the baseline model. This leads to a 

high rate of harvest on these “overstocked” forests in early periods with the resulting forest 

regrowth experiencing lower growth rates.  

Carbon stocks also vary substantially by primary market region (Figure 8), in particular at 

regional aggregates and with higher levels of age-class and product aggregation. The Southeast 

and Southcentral regions show the largest decrease in projected carbon storage with decreases in 

carbon storage of 0.50 GtCO2 and 0.49 Gt CO2, respectively, relative to the base model 

formulation and the Age5FT formulation at the plot level, and this difference grows for the 

Age10HWSW aggregation (1.5 GtCO2 and 1.1 GtCO2 respectively). Aggregation to the regional 

level induces the largest increases in regional carbon stocks, with the Northeast, Rocky 

Mountain, and Corn Belt all experiencing large changes (0.97 Gt CO2, 0.3Gt CO2, and 0.20 

GtCO2 respectively), while regions such as the Southeast, Lake States, and Pacific Northwest 

(West) see the greatest decreases in carbon stocks. The Southeast in particular sees a large 

decrease in carbon, reverting from a strong net sink to a large net source of emissions by 2036 

for the state and regional scenarios and under the Age10HWSW formulation.  
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These regions include large areas of highly productive plantation forests, and aggregation 

leads to an “averaging out” of these productive ecosystems, particularly for the Age10HWSW 

scenario formulation. This omission of plantation forests within the model limits the ability of 

the forest sector to provide fast-growing, high-quality biomass. This in turn forces an increase in 

the harvested without a commensurate regrowth in carbon under the influence of management. 

Forest management considerations are critical in understanding and projecting the forest carbon 

balance (Tian et al., 2018), so averaging out important management characteristics of different 

forest types has important implications for regional carbon flux (and stock) projections in regions 

that rely heavily on management interventions to improve productivity. Projected forest carbon 

flux in the Southeast region under the highest level of aggregation (regional, Age10HWSW) 

indicates a net emissions source of 0.56 GtCO2 annually, and more than a 25% reduction in 

projected carbon stocks by 2036 (Figure 9). Similarly, the South Central region sees more than a 

20% reduction in projected carbon stocks for the most aggregated model formulation relative to 

the base formulation. This result suggests that regional stakeholders should be cautious when 

interpreting regional projections from highly aggregated national forest sector models, for the 

potential for biased results exists.   
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Figure 7: Percent difference from plot-level formulation in projected regional cumulative 

harvests for each age class and forest type scenario format 
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Figure 8: Percent difference from plot-level formulation in projected regional carbon stocks for 

each age class and forest type scenario format 
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Figure 9: Percent difference from most disaggregated model formulation (plot-level, 1-year age 

class, all FT) in projected regional carbon stocks for spatial aggregation, age class, and forest 

type scenario format 
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Conclusions 
 

 The prevalence of biophysical-economic modeling used to establish baseline projections 

of market or environmental variables to inform policy decisions will continue to expand, and 

there is a growing literature that seeks to explore the implications of alternative modeling 

techniques on projections outcomes, particularly for energy, agriculture, and land use systems 

and with a growing emphasis on forestry. For forest sector projections modeling, it is also 

important to understand the implications of various data aggregation techniques on projection 

outcomes. Using the LURA framework, this study attempts to quantify the effects that 

aggregation can have on structural model projections by varying the level of aggregation across 

supply/transportation cost components, forest management considerations, and forest types.  

 This analysis shows that projections of standing timber vary at the national level by less 

than 5% over a twenty-year time frame with spatial aggregation, which is small overall, 

indicating limited potential bias of spatial aggregation when modeled results are evaluated at 

national scales. However, we find much greater variation in projected harvest and carbon results 

at the regional as the regional comparative advantage of forest product supply shifts to regions 

with high relative forest density and existing mill infrastructure. This effect is the result of a 

model-derived change in comparative advantage that reinforces a spatial redistribution of 

production activities due to economic data aggregation, thus introducing potential bias in 

regional projections results.  

The largest source of variation in projected carbon and harvests is aggregation across 

both forest types and age classes (Age10HWSW). The implication of this result is that even 

models that account for spatial heterogeneity in transportation costs can suffer from aggregation 

bias if activity definitions such as forest types and age class structures are averaged. Under the 
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Age10HWSW model formulation, projected carbon storage in the United States declines by 

almost 8% over a twenty-year simulation horizon.  Regional results are also greatly impacted by 

age class and forest type aggregation.; Specifically, we find that the largest affects occur in the 

highly productive regions such as the Southeast, South Central, and Pacific Northwest with 

projections of carbon storage declining by as much as 28% relative to the most disaggregated 

model formulation. This reduction in carbon occurs in the absence of management intensification 

or investment in forest resources at the extensive margin – such investments are not endogenous 

components in this version of the LURA model. With shifting cost structures and regional 

harvest patterns, there would be a large market incentive to invest in management techniques that 

increase overall productivity (e.g., planting), consistent with findings in Tian et al. (2018). 

However, this result also suggests that modeling frameworks that aggregate over space and 

activity sets could see biased levels of forest resource investment in productive regions with 

relatively lower cost structures following aggregation of input data and activity sets, and this can 

also influence projected carbon outcomes. Further research is needed to assess whether this 

directionality is consistent across other modeling frameworks in order to better understand the 

potential sources of bias inherent in data aggregation processes for structural models.   

Finally, while it is not always feasible to use the most disaggregated level of data due to 

lack of economic data at higher spatial resolution or limited computing power; it is vital that the 

potential biases associated with varying types of aggregation be explored and taken into 

consideration when developing regional carbon stock projections from national or global systems 

models to use in different policy or investment contexts. 
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